Well tool having magnetically coupled position sensor

Information

  • Patent Grant
  • 7673683
  • Patent Number
    7,673,683
  • Date Filed
    Thursday, January 18, 2007
    17 years ago
  • Date Issued
    Tuesday, March 9, 2010
    14 years ago
Abstract
A well tool having a magnetically coupled position sensor. In operation of a well tool, relative displacement is produced between members of the well tool. A magnetically coupled position sensor includes one magnet assembly attached to a member for displacement therewith and another magnet assembly movably attached to the other member and magnetically coupled to the first magnet assembly for displacement therewith. The position sensor further includes a magnetically permeable material which increases a magnetic flux density between the magnet assemblies. In another position sensor, one magnet assembly includes a magnet having a pole axis, the other magnet assembly includes another magnet having another pole axis, and the pole axes are aligned with each other.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit under 35 USC §119 of the filing date of International Application No. PCT/US2006/002118, filed Jan. 23, 2006, the entire disclosure of which is incorporated herein by this reference.


BACKGROUND

The present invention relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an embodiment described herein, more particularly provides a well tool having a magnetically coupled position sensor.


In some types of well tools, it is beneficial to be able to determine precisely the configuration of the tool at given points in time. For example, a downhole choke has a closure assembly which is opened or closed by varying amounts to produce a corresponding increase or decrease in flow through the choke. To obtain a desired flow rate through the choke, it is important to be able to determine the position of the closure assembly.


Therefore, it will be appreciated that improvements in position sensors are desirable for use with well tools. As with other instrumentation, sensors and other equipment used in well tools, factors such as space, reliability, ability to withstand a hostile environment, cost and efficiency are important in improved position sensors for use with well tools.


SUMMARY

In carrying out the principles of the present invention, an improved magnetically coupled position sensor is provided. One example is described below in which a magnetically permeable material is used to increase a magnetic flux density between magnets in the position sensor. Another example is described below in which the magnets have aligned pole axes.


In one aspect of the invention, a well tool for use in conjunction with a subterranean well is provided. The well tool includes members, such that relative displacement between the members is produced in operation of the well tool. A magnetically coupled position sensor includes magnet assemblies, with one of the magnet assemblies being attached to one of the members for displacement with the member, and the other magnet assembly being movably attached to the other member and magnetically coupled to the first magnet assembly for displacement with the first magnet assembly. The position sensor further includes a magnetically permeable material which increases a magnetic flux density between the magnet assemblies.


In another aspect of the invention, the first magnet assembly includes at least a first magnet having a first pole axis, the second magnet assembly includes at least a second magnet having a second pole axis. The first and second pole axes are aligned with each other. The pole axes are preferably collinear.


In yet another aspect of the invention, the second magnet assembly may include a slider having opposite ends. A first contact may be positioned at one opposite end, and a second contact may be positioned at the other opposite end for balancing forces applied to the slider.


These and other features, advantages, benefits and objects of the present invention will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative embodiments of the invention hereinbelow and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic partially cross-sectional view of a well system embodying principles of the present invention;



FIG. 2 is an enlarged scale cross-sectional view of a position sensor which may be used in a well tool in the system of FIG. 1;



FIG. 3 is an elevational view of a resistive element used in the position sensor of FIG. 2;



FIG. 4 is a cross-sectional view of a first alternative configuration of the position sensor;



FIG. 5 is a cross-sectional view of the first alternative configuration, taken along line 5-5 of FIG. 4;



FIGS. 6 & 7 are cross-sectional views of respective second and third alternative configurations of the position sensor;



FIG. 8 is a cross-sectional view of the third alternative configuration of the position sensor, taken along line 8-8 of FIG. 7.



FIG. 9 is a cross-sectional view of a fourth alternative configuration of the position sensor installed in an alternative configuration well tool;



FIG. 10 is a cross-sectional view of the fourth alternative configuration of the position sensor, taken along line 10-10 of FIG. 9; and



FIG. 11 is an enlarged scale cross-sectional view of the configuration of FIG. 2, with an alternative contacts arrangement.





DETAILED DESCRIPTION

Representatively illustrated in FIG. 1 is a well system 10 which embodies principles of the present invention. In the following description of the system 10 and other apparatus and methods described herein, directional terms, such as “above”, “below”, “upper”, “lower”, etc., are used for convenience in referring to the accompanying drawings. Additionally, it is to be understood that the various embodiments of the present invention described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present invention. The embodiments are described merely as examples of useful applications of the principles of the invention, which is not limited to any specific details of these embodiments.


As depicted in FIG. 1, a tubular string 12 has been installed in a wellbore 14. Two well tools 16, 18 are interconnected in the tubular string 12 for controlling a rate of production from each of respective zones 26, 28 intersected by the wellbore 14. Note that, instead of production, either of the well tools 16, 18 could be used for controlling a rate of injection into either of the zones 26, 28.


A packer 20 isolates an upper annulus 22 from a lower annulus 24. Thus, the well tool 16 controls the rate of flow between the upper annulus 22 and the interior of the tubular string 12, and the well tool 18 controls the rate of flow between the lower annulus 24 and the interior of the tubular string. For this purpose, the well tool 16 includes a choke 30 and an associated actuator 34, and the well tool 18 includes a choke 32 and an associated actuator 36.


Although the well tools 16, 18 are described as including the respective chokes 30, 32 and actuators 34, 36, it should be clearly understood that the invention is not limited to use with only these types of well tools. For example, the principles of the invention could readily be incorporated into the packer 20 or other types of well tools, such as artificial lift devices, chemical injection devices, multilateral junctions, valves, perforating equipment, any type of actuator (including but not limited to mechanical, electrical, hydraulic, fiber optic and telemetry controlled actuators), etc.


In the system 10 as illustrated in FIG. 1, each of the chokes 30, 32 includes a closure assembly 40 which is displaced by the respective actuator 34, 36 relative to one or more openings 42 to thereby regulate the rate of fluid flow through the openings. One or more lines 38 are connected to each actuator 34, 36 to control operation of the actuators. The lines 38 could be fiber optic, electric, hydraulic, or any other type or combination of lines. Alternatively, the actuators 34, 36 could be controlled using acoustic, pressure pulse, electromagnetic, or any other type or combination of telemetry signals.


Referring additionally now to FIG. 2, an enlarged scale cross-sectional view of a magnetically coupled position sensor 50 embodying principles of the invention is representatively illustrated. The position sensor 50 may be used in either or both of the well tools 16, 18 in the system 10 and/or in other types of well tools. For convenience and clarity, the following description will refer only to use of the position sensor 50 in the well tool 16, but it should be understood that the position sensor could be similarly used in the well tool 18.


The position sensor 50 includes two magnet assemblies 52, 54. One of the magnet assemblies 54 is attached to a member 56 which is part of the closure assembly 40. The other magnet assembly 52 is slidably or reciprocably attached to an outer housing member 58 of the actuator 34. The housing member 58 is part of an overall outer housing assembly of the well tool 16.


In operation of the actuator 34, the closure assembly member 56 is displaced relative to the housing member 58 to regulate flow through the opening 42. The position sensor 50 is used to determine the relative positions of the members 56, 58, so that the flow rate through the opening 42 can be determined or adjusted.


The magnet assemblies 52, 54 are magnetically coupled to each other, so that when the closure assembly member 56 displaces relative to the housing member 58, the magnet assembly 52 displaces with the magnet assembly 54 and slides relative to the housing member. A resistive element 60 is rigidly attached relative to the housing member 58. Contacts 62 carried on the magnet assembly 52 electrically contact and slide across the resistive element 60 as the magnet assembly 52 displaces.


A plan view of the resistive element 60 is depicted in FIG. 3. In this view it may be seen that there are two longitudinally extending resistive traces 68 positioned on an insulative layer 66 of the resistive element 60. The contacts 62 make an electrical connection between the traces 68 at different positions along the traces, thereby changing a measured resistance across the resistive element 60, which provides an indication of the position of the magnet assembly 52. Conductive metal strips 64 permit convenient electrical connections (such as by soldering) to the resistive element 60.


Discrete conductive metal pads 70 are applied over the resistive traces 68. In this manner, displacement of the contacts 62 over the pads 70 will provide discrete changes in resistance as detected. Use of the pads 70 reduces jittering in the detected resistance signal as the contacts 62 displace across the pads, thereby providing a relatively constant resistance indication as the contacts 62 traverse each pair of opposing pads.


The magnet assembly 54 as illustrated in FIG. 2 includes two magnets 72 contained within a pressure bearing housing 74. The housing 74 is preferably made of a non-magnetically permeable material (such as inconel, etc.). The housing 74 isolates the magnets 72 from well fluid and debris in the well tool 16.


The magnet assembly 52 includes three magnets 76, 78, 80 mounted on a slider 82. The magnet assembly 52 and resistive element 60 are enclosed within a sealed tubular structure 84. The tubular structure 84 is supported by an inner tubular wall 86, which also protects the tubular structure from debris (such as magnetic particles, etc.) in the well fluid. The tubular structure 84 and inner wall 86 are preferably made of a non-magnetically permeable material, so that they do not interfere with the magnetic coupling between the magnet assemblies 52, 54.


Note that the magnets 72 have like poles facing each other, with pole axes 88 being aligned and collinear with each other. It will be appreciated by those skilled in the art that this configuration produces a high magnetic flux density between the magnets 72 perpendicular to the pole axes 88.


To take advantage of this high magnetic flux density between the magnets 72, the magnet 78 is positioned with its opposite pole facing toward the high magnetic flux density between the magnets 72, and with its pole axis 90 perpendicular to the pole axes 88 of the magnets 72. This serves to increase the magnetic coupling force between the magnets 72 and the magnet 78.


In order to concentrate the magnetic flux density at the opposite ends of the magnets 72, a magnetically permeable material (such as a steel alloy) 92 is positioned at each opposite end and is oriented perpendicular to the pole axes 88. It will be appreciated by those skilled in the art that this configuration produces a high magnetic flux density at the opposite ends of the magnets 72 perpendicular to the pole axes 88.


To take advantage of this high magnetic flux density at the opposite ends of the magnets 72, the magnets 76, 80 are positioned with their opposite poles facing toward the high magnetic flux density at the opposite ends of the magnets 72, and with their respective pole axes 94, 96 perpendicular to the pole axes 88 of the magnets 72. This serves to further increase the magnetic coupling force between the magnets 72 and the magnets 76, 80.


The slider 82 could be made of a magnetically permeable material, in order to decrease a magnetic reluctance between the magnets 76, 78, 80. This would further serve to increase the magnetic flux density and magnetic coupling force between the magnets 76, 78, 80 and the magnets 72.


Although the magnet assembly 54 is depicted with the positive poles (+) of the magnets 72 facing each other, and the magnet assembly 52 is depicted with the negative (−) pole of the magnet 78 facing radially inward and the positive poles (+) of the magnets 76, 80 facing radially inward, it will be appreciated that these pole positions could easily be reversed in keeping with the principles of the invention. Furthermore, other numbers and arrangements of the magnets 72, 76, 78 and 80 may be used, and the magnet assemblies 52, 54 may be otherwise configured without departing from the principles of the invention.


There could be multiple magnet assemblies 54 circumferentially distributed about the member 56, so that at least one of the magnet assemblies 54 would be closely radially aligned with the magnet assembly 52. In this manner, it would not be necessary to radially align the closure assembly member 56 relative to the housing member 58. In the FIG. 2 embodiment, the member 56 can rotate relative to the magnet assembly 54, and the magnet assembly is separately aligned with the magnet assembly 52 (as described more fully below), so that it is not necessary to radially align the members 56, 58 with each other. However, the members 56, 58 could be radially aligned, if desired.


Referring additionally now to FIG. 4, an alternate configuration of the position sensor 50 is representatively illustrated. Elements of this configuration which are similar to those described above are indicated in FIG. 4 using the same reference numbers.


In the alternate configuration depicted in FIG. 4, the magnet assembly 52 is similar to that shown in FIG. 2, but the inner magnet assembly 54 attached to the closure assembly member 56 is differently configured. Instead of the two magnets 72, the magnet assembly 54 includes three magnets 98, 100, 102 having pole axes 104, 106, 108 which are aligned and collinear with the respective pole axes 94, 90, 96 of the magnet assembly 52.


Another difference is that, instead of the magnetically permeable material 92 positioned at opposite ends of the magnets 72 as in FIG. 2, the magnet assembly 54 as depicted in FIG. 4 includes a magnetically permeable material 110 opposite the magnets 98, 100, 102 from the magnet assembly 52. In this manner, the magnetic reluctance between the poles of the magnets 98, 100, 102 is reduced, thereby increasing the magnetic coupling force between the magnet assemblies 52, 54.


Yet another difference is that, as illustrated in FIG. 5, there are multiple sets of the magnets 98, 100, 102 circumferentially distributed about the member 56. A housing 112 also extends circumferentially about the member 56 and isolates the magnets 98, 100, 102 from well fluid and debris in the well tool 16. As mentioned above, this arrangement dispenses with a need to radially orient the members 56, 58, although such radial orientation could be provided, if desired. Note that the FIG. 2 embodiment could include multiple magnet assemblies 54 circumferentially distributed about the member 56 in a manner similar to that depicted in FIG. 5 for the magnets 98, 100, 102 circumferentially distributed about the member 56, as discussed above.


Referring additionally now to FIG. 6, another alternate configuration of the position sensor 50 is representatively illustrated. Elements of this configuration which are similar to those described above are indicated in FIG. 6 using the same reference numbers.


In the alternate configuration depicted in FIG. 6, the inner magnet assembly 54 is maintained in radial alignment with the magnet assembly 52 by means of interlocking tongues 114 and grooves 116 formed on a housing 118 containing the tubular structure 84 and a housing 120 containing the magnet assembly 54. This configuration may be used for the position sensor 50 as depicted in FIG. 2.


In this case, the housing 120 is a pressure bearing housing, and is made of a non-magnetically permeable material (such as inconel, etc.). Thus, the housing 120 isolates the magnet assembly 54 from well pressure, well fluid and debris.


Referring additionally now to FIG. 7, another alternate configuration of the position sensor 50 is representatively illustrated. Elements of this configuration which are similar to those described above are indicated in FIG. 7 using the same reference numbers.


In the alternate configuration depicted in FIG. 7, the magnet assembly 54 includes two rows of the three magnets 98, 100, 102 illustrated in FIG. 4. In this configuration, the rows of magnets 98, 100, 102 straddle the pole axes 94, 90, 96 of the respective magnets 76, 78, 80 of the magnet assembly 52. Thus, the pole axes 94, 90, 96 are parallel to the pole axes 104, 106, 108 of the magnets 98, 100, 102, but are not collinear.


Similar to the magnetically permeable material 110 of the alternate configuration depicted in FIG. 4, the alternate configuration depicted in FIG. 7 includes a magnetically permeable material 122 positioned radially inwardly adjacent the magnets 98, 100, 102. Another cross-sectional view of the position sensor 50 is illustrated in FIG. 8.


One advantage of the invention as described herein is that it permits greater separation between the magnet assemblies 52, 54, while still maintaining adequate magnetic coupling force, so that the magnetic assembly 52 displaces with the magnetic assembly 54. In an alternate configuration of the position sensor 50 representatively illustrated in FIG. 9, the separation between the magnetic assemblies 52, 54 is large enough that a wall 124 between the magnetic assemblies can serve as a pressure isolation barrier between the interior and exterior of the well tool 16. This is just one manner in which the increased magnetic coupling force between the magnetic assemblies 52, 54 provides greater flexibility in designing well tools for downhole use.


Another difference between the configuration depicted in FIG. 9 and the previously described configurations, is that the magnetic assembly 54 is positioned in a chamber which is isolated from well fluid and debris in the well tool 16. Thus, there is no need for a separate pressure bearing housing about the magnets 98, 100, 102.


Yet another difference in the configuration depicted in FIG. 9 is that two resistive elements 60 are used in the tubular structure 84. This provides increased resolution in determining the position of the slider 82 and/or provides for redundancy in the event that one of the resistive elements 60, contacts 62, or other associated elements should fail in use. In addition, this configuration provides for a greater volume of the magnetically permeable slider 82 material, thereby further increasing the magnetic flux density between the magnet assemblies 52, 54.


Another cross-sectional view of the configuration of FIG. 9 is depicted in FIG. 10. In this view the relative positionings of the magnets 76, 78, 80, 98, 100, 102 and the magnetically permeable slider 82 and material 110 on opposite sides of the wall 124 may be clearly seen. The magnetically permeable slider 82 and material 110 serve to decrease the magnetic reluctance between the respective magnets 76, 78, 80 and magnets 98, 100, 102 to thereby increase the magnetic coupling force between the magnetic assemblies 52, 54.


Note that in the embodiments depicted in FIGS. 4-10, the magnet assembly 54 could include the magnets 72 having their pole axes 88 perpendicular to the pole axes 90, 94, 96 of the magnets 76, 78, 80, instead of including the magnets 98, 100, 102 with their pole axes 104, 106, 108 parallel to or collinear with the pole axes 90, 94, 96, if desired. Furthermore, any of the embodiments described herein could include features of any of the other embodiments, in keeping with the principles of the invention.


Referring additionally now to FIG. 11, an enlarged scale cross-sectional view of an alternate configuration of the FIG. 2 embodiment is representatively illustrated. In this enlarged view, it may be seen that the slider 82 traverses along a set of rails 130 and grooves 132 in the tubular structure 84. The manner in which the slider 82 is supported for sliding displacement in the tubular structure 84 can also be seen in FIGS. 5-7 from another perspective.


In order to minimize binding of the slider 82 as it traverses the rails 130 and grooves 132, it is desirable to equalize the forces applied at each end of the slider. It will be appreciated that the set of contacts 62 at one end of the slider 82 applies a certain force to the slider due to their resilient contact with the resistive element 60 and the drag produced as the contacts slide across the resistive element.


In the configuration depicted in FIG. 11, another set of contacts 134 is positioned at an opposite end of the slider 82. This additional set of contacts 134 results in an equal force being applied to the opposite end of the slider 82, thereby equalizing or balancing the forces applied by the sets of contacts 62, 134 and reducing any binding which might occur between the slider as it displaces along the rails 130 and grooves 132.


Note that the contacts 134 may be used solely for balancing the forces applied to the slider 82, or the contacts may also be used for electrically contacting the resistive element 60. For example, the contacts 134 may provide an additional conductive path between the resistive traces 68 and pads 70 (i.e., in addition to the conductive path provided by the contacts 62), the contacts 134 may be part of a single conductive path which also includes the contacts 62 (e.g., one or more fingers of the contacts 62 may electrically contact only one of the resistive traces 68, and one or more fingers of the contacts 134 may electrically contact the other one of the resistive traces 68, with the electrically contacting fingers of the contacts 62, 134 being electrically connected to each other), or the contacts 134 may not electrically contact the resistive element 60 for providing a conductive path between the resistive traces 68 at all, etc.


It may now be fully appreciated that the present invention provides a well tool 16 which includes members 56, 58, with relative displacement between the members being produced in operation of the well tool, and a magnetically coupled position sensor 50 including magnet assemblies 52, 54. One magnet assembly 54 is attached to the member 56 for displacement with that member, and the other magnet assembly 52 is movably attached to the other member 58 and magnetically coupled to the first magnet assembly 54 for displacement therewith. The position sensor 50 further including a magnetically permeable material 82, 92, 110, 122 which increases a magnetic flux density between the magnet assemblies 52, 54.


The magnet assembly 54 may include at least one magnet 98 having a pole axis 104, and the other magnet assembly 52 may include at least another magnet 76 having another pole axis 94, with the pole axes being aligned with each other. The pole axes 94, 104 may be collinear. The magnet assembly 54 could alternatively include the magnet 98 with the pole axes 104 being parallel to the pole axis 94, or at least one magnet 72 with pole axis 88 perpendicular to the pole axis 94.


The member 56 may be a portion of a closure assembly 40 of the well tool 16.


The magnetically permeable material 92, 110, 122 may be positioned adjacent the magnet assembly 54 for displacement with the magnet assembly.


The magnet assembly 54 may be positioned radially inward relative to the magnet assembly 52, and the magnetically permeable material 92 may longitudinally straddle magnets 72 in the magnet assembly.


The magnet assembly 54 may include multiple magnets 98, 100, 102 or magnets 72 which are circumferentially spaced apart about the member 56. The magnetically permeable material 110 may be positioned between the magnets 98, 100, 102 and the member 56.


The magnet assembly 54 may include at least a magnet 72, the other magnet assembly 52 may include at least another magnet 78, and the magnet 78 may be positioned between the magnetically permeable material 82 and the first magnet 72.


The magnet assembly 54 may include a housing 120 containing at least one magnet 98, the other magnet assembly 52 may include another housing 118 containing at least a second magnet 76. The housings 118, 120 may be slidably engaged, thereby permitting relative displacement between the housings but maintaining radial alignment of the magnet assemblies 52, 54.


The magnet assembly 54 may include a housing 74, 112, 120 containing at least one magnet 72, 98. The housing 74, 112, 120 may isolate the magnet 72, 98 from fluid in the well tool 16.


The magnet assembly 52 may include a housing 84 containing at least one magnet 76, 78, 80. The housing 84 may isolate the magnet 76, 78, 80 from fluid in the well.


The magnet assembly 52 may include a slider 82 having opposite ends. A first contact 62 may be positioned at one opposite end, and a second contact 134 may be positioned at the other opposite end for balancing forces applied to the slider 82. Either or both of the contacts 62, 134 may be used for providing one or more conductive paths between the resistive traces 68 on the resistive element 60.


Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the invention, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of the present invention. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.

Claims
  • 1. A well tool for use in conjunction with a subterranean well, the well tool comprising: first and second members, relative displacement between the first and second members being produced in operation of the well tool; anda magnetically coupled position sensor including first and second magnet assemblies, the first magnet assembly being attached to the first member for displacement with the first member, the second magnet assembly being movably attached to the second member and magnetically coupled to the first magnet assembly for displacement with the first magnet assembly, and the position sensor further including a magnetically permeable material which increases a magnetic flux density between the first and second magnet assemblies.
  • 2. The well tool of claim 1, wherein the first magnet assembly includes at least a first magnet having a first pole axis, the second magnet assembly includes at least a second magnet having a second pole axis, and wherein the first and second pole axes are aligned with each other.
  • 3. The well tool of claim 2, wherein the first and second pole axes are collinear.
  • 4. The well tool of claim 2, wherein the first and second pole axes are parallel to each other.
  • 5. The well tool of claim 1, wherein the first magnet assembly includes at least a first magnet having a first pole axis, the second magnet assembly includes at least a second magnet having a second pole axis, and wherein the first and second pole axes are perpendicular to each other.
  • 6. The well tool of claim 1, wherein the first member is a portion of a closure assembly of the well tool.
  • 7. The well tool of claim 1, wherein the magnetically permeable material is positioned adjacent the first magnet assembly for displacement with the first magnet assembly.
  • 8. The well tool of claim 1, wherein the first magnet assembly is positioned radially inward relative to the second magnet assembly, and the magnetically permeable material longitudinally straddles magnets in the first magnet assembly.
  • 9. The well tool of claim 1, wherein the first magnet assembly includes multiple magnets which are circumferentially spaced apart about the first member, and wherein the magnetically permeable material is positioned between the magnets and the first member.
  • 10. The well tool of claim 1, wherein the first magnet assembly includes at least a first magnet, the second magnet assembly includes at least a second magnet, and wherein the second magnet is positioned between the magnetically permeable material and the first magnet.
  • 11. The well tool of claim 1, wherein the first magnet assembly includes a first housing containing at least a first magnet, the second magnet assembly includes a second housing containing at least a second magnet, and wherein the first and second housings are slidably engaged, thereby permitting relative displacement between the first and second housings but maintaining radial alignment of the first and second magnet assemblies.
  • 12. The well tool of claim 1, wherein the first magnet assembly includes a housing containing at least one magnet, and wherein the housing isolates the magnet from fluid in the well.
  • 13. The well tool of claim 1, wherein the second magnet assembly includes a housing containing at least one magnet, and wherein the housing isolates the magnet from fluid in the well.
  • 14. A well tool for use in conjunction with a subterranean well, the well tool comprising: first and second members, relative displacement between the first and second members being produced in operation of the well tool; anda magnetically coupled position sensor including first and second magnet assemblies, the first magnet assembly being attached to the first member for displacement with the first member, the second magnet assembly being movably attached to the second member and magnetically coupled to the first magnet assembly for displacement with the first magnet assembly, the first magnet assembly including at least a first magnet having a first pole axis, the second magnet assembly including at least a second magnet having a second pole axis, and wherein the first and second pole axes are aligned with each other.
  • 15. The well tool of claim 14, wherein the position sensor further includes a magnetically permeable material which increases a magnetic flux density between the first and second magnet assemblies.
  • 16. The well tool of claim 15, wherein the magnetically permeable material is positioned adjacent the first magnet assembly for displacement with the first magnet assembly.
  • 17. The well tool of claim 15, wherein the first magnet assembly is positioned radially inward relative to the second magnet assembly, and the magnetically permeable material longitudinally straddles magnets in the first magnet assembly.
  • 18. The well tool of claim 15, wherein the first magnet assembly includes multiple magnets which are circumferentially spaced apart about the first member, and wherein the magnetically permeable material is positioned between the magnets and the first member.
  • 19. The well tool of claim 15, wherein the first magnet assembly includes at least a first magnet, the second magnet assembly includes at least a second magnet, and wherein the second magnet is positioned between the magnetically permeable material and the first magnet.
  • 20. The well tool of claim 14, wherein the first and second pole axes are collinear.
  • 21. The well tool of claim 14, wherein the first and second pole axes are parallel to each other.
  • 22. The well tool of claim 14, wherein the first member is a portion of a closure assembly of the well tool.
  • 23. The well tool of claim 14, wherein the first magnet assembly includes a first housing containing at least a first magnet, the second magnet assembly includes a second housing containing at least a second magnet, and wherein the first and second housings are slidably engaged, thereby permitting relative displacement between the first and second housings but maintaining radial alignment of the first and second magnet assemblies.
  • 24. The well tool of claim 14, wherein the first magnet assembly includes a housing containing at least one magnet, and wherein the housing isolates the magnet from fluid in the well.
  • 25. The well tool of claim 14, wherein the second magnet assembly includes a housing containing at least one magnet, and wherein the housing isolates the magnet from fluid in the well.
  • 26. A well tool for use in conjunction with a subterranean well, the well tool comprising: first and second members, relative displacement between the first and second members being produced in operation of the well tool; anda magnetically coupled position sensor including first and second magnet assemblies, the first magnet assembly being attached to the first member for displacement with the first member, the second magnet assembly being movably attached to the second member and magnetically coupled to the first magnet assembly for displacement with the first magnet assembly, and the second magnet assembly including a slider having opposite ends, a first contact positioned at one opposite end, and a second contact positioned at the other opposite end for balancing forces applied to the slider.
  • 27. The well tool of claim 26, wherein each of the first and second contacts provides a conductive path across a resistive element.
  • 28. The well tool of claim 26, where only one of the first and second contacts provides a conductive path across a resistive element.
  • 29. The well tool of claim 26, wherein a combination of the first and second contacts provides a conductive path across a resistive element.
  • 30. The well tool of claim 26, wherein the position sensor further includes a magnetically permeable material which increases a magnetic flux density between the first and second magnet assemblies.
  • 31. The well tool of claim 26, wherein the first magnet assembly includes at least a first magnet having a first pole axis, the second magnet assembly includes at least a second magnet having a second pole axis, and wherein the first and second pole axes are aligned with each other.
  • 32. The well tool of claim 26, wherein the first member is a portion of a closure assembly of the well tool.
  • 33. The well tool of claim 26, wherein the first magnet assembly includes a first housing containing at least a first magnet, the second magnet assembly includes a second housing containing at least a second magnet, and wherein the first and second housings are slidably engaged, thereby permitting relative displacement between the first and second housings but maintaining radial alignment of the first and second magnet assemblies.
  • 34. The well tool of claim 26, wherein the first magnet assembly includes a housing containing at least one magnet, and wherein the housing isolates the magnet from fluid in the well.
  • 35. The well tool of claim 26, wherein the second magnet assembly includes a housing containing at least one magnet, and wherein the housing isolates the magnet from fluid in the well.
Priority Claims (1)
Number Date Country Kind
PCT/US2006/002118 Jan 2006 WO international
US Referenced Citations (16)
Number Name Date Kind
2558427 Fagan Jun 1951 A
2698920 Gieske Jan 1955 A
3105551 Ehlert Oct 1963 A
3222591 Mynall Dec 1965 A
5030490 Bronowicki et al. Jul 1991 A
5320325 Young et al. Jun 1994 A
5965964 Skinner et al. Oct 1999 A
6062315 Reinhardt May 2000 A
6095248 Freeman Aug 2000 A
6343649 Beck et al. Feb 2002 B1
6411084 Yoo Jun 2002 B1
6446717 White et al. Sep 2002 B1
6484800 Carmody et al. Nov 2002 B2
20040261688 MacGregor et al. Dec 2004 A1
20070170914 Gissler Jul 2007 A1
20070170915 Gissler Jul 2007 A1
Related Publications (1)
Number Date Country
20070170914 A1 Jul 2007 US