Wellbore anchor including one or more activation chambers

Information

  • Patent Grant
  • 12326060
  • Patent Number
    12,326,060
  • Date Filed
    Friday, May 21, 2021
    4 years ago
  • Date Issued
    Tuesday, June 10, 2025
    3 days ago
Abstract
Provided, in one aspect, is an anchor for use with a downhole tool in a wellbore. The anchor, according to this aspect, may include a base pipe; and one or more expandable chambers positioned radially about the base pipe. The one or more expandable chambers may, in some aspects, be configured to move from a first collapsed state to a second activated state; and the one or more expandable chambers may be operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of a wellbore.
Description
BACKGROUND

Multilateral wells include one or more lateral wellbores extending from a main wellbore. A lateral wellbore is a wellbore that is diverted from the main wellbore. A multilateral well may include one or more windows or casing exits to allow corresponding lateral wellbores to be formed. The window or casing exits for multilateral wells are typically formed by positioning (e.g., anchoring) one or more whipstock assemblies in a casing string with a running tool at desired locations in the main wellbore. In some embodiments, whipstocks may be used to deflect a window mill relative to the casing string. The deflected window mill penetrates part of the casing joint to form the window or casing exit in the casing string and is then withdrawn from the wellbore. Downhole assemblies can be subsequently inserted through the casing exit in order to cut the lateral wellbore, fracture the lateral wellbore, and/or service the lateral wellbore.





BRIEF DESCRIPTION

Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic view of a well system according to one or more embodiments disclosed herein;



FIGS. 2 and 3 illustrate one embodiment of an anchor designed and manufactured according to one or more embodiments of the disclosure;



FIGS. 4 and 5 illustrate another embodiment of an anchor designed and manufactured according to one or more embodiments of the disclosure; and



FIGS. 6 and 7 illustrate yet another embodiment of an anchor designed and manufactured according to one or more embodiments of the disclosure.





DETAILED DESCRIPTION

In the drawings and descriptions that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawn figures are not necessarily to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form and some details of certain elements may not be shown in the interest of clarity and conciseness. The present disclosure may be implemented in embodiments of different forms.


Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results.


Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described.


Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “uphole,” “upstream,” or other like terms shall be construed as generally toward the surface of the ground; likewise, use of the terms “down,” “lower,” “downward,” “downhole,” or other like terms shall be construed as generally toward the bottom, terminal end of a well, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical axis. Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water such as ocean or fresh water.



FIG. 1 is a schematic view of a well system 100 according to one or more embodiments disclosed herein. The well system 100 includes a platform 120 positioned over a subterranean formation 110 located below the earth's surface 115. The platform 120, in at least one embodiment, has a hoisting apparatus 125 and a derrick 130 for raising and lowering pipe strings, such as a drill string 140. Although a land-based oil and gas platform 120 is illustrated in FIG. 1, the scope of this disclosure is not thereby limited, and thus could potentially apply to offshore applications. The teachings of this disclosure may also be applied to other land-based well systems different from that illustrated.


As shown, a main wellbore 150 has been drilled through the various earth strata, including the subterranean formation 110. The term “main” wellbore is used herein to designate a wellbore from which another wellbore is drilled. It is to be noted, however, that a main wellbore 150 does not necessarily extend directly to the earth's surface, but could instead be a branch of yet another wellbore. A casing string 160 may be at least partially cemented within the main wellbore 150. The term “casing” is used herein to designate a tubular string used to line a wellbore. Casing may actually be of the type known to those skilled in the art as a “liner” and may be made of any material, such as steel or composite material and may be segmented or continuous, such as coiled tubing. The term “lateral” wellbore is used herein to designate a wellbore that is drilled outwardly from its intersection with another wellbore, such as a main wellbore. Moreover, a lateral wellbore may have another lateral wellbore drilled outwardly therefrom.


A whipstock 170 according to one or more embodiments of the present disclosure may be positioned at a location in the main wellbore 150. Specifically, the whipstock 170 could be placed at a location in the main wellbore 150 where it is desirable for a lateral wellbore 180 to exit. Accordingly, the whipstock 170 may be used to support a milling tool used to penetrate a window in the main wellbore 150, and once the window has been milled and a lateral wellbore 180 formed, in some embodiments, the whipstock 170 may be retrieved and returned uphole by a retrieval tool, in some embodiments in only a single trip.


In some embodiments, an anchor 190 may be placed downhole in the wellbore 150 to support and anchor downhole tools, such as the whipstock 170, for maintaining the whipstock 170 in place while drilling the lateral wellbore 180. The anchor 190, in accordance with the disclosure, may be employed in a cased region of the wellbore 180 or alternatively in an open-hole region of the wellbore 180. As such, the anchor 190 may be configured to resist at least 6,750 newton meters (Nm) (e.g., about 5,000 lb-ft) of torque. In yet another embodiment, the anchor 190 may be configured to resist at least 13,500 newton meters (Nm) (e.g., about 10,000 lb-ft) of torque, and in yet another embodiment configured to resist at least 20,250 newton meters (Nm) (e.g., about 15,000 lb-ft) of torque. Similarly, the anchor 190 may be configured to resist at least 1814 kg (e.g., about 4,000 lb) of axial force. In yet another embodiment, the anchor 190 may be configured to resist at least 4536 kg (e.g., about 10,000 lb) of axial force, and in yet another embodiment the anchor 190 may be configured to resist at least 6804 kg (e.g., about 15,000 lb) of axial force. The anchor 190 may include, in some aspects, a base pipe and one or more expandable chambers positioned radially about the base pipe. The one or more expandable chambers may be configured to move from a first collapsed state while running in hole, to a second activated state once the anchor is positioned within the wellbore 150.


In some embodiments, the anchor 190 may be hydraulically activated. Once the anchor 190 reaches a desired location in the wellbore 150, fluid pressure may be applied to the one or more expandable chambers to move the one or more expandable chambers from the first collapsed state to the second activated state and engage a wall of the wellbore 150. The anchor 190 may also include, in some embodiments, an exterior sleeve positioned radially about the one or more expandable chambers. In some aspects, the exterior sleeve may be configured to grip and engage the wall of the wellbore 150 when the one or more expandable chambers are in the second activated state.


Turning now to FIGS. 2 and 3, illustrated is one embodiment of an anchor 200 designed and manufactured according to one or more embodiments of the disclosure. FIG. 2 illustrates the anchor 200 in the collapsed state, whereas FIG. 3 illustrates the anchor 200 in the activated state. The anchor 200, in one embodiment, may include a base pipe 205. The base pipe 205, in at least on embodiment, does not include openings connecting the interior of the base pipe with the exterior of the base pipe. However, in yet other embodiments, openings may exist between the interior of the base pipe and the exterior of the base pipe.


One or more expandable chambers 210 may be positioned radially about the base pipe 205. In at least one embodiment, one or more full donut shaped expandable chamber 210 is positioned about the base pipe 205. In at least one other embodiment, two or more expandable chambers 210 may be positioned radially about the base pipe 205. In some embodiments the two or more expandable chambers 210 may be generally linearly aligned with one another. As used herein, generally linearly aligned may mean the two or more expandable chambers 210 may be linearly aligned within 10 percent of their length. In other embodiments, the two or more expandable chambers 210 may be substantially linearly aligned with each other, wherein the two or more two or more expandable chambers 210 may be linearly aligned within 5 percent of their length. In still other embodiments, the two or more expandable chambers 210 may be ideally linearly aligned, wherein the two or more two or more expandable chambers 210 may be linearly aligned within 1 percent of their length.


In other embodiments, the two or more expandable chambers may be generally angularly aligned, substantially angularly aligned, or ideally angularly aligned with one another. The term “generally angularly aligned” as used herein, means that the two or more expandable chambers are within 10 degrees of parallel with one another. The term “substantially angularly aligned” as used herein, means that the two or more expandable chambers are within 5 degrees of parallel with one another. The term “ideally angularly aligned” as used herein, means that the two or more expandable chambers are within 2 degrees of parallel with one another.


The two or more expandable chambers 210 may be configured to move from a first collapsed state shown in FIG. 2 to a second activated state shown in FIG. 3 to engage a wall of a wellbore. In some embodiments, when in the second activated state, the one or more expandable chambers 210 may be operable to handle at least 20.7 Bar (about 300 psi) of internal pressure in the second activated state to engage the wall of a wellbore. In some embodiments, when in the second activated state, the one or more expandable chambers 210 may be operable to handle at least 27.6 Bar (about 400 psi) of internal pressure in the second activated state to engage the wall of a wellbore. In some embodiments, when in the second activated state, the one or more expandable chambers 210 may be operable to handle at least 51.7 Bar (about 750 psi) of internal pressure in the second activated state to engage the wall of a wellbore. In some alternative embodiments, when in the second activated state, the one or more expandable chambers 210 may be operable to handle at least 68 Bar (about 1000 psi) of internal pressure in the second activated state to engage the wall of a wellbore.


In some embodiments, the anchor 200 may include an exterior sleeve 220, which may be positioned radially about the two or more expandable chambers 210. In certain embodiments, the exterior sleeve 220 may be configured to split apart or deform as the two or more expandable chambers 210 expand into the second activated state such that the exterior sleeve 220 may thereafter engage and dig into the wall of the wellbore.


The exterior sleeve 220 may include openings 225 therein. The openings 225, in certain embodiments, allow for the exterior sleeve 220 to easily expand. The general size and shape of the openings 225 may vary greatly and remain within the scope of the disclosure. In at least one embodiment, the openings 225 are larger than the opening in a typical sand screen. For example, the openings 225 would have a mesh value of at least about 36 (e.g., 485 μm) or greater. In yet another embodiment, the openings 225 would have a mesh value of at least about 20 (e.g., 850 μm) or greater, or in yet another embodiment the openings 225 would have a mesh value of at least about 10 (e.g., 2,000 μm) or greater.


The exterior sleeve 220, in certain other embodiments, may include a textured surface on an outer surface thereof for engaging the wall of the wellbore. In certain instances, the textured surface has a plurality of undulations, crenellations, corrugations, ridges, depressions, or other surface variations where the radial amplitude of the surface variation is at least about 1 mm (e.g., about 0.04 inches). In yet another embodiment, the radial amplitude of the surface variation is at least about 1.25 mm (e.g., about 0.05 inches), and in yet another embodiment the radial amplitude of the surface variation is between about 1.25 mm (e.g., about 0.06 inches) and about 25 mm (e.g., about 1.0 inches). Any known or hereafter discovered method for creating the textured surface is within the scope of the disclosure.


The exterior sleeve 220 may comprise metals, carbide, polymers, and other materials used in downhole tool applications. In some embodiments, the exterior sleeve 220 may also comprise a swellable elastomer on an outer surface thereof in order to engage and grip the wall of the wellbore once the two or more expandable chamber 210 have been expanded to the second activated state. The swellable elastomer, in some aspects, may be activated by temperature alone, fluid existing in the wellbore, completion fluid inserted in to the wellbore, or any combination of the above. In an alternative embodiment, the swellable elastomer may be activated by a dedicated well treatment run to pump the activation fluid to the swellable elastomer.


In yet other embodiments, the exterior sleeve 220 may comprise an expandable/expanded metal. The expandable metal, in some embodiments, may be chemically activated by reactive fluid (e.g., completion fluid) inserted into the wellbore, and result in expanded metal. The term expandable metal, as used herein, refers to the expandable metal in a pre-expansion form. Similarly, the term expanded metal, as used herein, refers to the resulting expanded metal after the expandable metal has been subjected to reactive fluid, as discussed below. The expanded metal, in accordance with one or more aspects of the disclosure, comprises a metal that has expanded in response to hydrolysis. In certain embodiments, the expanded metal includes residual unreacted metal. For example, in certain embodiments the expanded metal is intentionally designed to include the residual unreacted metal. The residual unreacted metal has the benefit of allowing the expanded metal to self-heal if cracks or other anomalies subsequently arise, or for example to accommodate changes in the tubular or mandrel diameter due to variations in temperature and/or pressure. Nevertheless, other embodiments may exist wherein no residual unreacted metal exists in the expanded metal.


The expandable metal, in some embodiments, may be described as expanding to a cement like material. In other words, the expandable metal goes from metal to micron-scale particles and then these particles expand and lock together to, in essence, assist in preventing extrusion within the sealing assembly. The reaction may, in certain embodiments, occur in less than 2 days in a reactive fluid and in downhole temperatures. Nevertheless, the time of reaction may vary depending on the reactive fluid, the expandable metal used, and the downhole temperature.


In some embodiments, the reactive fluid may be a brine solution such as may be produced during well completion activities, and in other embodiments, the reactive fluid may be one of the additional solutions discussed herein. The expandable metal is electrically conductive in certain embodiments. The expandable metal may be machined to any specific size/shape, extruded, formed, cast or other conventional ways to get the desired shape of a metal, as will be discussed in greater detail below. The expandable metal, in certain embodiments has a yield strength greater than about 8,000 psi, e.g., 8,000 psi+/−50%.


The hydrolysis of the expandable metal can create a metal hydroxide. The formative properties of alkaline earth metals (Mg—Magnesium, Ca—Calcium, etc.) and transition metals (Zn—Zinc, Al—Aluminum, etc.) under hydrolysis reactions demonstrate structural characteristics that are favorable for use with the present disclosure. Hydration results in an increase in size from the hydration reaction and results in a metal hydroxide that can precipitate from the fluid.


The hydration reactions for magnesium is:

Mg+2H2O→Mg(OH)2+H2,

where Mg(OH)2 is also known as brucite. Another hydration reaction uses aluminum hydrolysis. The reaction forms a material known as Gibbsite, bayerite, and norstrandite, depending on form. The hydration reaction for aluminum is:

Al+3H2O→Al(OH)3+3/2H2.

Another hydration reaction uses calcium hydrolysis. The hydration reaction for calcium is:

Ca+2H2O→Ca(OH)2+H2,

Where Ca(OH)2 is known as portlandite and is a common hydrolysis product of Portland cement. Magnesium hydroxide and calcium hydroxide are considered to be relatively insoluble in water. Aluminum hydroxide can be considered an amphoteric hydroxide, which has solubility in strong acids or in strong bases. Alkaline earth metals (e.g., Mg, CA, etc.) work well for the expandable metal, but transition metals (Al, etc.) also work well for the expandable metal. In one embodiment, the metal hydroxide is dehydrated by the swell pressure to form a metal oxide.


In an embodiment, the expandable metal used can be a metal alloy. The expandable metal alloy can be an alloy of the base expandable metal with other elements in order to either adjust the strength of the expandable metal alloy, to adjust the reaction time of the expandable metal alloy, or to adjust the strength of the resulting metal hydroxide byproduct, among other adjustments. The expandable metal alloy can be alloyed with elements that enhance the strength of the metal such as, but not limited to, Al—Aluminum, Zn—Zinc, Mn—Manganese, Zr—Zirconium, Y—Yttrium, Nd—Neodymium, Gd—Gadolinium, Ag—Silver, Ca—Calcium, Sn—Tin, and Re—Rhenium, Cu—Copper. In some embodiments, the expandable metal alloy can be alloyed with a dopant that promotes corrosion, such as Ni—Nickel, Fe—Iron, Cu—Copper, Co—Cobalt, Ir—Iridium, Au—Gold, C—Carbon, Ga—Gallium, In—Indium, Mg—Mercury, Bi—Bismuth, Sn—Tin, and Pd—Palladium. The expandable metal alloy can be constructed in a solid solution process where the elements are combined with molten metal or metal alloy. Alternatively, the expandable metal alloy could be constructed with a powder metallurgy process. The expandable metal can be cast, forged, extruded, sintered, welded, mill machined, lathe machined, stamped, eroded or a combination thereof.


Optionally, non-expanding components may be added to the starting metallic materials. For example, ceramic, elastomer, plastic, epoxy, glass, or non-reacting metal components can be embedded in the expandable metal or coated on the surface of the expandable metal. Alternatively, the starting expandable metal may be the metal oxide. For example, calcium oxide (CaO) with water will produce calcium hydroxide in an energetic reaction. Due to the higher density of calcium oxide, this can have a 260% volumetric expansion (e.g., converting 1 mole of CaO may cause the volume to increase from 9.5 cc to 34.4 cc). In one variation, the expandable metal is formed in a serpentinite reaction, a hydration and metamorphic reaction. In one variation, the resultant material resembles a mafic material. Additional ions can be added to the reaction, including silicate, sulfate, aluminate, carbonate, and phosphate. The metal can be alloyed to increase the reactivity or to control the formation of oxides.


In certain embodiments, two or more bridging plates 230 may be positioned radially about the two or more expandable chambers 210. The two or more bridging plates 230 may be configured to extend across at least a gap between outer portions of the two or more expandable chambers 210 when the two or more expandable chambers 210 are in the second activated state as shown in FIG. 3. The two or more bridging plates 230 may be configured, in some aspects to provide support for the exterior sleeve 220 positioned about the two or more expandable chambers 210. While it is illustrated that the two or more bridging plates 230 include openings therein, other embodiments may exist wherein the two or more bridging plates 230 do not include openings therein. Although not shown in the illustrated embodiment, certain embodiments of the two or more bridging plates 230 may include protrusions or a textured surface which may engage the wall of the wellbore, and in some embodiments, the protrusions may extend through openings 225 in the exterior sleeve 220.



FIGS. 4 and 5 illustrate another embodiment of an anchor 300 designed and manufactured according to one or more embodiments of the disclosure. FIG. 4 illustrates the anchor 300 in the collapsed state, whereas FIG. 5 illustrates the anchor 300 in the activated state. The anchor 300 is similar in many respects to the anchor 200 of FIGS. 2 and 3. Accordingly, like reference numbers have been used to reference similar, if not identical, features. The anchor 300 differs, for the most part, from the anchor 200, in that one embodiment of an exterior sleeve 220 may include protrusions 335 on an outer surface 337 thereof for engaging a wall of a wellbore. As the two or more expandable chambers 210 are expanded to the second activated state, as shown in FIG. 5, the exterior sleeve 220 moves radially outward toward the wall of the wellbore and the protrusions 335 may grip into and engage the wall of the wellbore.



FIGS. 6 and 7 illustrate another embodiment of an anchor 400 designed and manufactured according to one or more embodiments of the disclosure. FIG. 6 illustrates the anchor 400 in the collapsed state, whereas FIG. 7 illustrates the anchor 400 in the activated state. The anchor 400 is similar in many respects to the anchor 200 of FIGS. 2 and 3. Accordingly, like reference numbers have been used to reference similar, if not identical, features. The anchor 400 differs, for the most part, from the anchor 200, in that in this embodiment the two or more expandable chambers 210 may include protrusions 415 on an outer circumference thereof. The protrusions 415 may engage the wall of the wellbore as the two or more expandable chambers 210 are expanded outward to the second activated state, as shown in FIG. 7. In some embodiments, the protrusions 415 on the outer circumference of the two or more expandable chambers 210 may be configured to protrude through the openings 225 in the exterior sleeve 220 positioned radially about the two or more expandable chambers 210.


Certain embodiments of an anchor disclosed herein may be constructed and function similar to endurance hydraulic screens (EHS) used in wellbore applications. However, anchors according to one or more embodiments of the disclosure may not need to provide any sand or debris control generally required by EHS and as such, may not include any filter mediums or screen members. For example, the anchor may not include any screen members having a filter medium having a size less than 500 micron.


Aspects disclosed herein include:


A. An anchor for use with a downhole tool in a wellbore, the anchor including: 1) a base pipe; and 2) one or more expandable chambers positioned radially about the base pipe; 3) wherein the one or more expandable chambers are configured to move from a first collapsed state to a second activated state; and 4) wherein the one or more expandable chambers are operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of a wellbore.


B. A method for anchoring a downhole tool in a wellbore, the method including: 1) running a downhole tool including an anchor into a wellbore, the anchor including: a) a base pipe; b) one or more expandable chambers positioned radially about the base pipe; c) wherein the one or more expandable chambers are configured to move from a first collapsed state to a second activated state; and d) wherein the one or more expandable chambers are operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of the wellbore; and 2) applying fluid pressure to the one or more expandable chambers to move the one or more expandable chambers from the first collapsed state to the second activated state and anchor the downhole tool within the wellbore.


C. A well system, the well system including: 1) a wellbore; and 2) a downhole tool including an anchor positioned within the wellbore, the at least one anchor including: a) a base pipe; b) one or more expandable chambers positioned radially about the base pipe; c) wherein the one or more expandable chambers are configured to move from a first collapsed state to a second activated state; and d) wherein the one or more expandable chambers are operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of a wellbore.


Aspects A, B, and C may have one or more of the following additional elements in combination: Element 1: wherein the one or more expandable chambers are two or more expandable chambers positioned radially about the base pipe, the two or more expandable chambers generally linearly aligned with one another. Element 2: further comprising an exterior sleeve positioned radially about the two or more expandable chambers. Element 3: wherein the exterior sleeve includes protrusions on an outer surface thereof for engaging the wall of the wellbore. Element 4: wherein the exterior sleeve includes a textured surface on an outer surface thereof for engaging the wall of the wellbore. Element 5: wherein the exterior sleeve comprises a swellable elastomer on an outer surface thereof. Element 6: wherein exterior sleeve comprises an expandable metal. Element 7: wherein the two or more expandable chambers include protrusions on an outer circumference thereof, the protrusions for engaging the wall of the wellbore. Element 8: wherein the protrusions on the outer circumference of the two or more expandable chambers are configured to protrude through openings in an exterior sleeve positioned radially about the two or more expandable chambers. Element 9: further comprising two or more bridging plates positioned radially about the two or more expandable chambers, wherein the two or more bridging plates are configured to extend across at least a gap between outer portions of the two or more expandable chambers in the second activated state. Element 10: wherein the anchor does not include a screen member having a filter medium having a size less than 36 mesh. Element 11: wherein the one or more expandable chambers are two or more expandable chambers positioned radially about the base pipe, the two or more expandable chambers generally linearly aligned with one another. Element 12: wherein the anchor further includes an exterior sleeve positioned radially about the two or more expandable chambers. Element 13: wherein the exterior sleeve includes protrusions on an outer surface thereof for engaging the wall of the wellbore. Element 14: wherein the two or more expandable chambers include protrusions on an outer circumference thereof, the protrusions for engaging the wall of the wellbore. Element 15: wherein the protrusions on the outer circumference of the two or more expandable chambers are configured to protrude through openings in an exterior sleeve positioned radially about the two or more expandable chambers. Element 16: further comprising two or more bridging plates positioned radially about the two or more expandable chambers, wherein the two or more bridging plates are configured to extend across at least a gap between outer portions of the two or more expandable chambers in the second activated state. Element 17: wherein the one or more expandable chambers are two or more expandable chambers positioned radially about the base pipe, the two or more expandable chambers generally linearly aligned with one another. Element 18: wherein the anchor further includes an exterior sleeve positioned radially about the two or more expandable chambers. Element 19: wherein the exterior sleeve includes protrusions on an outer surface thereof for engaging the wall of the wellbore. Element 20: wherein the exterior sleeve includes a textured surface on an outer surface thereof for engaging the wall of the wellbore. Element 21: wherein the two or more expandable chambers include protrusions on an outer circumference thereof, the protrusions for engaging the wall of the wellbore and wherein the protrusions on the outer circumference of the two or more expandable chambers are configured to protrude through openings in an exterior sleeve positioned radially about the two or more expandable chambers. Element 22: wherein the anchor further includes two or more bridging plates positioned radially about the two or more expandable chambers, wherein the two or more bridging plates are configured to extend across at least a gap between outer portions of the two or more expandable chambers in the second activated state.


Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.

Claims
  • 1. An anchor for use with a downhole tool in a wellbore, comprising: a base pipe;two or more expandable chambers positioned radially about the base pipe;wherein the two or more expandable chambers are configured to move from a first collapsed state to a second fixed activated state; andwherein the two or more expandable chambers are operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of the wellbore, are generally linearly aligned with one another, include protrusions on an outer surface thereof, the protrusions configured to protrude through openings in an exterior sleeve positioned radially about the two or more expandable chambers for engaging the wall of the wellbore, and further wherein the base pipe does not include openings therein radially inside of the two or more expandable chambers.
  • 2. The anchor according to claim 1, further comprising an exterior sleeve positioned radially about the two or more expandable chambers.
  • 3. The anchor according to claim 2, wherein the exterior sleeve includes protrusions on an outer surface thereof for engaging the wall of the wellbore.
  • 4. The anchor according to claim 2, wherein the exterior sleeve includes a textured surface on an outer surface thereof for engaging the wall of the wellbore.
  • 5. The anchor according to claim 2, wherein the exterior sleeve comprises a swellable elastomer on an outer surface thereof.
  • 6. The anchor according to claim 2, wherein the exterior sleeve comprises an expandable metal.
  • 7. The anchor according to claim 1, further comprising two or more bridging plates positioned radially about the two or more expandable chambers, wherein the two or more bridging plates are configured to extend across at least a gap between outer portions of the two or more expandable chambers in the second activated state.
  • 8. The anchor according to claim 1, wherein the anchor does not include a screen member having a filter medium having a size less than 36 mesh.
  • 9. A method for anchoring a downhole tool in a wellbore, the method comprising: running the downhole tool including an anchor into the wellbore, the anchor including: a base pipe;two or more expandable chambers positioned radially about the base pipe;wherein the two or more expandable chambers are configured to move from a first collapsed state to a second activated state; andwherein the two or more expandable chambers are operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of the wellbore, are generally linearly aligned with one another, include protrusions on an outer surface thereof, the protrusions configured to protrude through openings in an exterior sleeve positioned radially about the two or more expandable chambers for engaging the wall of the wellbore, and further wherein the base pipe does not include openings therein radially inside of the two or more expandable chambers; andapplying fluid pressure to the two or more expandable chambers to move the one or more expandable chambers from the first collapsed state to the second activated state and anchor the downhole tool within the wellbore.
  • 10. The method according to claim 9, wherein the anchor further includes an exterior sleeve positioned radially about the two or more expandable chambers.
  • 11. The method according to claim 10, wherein the exterior sleeve includes protrusions on an outer surface thereof for engaging the wall of the wellbore.
  • 12. The method according to claim 9, further comprising two or more bridging plates positioned radially about the two or more expandable chambers, wherein the two or more bridging plates are configured to extend across at least a gap between outer portions of the two or more expandable chambers in the second activated state.
  • 13. A well system, comprising: a wellbore; anda downhole tool including an anchor positioned within the wellbore, the at least one anchor including: a base pipe;two or more expandable chambers positioned radially about the base pipe;wherein the two or more expandable chambers are configured to move from a first collapsed state to a second activated state; andwherein the two or more expandable chambers are operable to handle at least 20.7 Bar of internal pressure in the second activated state to engage a wall of the wellbore, are generally linearly aligned with one another, include protrusions on an outer surface thereof, the protrusions configured to protrude through openings in an exterior sleeve positioned radially about the two or more expandable chambers for engaging the wall of the wellbore, and further wherein the base pipe does not include openings therein radially inside of the two or more expandable chambers.
  • 14. The well system according to claim 13, wherein the anchor further includes an exterior sleeve positioned radially about the two or more expandable chambers.
  • 15. The well system according to claim 14, wherein the exterior sleeve includes protrusions on an outer surface thereof for engaging the wall of the wellbore.
  • 16. The well system according to claim 14, wherein the exterior sleeve includes a textured surface on an outer surface thereof for engaging the wall of the wellbore.
  • 17. The well system according to claim 13, wherein the anchor further includes two or more bridging plates positioned radially about the two or more expandable chambers, wherein the two or more bridging plates are configured to extend across at least a gap between outer portions of the two or more expandable chambers in the second activated state.
US Referenced Citations (268)
Number Name Date Kind
1525740 Howard Feb 1925 A
2075912 Roye Apr 1937 A
2590931 Cabaniss Apr 1952 A
2743781 Lane May 1956 A
2865454 Richards Dec 1958 A
3206536 Goodloe Sep 1965 A
3371716 Current Mar 1968 A
3616354 Russell Oct 1971 A
3706125 Hopkins Dec 1972 A
4270608 Hendrickson Jun 1981 A
4424859 Sims Jan 1984 A
4424861 Carter, Jr. Jan 1984 A
4442908 Steenbock Apr 1984 A
4446932 Hipp May 1984 A
4457379 McStravick Jul 1984 A
4527815 Frick Jul 1985 A
4977636 King Dec 1990 A
4979585 Chesnutt Dec 1990 A
5139274 Oseman Aug 1992 A
5220959 Vance, Sr. Jun 1993 A
5424139 Shuler Jun 1995 A
5492173 Kilgore Feb 1996 A
5517981 Taub et al. May 1996 A
5662341 Ezell et al. Sep 1997 A
5667015 Harestad Sep 1997 A
5803173 Fraser et al. Sep 1998 A
6089320 LaGrange Jul 2000 A
6106024 Herman et al. Aug 2000 A
6840325 Stephenson Jan 2005 B2
6907930 Cavender Jun 2005 B2
6942039 Tinker Sep 2005 B2
7104322 Whanger et al. Sep 2006 B2
7152687 Gano Dec 2006 B2
7322408 Howlett Jan 2008 B2
7347274 Patel Mar 2008 B2
7350590 Hosie et al. Apr 2008 B2
7402277 Ayer Jul 2008 B2
7578043 Simpson et al. Aug 2009 B2
7673688 Jones Mar 2010 B1
7677303 Coronado Mar 2010 B2
7696275 Slay et al. Apr 2010 B2
7963321 Kutac Jun 2011 B2
7996945 Nosker Aug 2011 B2
8042841 Viegener Oct 2011 B2
8109339 Xu Feb 2012 B2
8225861 Foster et al. Jul 2012 B2
8266751 He Sep 2012 B2
8276677 Ravensbergen Oct 2012 B2
8430176 Xu Apr 2013 B2
8453736 Constantine Jun 2013 B2
8459367 Nutley et al. Jun 2013 B2
8469084 Clark et al. Jun 2013 B2
8490707 Robisson Jul 2013 B2
8579024 Mailand et al. Nov 2013 B2
8684096 Harris Apr 2014 B2
8794330 Stout Aug 2014 B2
8807209 King Aug 2014 B2
8875800 Wood et al. Nov 2014 B2
8894070 Bhat et al. Nov 2014 B2
8993491 James Mar 2015 B2
9004173 Richard Apr 2015 B2
9217311 Slup Dec 2015 B2
9249904 Duquette Feb 2016 B2
9279295 Williamson et al. Mar 2016 B2
9347272 Hewson et al. May 2016 B2
9353606 Bruce et al. May 2016 B2
9393601 Ranck Jul 2016 B2
9404030 Mazyar Aug 2016 B2
9534460 Watson et al. Jan 2017 B2
9611715 Smith Apr 2017 B1
9644459 Themig May 2017 B2
9708880 Solhaug Jul 2017 B2
9725979 Mazyar et al. Aug 2017 B2
9732578 McRobb Aug 2017 B2
9745451 Zhao et al. Aug 2017 B2
9765595 Themig et al. Sep 2017 B2
9771510 James et al. Sep 2017 B2
9945190 Crowley Apr 2018 B2
9976380 Davis et al. May 2018 B2
9976381 Martin et al. May 2018 B2
10030467 Al-Gouhi Jul 2018 B2
10060225 Wolf Aug 2018 B2
10119011 Zhao et al. Nov 2018 B2
10179873 Meng Jan 2019 B1
10316601 Walton et al. Jun 2019 B2
10337298 Braddick Jul 2019 B2
10344570 Steele Jul 2019 B2
10352109 Sanchez Jul 2019 B2
10364636 Davis Jul 2019 B2
10472933 Steele Nov 2019 B2
10533392 Walton et al. Jan 2020 B2
10718183 Bruce et al. Jul 2020 B2
10758974 Sherman Sep 2020 B2
10794152 Lang et al. Oct 2020 B2
10961804 Fripp Mar 2021 B1
11359448 Fripp Jun 2022 B2
11365611 Gibb Jun 2022 B2
11428066 Andersen Aug 2022 B2
11512552 Fripp Nov 2022 B2
11708747 Dahl Jul 2023 B2
20020088616 Swor et al. Jul 2002 A1
20030132001 Wilson Jul 2003 A1
20030164236 Thornton Sep 2003 A1
20030164237 Butterfield, Jr. Sep 2003 A1
20030205377 Streater Nov 2003 A1
20040194970 Eatwell Oct 2004 A1
20050051333 Weber Mar 2005 A1
20050061369 De Almeida Mar 2005 A1
20050072576 Henriksen Apr 2005 A1
20050093250 Santi et al. May 2005 A1
20050199401 Patel et al. Sep 2005 A1
20060144591 Gonzalez Jul 2006 A1
20060272806 Wilkie et al. Dec 2006 A1
20070089875 Steele et al. Apr 2007 A1
20070089910 Hewson et al. Apr 2007 A1
20070095532 Head May 2007 A1
20070137826 Bosma et al. Jun 2007 A1
20070144734 Xu et al. Jun 2007 A1
20070151724 Ohmer et al. Jul 2007 A1
20070163781 Walker Jul 2007 A1
20070221387 Levy Sep 2007 A1
20070246213 Hailey Oct 2007 A1
20070267824 Baugh et al. Nov 2007 A1
20070277979 Todd et al. Dec 2007 A1
20080047708 Spencer Feb 2008 A1
20080135249 Fripp Jun 2008 A1
20080149351 Marya Jun 2008 A1
20080290603 Laflin Nov 2008 A1
20090014173 Macleod Jan 2009 A1
20090084555 Lee Apr 2009 A1
20090102133 Ruddock Apr 2009 A1
20090159278 Corre Jun 2009 A1
20090200028 Dewar Aug 2009 A1
20090250227 Brown et al. Oct 2009 A1
20090250228 Loretz Oct 2009 A1
20090272546 Nutley et al. Nov 2009 A1
20090321087 Victorov Dec 2009 A1
20100072711 Doane Mar 2010 A1
20100078173 Buytaert et al. Apr 2010 A1
20100096143 Angman Apr 2010 A1
20100108148 Chen May 2010 A1
20100122819 Wildman May 2010 A1
20100139930 Patel Jun 2010 A1
20100155083 Lynde et al. Jun 2010 A1
20100181080 Levy Jul 2010 A1
20100225107 Tverlid Sep 2010 A1
20100257913 Storm, Jr. et al. Oct 2010 A1
20100307737 Mellemstrand Dec 2010 A1
20110061876 Johnson et al. Mar 2011 A1
20110098202 James Apr 2011 A1
20110147014 Chen et al. Jun 2011 A1
20120018143 Lembcke Jan 2012 A1
20120048531 Marzouk Mar 2012 A1
20120048561 Holderman Mar 2012 A1
20120048623 Lafuente et al. Mar 2012 A1
20120049462 Pitman Mar 2012 A1
20120168147 Bowersock Jul 2012 A1
20120175134 Robisson Jul 2012 A1
20120273236 Gandikota et al. Nov 2012 A1
20130048289 Mazyar et al. Feb 2013 A1
20130056207 Wood et al. Mar 2013 A1
20130081815 Mazyar et al. Apr 2013 A1
20130152824 Crews Jun 2013 A1
20130153236 Bishop Jun 2013 A1
20130161006 Robisson et al. Jun 2013 A1
20130186615 Hallunbaek et al. Jul 2013 A1
20130192853 Themig Aug 2013 A1
20130292117 Robisson Nov 2013 A1
20130341005 Bruce Dec 2013 A1
20140026335 Smith Jan 2014 A1
20140034308 Holderman Feb 2014 A1
20140051612 Mazyar Feb 2014 A1
20140262352 Lembcke Sep 2014 A1
20150021049 Davis et al. Jan 2015 A1
20150075768 Wright et al. Mar 2015 A1
20150101813 Zhao Apr 2015 A1
20150113913 Kim Apr 2015 A1
20150184486 Epstein Jul 2015 A1
20150233190 Wolf et al. Aug 2015 A1
20150275587 Wolf et al. Oct 2015 A1
20150337615 Epstein et al. Nov 2015 A1
20150345248 Carragher Dec 2015 A1
20150368990 Jewett Dec 2015 A1
20150369003 Hajjari et al. Dec 2015 A1
20160024896 Johnson et al. Jan 2016 A1
20160024902 Richter Jan 2016 A1
20160137912 Sherman et al. May 2016 A1
20160138359 Zhao May 2016 A1
20160145488 Aines et al. May 2016 A1
20160145968 Marya May 2016 A1
20160177668 Watson et al. Jun 2016 A1
20160194936 Allen Jul 2016 A1
20160208569 Anderson et al. Jul 2016 A1
20160230495 Mazyar et al. Aug 2016 A1
20160258256 Nguyen Sep 2016 A1
20160273312 Steele et al. Sep 2016 A1
20160319633 Cooper et al. Nov 2016 A1
20160326830 Hallundbaek Nov 2016 A1
20160326849 Bruce Nov 2016 A1
20160333187 Bauer et al. Nov 2016 A1
20170015824 Gozalo Jan 2017 A1
20170022778 Fripp et al. Jan 2017 A1
20170107419 Roy et al. Apr 2017 A1
20170107794 Steele Apr 2017 A1
20170113275 Roy et al. Apr 2017 A1
20170159401 Saltel et al. Jun 2017 A1
20170175487 Marcin et al. Jun 2017 A1
20170175488 Lisowski Jun 2017 A1
20170191342 Turley Jul 2017 A1
20170198191 Potapenko Jul 2017 A1
20170234103 Frazier Aug 2017 A1
20170306714 Haugland Oct 2017 A1
20170314372 Tolman Nov 2017 A1
20170350237 Giem et al. Dec 2017 A1
20170356266 Arackakudiyil Dec 2017 A1
20180023362 Makowiecki et al. Jan 2018 A1
20180023366 Deng et al. Jan 2018 A1
20180038193 Walton Feb 2018 A1
20180080304 Cortez et al. Mar 2018 A1
20180081468 Bruce et al. Mar 2018 A1
20180086894 Roy Mar 2018 A1
20180087350 Sherman Mar 2018 A1
20180094508 Smith et al. Apr 2018 A1
20180100367 Perez Apr 2018 A1
20180128072 Larsen May 2018 A1
20180128082 Hollan et al. May 2018 A1
20180209234 Manera Jul 2018 A1
20180223624 Fripp Aug 2018 A1
20180298708 Schmidt et al. Oct 2018 A1
20180334882 Brandsdal Nov 2018 A1
20180347288 Fripp Dec 2018 A1
20180363409 Frazier Dec 2018 A1
20190016951 Sherman et al. Jan 2019 A1
20190032435 Kochanek et al. Jan 2019 A1
20190039126 Sherman Feb 2019 A1
20190078414 Frazier Mar 2019 A1
20190128092 Mueller et al. May 2019 A1
20190136666 Kent May 2019 A1
20190178054 Bruce Jun 2019 A1
20190186228 Beckett et al. Jun 2019 A1
20190225861 Reddy Jul 2019 A1
20190249510 Deng et al. Aug 2019 A1
20190316025 Sherman Oct 2019 A1
20190383115 Lees Dec 2019 A1
20200032574 Fripp et al. Jan 2020 A1
20200056435 Sherman Feb 2020 A1
20200072019 Onti et al. Mar 2020 A1
20200080401 Sherman Mar 2020 A1
20200080402 Lang et al. Mar 2020 A1
20200240235 Fripp et al. Jul 2020 A1
20200308945 Surjaatmadja et al. Oct 2020 A1
20200325749 Fripp et al. Oct 2020 A1
20200362224 Wellhoefer Nov 2020 A1
20200370391 Fripp et al. Nov 2020 A1
20210017835 Pelto et al. Jan 2021 A1
20210040810 Evers Feb 2021 A1
20210123310 Fripp et al. Apr 2021 A1
20210123319 Greci Apr 2021 A1
20210172286 Barlow Jun 2021 A1
20210187604 Sherman et al. Jun 2021 A1
20210270093 Fripp Sep 2021 A1
20210270103 Greci et al. Sep 2021 A1
20210332673 Fripp Oct 2021 A1
20210363849 Al Yahya Nov 2021 A1
20220106847 Dahl Apr 2022 A1
20220186575 Fripp Jun 2022 A1
20220205336 Asthana Jun 2022 A1
20220372837 Holderman et al. Nov 2022 A1
Foreign Referenced Citations (66)
Number Date Country
2820742 Sep 2013 CA
203308412 Nov 2013 CN
205422632 Aug 2016 CN
107148444 Sep 2017 CN
108194756 Jun 2018 CN
107148444 Jan 2019 CN
108194756 Aug 2020 CN
15726 Sep 1980 EP
869257 Oct 1998 EP
940558 Sep 1999 EP
0940558 Jan 2005 EP
1757770 Feb 2007 EP
1910728 Apr 2008 EP
1910728 Sep 2009 EP
2447466 May 2012 EP
2501890 Sep 2012 EP
2501890 Jul 2014 EP
2447466 Mar 2017 EP
3144018 Mar 2017 EP
3144018 May 2017 EP
3196402 Jul 2017 EP
3144018 Sep 2018 EP
2447466 Oct 2018 EP
2444060 May 2008 GB
2444060 Dec 2008 GB
2003090037 Mar 2003 JP
2003293354 Oct 2003 JP
2004169303 Jun 2004 JP
2015175449 Oct 2015 JP
20020014619 Feb 2002 KR
20080096576 Oct 2008 KR
0202900 Jan 2002 WO
0202900 May 2002 WO
0202900 Dec 2003 WO
2005022012 Mar 2005 WO
2006045794 May 2006 WO
2007047089 Apr 2007 WO
2012094322 Jul 2012 WO
2012125660 Sep 2012 WO
2012094322 Oct 2012 WO
2012125660 Feb 2013 WO
2014028149 Feb 2014 WO
2014182301 Nov 2014 WO
2014193042 Dec 2014 WO
2015057338 Apr 2015 WO
2015069886 May 2015 WO
2015069886 Sep 2015 WO
2015183277 Dec 2015 WO
2016000068 Jan 2016 WO
2016171666 Oct 2016 WO
2017100417 Jun 2017 WO
2018055382 Mar 2018 WO
2019094044 May 2019 WO
2019122857 Jun 2019 WO
2019147285 Aug 2019 WO
2019151870 Aug 2019 WO
2019164499 Aug 2019 WO
2020005252 Jan 2020 WO
2020141203 Jul 2020 WO
2019164499 Aug 2020 WO
2020167288 Aug 2020 WO
2020204940 Oct 2020 WO
2021034325 Feb 2021 WO
2021086317 May 2021 WO
2021096519 May 2021 WO
2021126279 Jun 2021 WO
Related Publications (1)
Number Date Country
20220372836 A1 Nov 2022 US