This invention relates to downhole anchoring tools, and more particularly to a well bore anchor that may be used for stabilizing a sand cutter and similar equipment in the well bore during a cutting operation.
In well operations, sometimes a well must be abandoned and plugged. The government regulations require that a casing be cut at a certain depth below the surface. Sand cutters have been conventionally used for performing the cutting operation. It was noted that when the cutting is performed at the depth of about 100 feet, the pressures downhole tend to push and excite the nozzle of the sand cutter and move it out of alignment by a small distance, such as a quarter of an inch. However, this small distance is critical in the tight confines of a casing. The string supporting the cutter is energized and causes it to move from the required alignment. As a result, the cut created by the sand cutter is no longer circular but rather resembles a spiral, such that the end of the cut does not necessary meet the beginning of the cut.
The deeper the casing cutting operations are performed, the more pronounced the problem becomes. With deeper wells, more hydraulic lines need to be run, more feed of the pipes downhole, and more possibility of misalignment. One of the solutions was to place a centralizing plate around the cutting tool to keep the cutter from moving into misalignment. However, the centralizing plate has to be carefully inserted and then properly aligned at the desired depth. Even then, a possibility exists for the hydraulic force imparted on the cutter to unseat the plate, which will result in an uneven cut.
The present invention contemplates elimination of drawbacks associated with the prior art and provision of an anchoring tool, which positively engages the inner walls of the casing allowing a cutting tool, or other necessary equipment to be securely connected to the top or bottom of the tool for performing the required operations in the well bore.
It is, therefore, an object of the present invention to provide a well bore anchor tool, which is adapted for engaging the inner wall of the casing, and stabilize any attached equipment within the well bore.
It is another object of the present invention to provide a well bore anchor tool, which frictionally engages the inner wall of the casing by slidable expanding slips once the anchoring tool reaches the desired depth.
These and other objects of the present invention are achieved through a provision of a well bore anchor tool, which comprises an elongated hollow mandrel, an upper sub carried by the mandrel, a plurality of upper frictional members secured on the upper sub for frictionally engaging an inner wall of a casing within the well bore, a bottom sub carried by the mandrel, and a plurality of lower frictional members detachably engageable with the bottom sub. Each of the bottom frictional members has an inclined inner surface matching an inclined surface of recesses formed along an upper exterior portion of the bottom sub. A downward movement of the mandrel causes the bottom frictional member to move outwardly in relation to the bottom sub and frictionally engage the casing inner wall.
Reference will now be made to the drawings, wherein like parts are designed by like numerals, and wherein
Turning now to the drawings in more detail, numeral 10 designates the well bore anchor tool in accordance with the present invention. The anchor tool 10 comprises an elongated central mandrel 12 having an upper sub 14 and a bottom sub 16 secured thereto. A top sub 15 has exterior threads 18 which allow securing of a work string thereto. A lower sub 17 is similarly provided with exterior threads 20 that allow securing of a downhole tool, for instance a sand cutter thereto.
A wicker sleeve 24 is mounted in a threadable engagement with the upper part of the mandrel 12. The wicker sleeve has exterior threads 22 formed along at least a lower portion the wicker sleeve 24. The upper part of the wicker sleeve 24 has a smooth exterior surface. A plurality of wicker dogs 94 is threadably engaged with the threads 22, as will be explained in more detail hereinafter.
An annular collar 26 is secured about a lower portion of the mandrel 12. A split thrust 28 rests with its bottom surface on the collar 26. The split thrust 28 has a threaded portion, which is threadably engaged with the bottom sub 16 when the bottom frictional members 42 are in their extended position engaging the inner casing wall. A main compression spring 30 urges against the top surface of the split thrust 28. A spring stop 32 is mounted in a surrounding relationship over the mandrel body 12 and provides an upper stop for the main spring 30.
The bottom sub 16 has an upper part 34, which extends above the spring stop 32, and a lower cylindrical portion 36. The upper part 34 is provided with a plurality, for instance three, recesses 38. Each recess 38 has a dovetail-shaped cross section and a bottom surface 40. Each of the recesses 38 defines a dovetail-shaped track for receiving a bottom frictional member, or slip 42 in a sliding engagement therein. As shown in
The exterior surface of each slip 42 is provided with a plurality of projections, or serrations 54 which facilitate frictional engagement of the slip 42 within a casing. The T-shaped securing member 46 fits into a matchingly profiled cutout 56 formed adjacent a lower edge of the upper sub 14 (
The upper sub 14 wiper is formed as a cylindrical member with a plurality of rectangularly-shaped slots 62 for receiving an upper frictional engagement member, or wiper block 70 therein. A pair of openings 64 are formed in the top and bottom of the slot 62 for receiving retainer screws therein. The upper sub 14 may have three or four such slots 62, each adapted for receiving a wiper block 70 in a detachable engagement therein.
As can be better seen in
As can be better seen in
A retainer ring 104 is positioned on top of the wicker dogs 94 and rests on top of an upper shoulder 106 formed inside the retainer member 60. The retainer ring 104 is retained in place by a plurality of screws 108, which pass through the wall of the upper sub 14, as can be seen in
In operation, if the anchor tool 10 is to be used with a sand cutter, the sand cutting head is made up to the bottom of the tool 10 by engaging with the threads 20. The anchor tool assembly with the sand cutter is lowered into the well bore on a connected work string. Once the cutting depth has been achieved, right hand rotation is applied to the string while slowly lowering the work string downhole. The wiper blocks 70 and the leaf springs 96 resist rotation by maintaining friction on the inner wall 111 of the casing 112. The wicker sleeve 24 eventually disengages from the wicker dogs 94. Continued lowering of the work string allows the slips 42 to move downward and out to anchor the tool 10 inside the inner wall 111 of the casing 112.
The main spring 30 is partially compressed to maintain a uniform pressure on the assembly while the sand cut is being made from the inside of the casing 112. Normally one rotation per hour is applied to the work string. It may take two or three rotations to complete the cut to the casing cylinder. After the cut has been made, the anchor assembly 10 is released by picking up on the work string and retrieving the tool from the well bore. The upward movement allows the slips 42 to shift into a release position out of a frictional engagement with the casing inner wall 111.
If desired, the anchor tool 10 can be run in an upside down position. The sand cutter will then be attached to the threads 18. Once the cutting depth is achieved, left hand rotation is applied while the work string is slowly raised. The wiper blocks 70 and the leaf springs 96 resist rotation and lifting while maintaining friction on the wall of the casing 112. The upward movement disengages the wicker sleeve 24 from the wicker dogs 94. A continued raising of the work string allows the slips 42 to move downward and outward to anchor the tool 10 firmly to the inside wall 111 of the casing 112. An upward pull of 5,000 to 10,000 pounds is to be applied and maintained to the work string throughout the cutting procedure. The main spring 30 is partially compressed to maintain uniform pressure on the assembly while the cut is being made. Normally one rotation per hour is applied to the work string. It may take two to three rotations to complete the sand cut once the cut has been performed, the tool 10 is released by simply lowering the work string. This allows the slips 42 to shift into a release position and the tool 10 can be retrieved from the well bore together with the sand cutter attached thereto.
The tool 10 may be successfully used for aligning and stabilizing a variety of downhole equipment during wellbore operations. It will be understood that the exemplary application of the apparatus for use with a sand cutter is but of many potential applications where anchoring of a tool at a certain depth is required.
Many changes and modifications can be made in the design of the present invention without departing from the spirit thereof. We, therefore pray that our rights to the present invention be limited only by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3861465 | Mignotte | Jan 1975 | A |
4576230 | Tapp et al. | Mar 1986 | A |
4949792 | Rubbo et al. | Aug 1990 | A |
Number | Date | Country | |
---|---|---|---|
20050269073 A1 | Dec 2005 | US |