Wellbore casing repair

Information

  • Patent Grant
  • 7048067
  • Patent Number
    7,048,067
  • Date Filed
    Tuesday, October 31, 2000
    24 years ago
  • Date Issued
    Tuesday, May 23, 2006
    18 years ago
Abstract
An apparatus and method for repairing a wellbore casing (100). An opening (115) in a wellbore casing (100) is located using a logging tool (310). An expandable tubular member (370) is then positioned in opposition to the opening (115) in the wellbore casing (100). The expandable tubular member (370) is then radially expanded into intimate contact with the wellbore casing (100).
Description
BACKGROUND OF THE INVENTION

This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.


Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.


Conventionally, when an opening is formed in the sidewalls of an existing wellbore casing, whether through damage to the casing or because of an intentional perforation of the casing to facilitate production or a fracturing operation, it is often necessary to seal off the opening in the existing wellbore casing. Conventional methods of sealing off such openings are expensive and unreliable.


The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming and repairing wellbores.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a method of repairing an opening in a tubular member is provided that includes positioning an expandable tubular, an expansion cone, and a pump within the tubular member, positioning the expandable tubular in opposition to the opening in the tubular member, pressurizing an interior portion of the expandable tubular using the pump, and radially expanding the expandable tubular into intimate contact with the tubular member using the expansion cone.


According to another aspect of the present invention, an apparatus for repairing a tubular member is provided that includes a support member, an expandable tubular member removably coupled to the support member, an expansion cone movably coupled to the support member and a pump coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member.


According to another aspect of the present invention, a method of coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member, is provided that includes positioning at least a portion of the first tubular member within the second tubular member, pressurizing a portion of the interior of the first tubular member by pumping fluidic materials proximate the first tubular member into the portion of the interior of the first tubular member, and displacing an expansion cone within the interior of the first tubular member.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary cross-sectional view of a wellbore casing including one or more openings.



FIG. 2 is a flow chart illustration of an embodiment of a method for repairing the wellbore casing of FIG. 1.



FIG. 3
a is a fragmentary cross-sectional view of the placement of an embodiment of a repair apparatus within the wellbore casing of FIG. 1 wherein the expandable tubular member of the apparatus is positioned opposite the openings in the wellbore casing.



FIG. 3
b is a fragmentary cross-sectional view of the radial expansion of the expandable tubular of the apparatus of FIG. 3a.



FIG. 3
c is a fragmentary cross-sectional view of the completion of the radial expansion of the expandable tubular of the apparatus of FIG. 3b.



FIG. 3
d is a fragmentary cross-sectional view of the removal of the repair apparatus from the repaired wellbore casing of FIG. 3c.



FIG. 3
e is a fragmentary cross-sectional view of the repaired wellbore casing of FIG. 3d.



FIG. 4 is a cross-sectional illustration of an embodiment of the expandable tubular of the apparatus of FIG. 3a



FIG. 5 is a flow chart illustration of an embodiment of a method for fabricating the expandable tubular of the apparatus of FIG. 3a.



FIG. 6 is a fragmentary cross-sectional illustration of a preferred embodiment of the expandable tubular of FIG. 4.



FIG. 7 is a fragmentary cross-sectional illustration of an expansion cone expanding a tubular member.



FIG. 8 is a graphical illustration of the relationship between propagation pressure and the angle of attack of the expansion cone.



FIG. 9 is an illustration of an embodiment of an expansion cone optimally adapted to radially expand the expandable tubular member of FIG. 4.



FIG. 10 is an illustration of another embodiment of an expansion cone optimally adapted to radially expand the expandable tubular member of FIG. 4.



FIG. 11 is a fragmentary cross-sectional illustration of the lubrication of the interface between an expansion cone and a tubular member during the radial expansion process.



FIG. 12 is an illustration of an embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 13 is an illustration of another embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 14 is an illustration of another embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 15 is an illustration of another embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 16 is an illustration of another embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 17 is an illustration of another embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 18 is an illustration of another embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 19 is an illustration of a preferred embodiment of an expansion cone including a system for lubricating the interface between the expansion cone and a tubular member during the radial expansion of the tubular member.



FIG. 20 is a cross-sectional illustration of the first axial groove of the expansion cone of FIG. 19.



FIG. 21 is a cross-sectional illustration of the circumferential groove of the expansion cone of FIG. 19.



FIG. 22 is a cross-sectional illustration of one of the second axial grooves of the expansion cone of FIG. 19.



FIG. 23 is a cross sectional illustration of an embodiment of an expansion cone including internal flow passages having inserts for adjusting the flow of lubricant fluids.



FIG. 24 is a cross sectional illustration of the expansion cone of FIG. 23 further including an insert having a filter for filtering out foreign materials from the lubricant fluids.



FIG. 25 is a fragmentary cross sectional illustration of an embodiment of the expansion cone of the repair apparatus of FIG. 3a.



FIG. 26
a is a fragmentary cross-sectional view of the placement of another embodiment of a repair apparatus within the wellbore casing of FIG. 1 wherein the expandable tubular member of the apparatus is positioned opposite the openings in the wellbore casing.



FIG. 26
b is a fragmentary cross-sectional view of the radial expansion of the expandable tubular of the apparatus of FIG. 26a



FIG. 26
c is a fragmentary cross-sectional view of the completion of the radial expansion of the expandable tubular of the apparatus of FIG. 26b.



FIG. 26
d is a fragmentary cross-sectional view of the removal of the repair apparatus from the repaired wellbore casing of FIG. 26c.



FIG. 26
e is a fragmentary cross-sectional view of the repaired wellbore casing of FIG. 26d.





DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENT

An apparatus and method for repairing a wellbore casing within a subterranean formation is provided. The apparatus and method permits a wellbore casing to be repaired in a subterranean formation by placing a tubular member, an expansion cone, and a pump in an existing section of a wellbore, and then extruding the tubular member off of the expansion cone by pressurizing an interior portion of the tubular member using the pump. The apparatus and method further permits adjacent tubular members in the wellbore to be joined using an overlapping joint that prevents fluid and or gas passage. The apparatus and method further permits a new tubular member to be supported by an existing tubular member by expanding the new tubular member into engagement with the existing tubular member. The apparatus and method further minimizes the reduction in the hole size of the wellbore casing necessitated by the addition of new sections of wellbore casing. The apparatus and method provide an efficient and reliable method for forming and repairing wellbore casings, pipelines, and structural supports.


The apparatus and method preferably further includes a lubrication and self-cleaning system for the expansion cone. In a preferred implementation, the expansion cone includes one or more circumferential grooves and one or more axial grooves for providing a supply of lubricating fluid to the trailing edge portion of the interface between the expansion cone and a tubular member during the radial expansion process. In this manner, the frictional forces created during the radial expansion process are reduced which results in a reduction in the required operating pressures for radially expanding the tubular member. Furthermore, the supply of lubricating fluid preferably removes loose material from tapered end of the expansion cone that is formed during the radial expansion process.


The apparatus and method preferably further includes an expandable tubular member that includes pre-expanded ends. In this manner, the subsequent radial expansion of the expandable tubular member is optimized.


The apparatus and method preferably further includes an expansion cone for expanding the tubular member includes a first outer surface having a first angle of attack and a second outer surface having a second angle of attack less than the first angle of attack. In this manner, the expansion of tubular members is optimally provided.


In several alternative embodiments, the apparatus and methods are used to form and/or repair wellbore casings, pipelines, and/or structural supports.


Referring initially to FIG. 1, a wellbore casing 100 having an outer annular layer 105 of a sealing material is positioned within a subterranean formation 110. The wellbore casing 100 may be positioned in any orientation from vertical to horizontal. The wellbore casing 100 further includes one or more openings 115a and 115b. The openings 115 may, for example, be the result of: defects in the wellbore casing 100, intentional perforations of the casing to facilitate production, thin walled sections of casing caused by drilling and/or wireline wear, or fracturing operations. As will be recognized by persons having ordinary skill in the art, such openings 115 in a wellbore 100 can seriously adversely impact the subsequent production of oil and gas from the subterranean formation 110 unless they are sealed off. More generally, the wellbore casing 115 may include thin walled sections that need cladding in order to prevent a catastrophic failure.


Referring to FIG. 2, a preferred embodiment of a method 200 for repairing a defect in a wellbore casing using a repair apparatus having a logging tool, a pump, an expansion cone, and an expandable tubular member includes the steps of: (1) positioning the repair apparatus within the wellbore casing in step 205; (2) locating the defect in the wellbore casing using the logging tool of the repair apparatus in step 210; (3) positioning the expandable tubular member in opposition to the defect in the wellbore casing in step 215; and (4) radially expanding the expandable tubular member into intimate contact with the wellbore casing by pressurizing a portion of the expandable tubular member using the pump and extruding the expandable tubular member off of the expansion cone in step 220. In this manner, defects in a wellbore casing are repaired by a compact and self-contained repair apparatus that is positioned downhole. More generally, the repair apparatus is used to repair defects in wellbore casings, pipelines, and structural supports.


As illustrated in FIG. 3a, in a preferred embodiment, in step 205, a repair apparatus 300 is positioned within the wellbore casing 100.


In a preferred embodiment, the repair apparatus 300 includes a first support member 305, a logging tool 310, a housing 315, a first fluid conduit 320, a pump 325, a second fluid conduit 330, a third fluid conduit 335, a second support member 340, a fourth fluid conduit 345, a third support member 350, a fifth fluid conduit 355, sealing members 360, a locking member 365, an expandable tubular 370, an expansion cone 375, and a sealing member 380.


The first support member 305 is preferably coupled to the logging tool 310 and the housing 315. The first support member 305 is preferably adapted to be coupled to and supported by a conventional support member such as, for example, a wireline, coiled tubing, or a drill string. The first support member 305 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials from the repair apparatus 300. The first support member 305 is further preferably adapted to convey electrical power and communication signals to the logging tool 310, the pump 325, and the locking member 365.


The logging tool 310 is preferably coupled to the first support member 305. The logging tool 310 is preferably adapted to detect defects in the wellbore casing 100. The logging tool 310 may be any number of conventional commercially available logging tools suitable for detecting defects in wellbore casings, pipelines, or structural supports. In a preferred embodiment, the logging tool 310 is a CAST logging tool, available from Halliburton Energy Services in order to optimally provide detection of defects in the wellbore casing 100. In a preferred embodiment, the logging tool 310 is contained within the housing 315 in order to provide an repair apparatus 300 that is rugged and compact.


The housing 315 is preferably coupled to the first support member 305, the second support member 340, the sealing members 360, and the locking member 365. The housing 315 is preferably releasably coupled to the tubular member 370. The housing 315 is further preferably adapted to contain and/or support the logging tool 310 and the pump 325.


The first fluid conduit 320 is preferably fluidicly coupled to the inlet of the pump 325 and the exterior region above the housing 315. The first fluid conduit 320 may be contained within the first support member 305 and the housing 315. The first fluid conduit 320 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.


The pump 325 is fluidicly coupled to the first fluid conduit 320 and the second fluid conduit 330. The pump 325 is further preferably contained within and supported by the housing 315. Alternatively, the pump 325 may be positioned above the housing 315. The pump 325 is preferably adapted to convey fluidic materials from the first fluid conduit 320 to the second fluid conduit 330 at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide the operating pressure for propagating the expansion cone 375. The pump 325 may be any number of conventional commercially available pumps. In a preferred embodiment, the pump 325 is a flow control pump out section for dirty fluids, available from Halliburton Energy Services in order to optimally provide the operating pressures and flow rates for propagating the expansion cone 375. The pump 325 is preferably adapted to pressurize an interior portion 385 of the expandable tubular member 370 to operating pressures ranging from about 0 to 12,000 psi.


The second fluid conduit 330 is fluidicly coupled to the outlet of the pump 325 and the interior portion 385 of the expandable tubular member 370. The second fluid conduit 330 is further preferably contained within the housing 315. The second fluid conduit 330 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.


The third fluid conduit 335 is fluidicly coupled to the exterior region above the housing 315 and the interior portion 385 of the expandable tubular member 370. The third fluid conduit 335 is further preferably contained within the housing 315. The third fluid conduit 330 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.


The second support member 340 is coupled to the housing 315 and the third support member 350. The second support member 340 is further preferably movably and sealingly coupled to the expansion cone 375. The second support member 340 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials. In a preferred embodiment, the second support member 340 is centrally positioned within the expandable tubular member 370.


The fourth fluid conduit 345 is fluidicly coupled to the third fluid conduit 335 and the fifth fluid conduit 355. The fourth fluid conduit 345 is further preferably contained within the second support member 340. The fourth fluid conduit 345 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.


The third support member 350 is coupled to the second support member 340. The third support member 350 is further preferably adapted to support the expansion cone 375. The third support member 350 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials.


The fifth fluid conduit 355 is fluidicly coupled to the fourth fluid conduit 345 and a portion 390 of the expandable tubular member 375 below the expansion cone 375. The fifth fluid conduit 355 is further preferably contained within the third support member 350. The fifth fluid conduit 355 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.


The sealing members 360 are preferably coupled to the housing 315. The sealing members 360 are preferably adapted to seal the interface between the exterior surface of the housing 315 and the interior surface of the expandable tubular member 370. In this manner, the interior portion 385 of the expandable tubular member 375 is fluidicly isolated from the exterior region above the housing 315. The sealing members 360 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing members 360 are conventional O-ring sealing members available from various commercial suppliers in order to optimally provide a high pressure seal.


The locking member 365 is preferably coupled to the housing 315. The locking member 365 is further preferably releasably coupled to the expandable tubular member 370. In this manner, the housing 365 is controllably coupled to the expandable tubular member 370. In this manner, the housing 365 is preferably released from the expandable tubular member 370 upon the completion of the radial expansion of the expandable tubular member 370. The locking member 365 may be any number of conventional commercially available releasable locking members. In a preferred embodiment, the locking member 365 is an electrically releasable locking member in order to optimally provide an easily retrievable running expansion system.


In an alternative embodiment, the locking member 365 is replaced by or supplemented by one or more conventional shear pins in order to provide an alternative means of controllably releasing the housing 315 from the expandable tubular member 370.


The expandable tubular member 370 is releasably coupled to the locking member 365. The expandable tubular member 370 is preferably adapted to be radially expanded by the axial displacement of the expansion cone 375.


In a preferred embodiment, as illustrated in FIG. 4, the expandable tubular member 370 includes a tubular body 405 having an interior region 410, an exterior surface 415, a first end 420, an intermediate portion 425, and a second end 430. The tubular member 370 further preferably includes the sealing member 380.


The tubular body 405 of the tubular member 370 preferably has a substantially annular cross section. The tubular body 405 may be fabricated from any number of conventional commercially available materials such as, for example, Oilfield Country Tubular Goods (OCTG), 13 chromium steel, 4140 steel, or automotive grade steel tubing/casing, or L83, J55, or P110 API casing. In a preferred embodiment, the tubular body 405 of the tubular member 370 is further provided substantially as disclosed in one or more of the following co-pending U.S. patent applications:

















Provisional patent





application
Attorney



Ser. No.
Docket No.
Filing Date




















60/108,558
25791.9
Nov. 16, 1998



60/111,293
25791.3
Dec. 7, 1998



60/119,611
25791.8
Feb. 11, 1999



60/121,702
25791.7
Feb. 25, 1999



60/121,841
25791.12
Feb. 26, 1999



60/121,907
25791.16
Feb. 26, 1999



60/124,042
25791.11
Mar. 11, 1999



60/131,106
25791.23
Apr. 26, 1999



60/137,998
25791.17
Jun. 7, 1999



60/143,039
25791.26
Jul. 9, 1999



60/146,203
25791.25
Jul. 29, 1999



60/154,047
25791.29
Sep. 16, 1999



60/159,082
25791.34
Oct. 12, 1999



60/159,039
25791.36
Oct. 12, 1999



60/159,033
25791.37
Oct. 12, 1999











Applicants incorporate by reference the disclosures of these applications.


The interior region 410 of the tubular body 405 preferably has a substantially circular cross section. The interior region 410 of the tubular body 405 preferably includes a first inside diameter D1, an intermediate inside diameter DINT, and a second inside diameter D2. In a preferred embodiment, the first and second inside diameters, D1 and D2, are substantially equal. In a preferred embodiment, the first and second inside diameters, D1 and D2; are greater than the intermediate inside diameter DINT.


The first end 420 of the tubular body 405 is coupled to the intermediate portion 425 of the tubular body 405. The exterior surface of the first end 420 of the tubular body 405 preferably further includes a protective coating fabricated from tungsten carbide, or other similar wear resistant materials in order to protect the first end 420 of the tubular body 405 during placement of the repair apparatus 300 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the first end 420 of the tubular body 405 is greater than the outside diameter of the intermediate portion 425 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the first end 420 of the tubular body 405 is substantially equal to the outside diameter of the second end 430 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the first end 420 of the tubular member 370 is adapted to permit insertion of the tubular member 370 into the typical range of wellbore casings. The first end 420 of the tubular member 370 includes a wall thickness t1.


The intermediate portion 425 of the tubular body 405 is coupled to the first end 420 of the tubular body 405 and the second end 430 of the tubular body 405. The intermediate portion 425 of the tubular body 405 preferably includes the sealing member 380. In a preferred embodiment, the outside diameter of the intermediate portion 425 of the tubular body 405 is less than the outside diameter of the first and second ends, 420 and 430, of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the intermediate portion 425 of the tubular body 405 ranges from about 75% to 98% of the outside diameters of the first and second ends, 420 and 430, in order to optimally protect the sealing member 380 during placement of the tubular member 370 within the wellbore casing 100. The intermediate portion 425 of the tubular body 405 includes a wall thickness tINT.


The second end 430 of the tubular body 405 is coupled to the intermediate portion 425 of the tubular body 405. The exterior surface of the second end 430 of the tubular body 405 preferably further includes a protective coating fabricated from a wear resistant material such as, for example, tungsten carbide in order to protect the second end 430 of the tubular body 405 during placement of the repair apparatus 300 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the second end 430 of the tubular body 405 is greater than the outside diameter of the intermediate portion 425 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within a wellbore casing 100. In a preferred embodiment, the outside diameter of the second end 430 of the tubular body 405 is substantially equal to the outside diameter of the first end 420 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the second end 430 of the tubular member 370 is adapted to permit insertion of the tubular member 370 into the typical range of wellbore casings. The second end 430 of the tubular member 370 includes a wall thickness t2.


In a preferred embodiment, the wall thicknesses t1 and t2 are substantially equal in order to provide substantially equal burst strength for the first and second ends, 420 and 430, of the tubular member 370. In a preferred embodiment, the wall thicknesses t1 and t2 are both greater than the wall thickness tINT in order to optimally match the burst strength of the first and second ends, 420 and 430, of the tubular member 370 with the intermediate portion 425 of the tubular member 370.


The sealing member 380 is preferably coupled to the outer surface of the intermediate portion 425 of the tubular body 405. The sealing member 380 preferably seals the interface between the intermediate portion 425 of the tubular body 405 and interior surface of the wellbore casing 100 after radial expansion of the intermediate portion 425 of the tubular body 405. The sealing member 380 preferably has a substantially annular cross section. The outside diameter of the sealing member 380 is preferably selected to be less than the outside diameters of the first and second ends, 420 and 430, of the tubular body 405 in order to optimally protect the sealing member 380 during placement of the tubular member 370 within the typical range of wellborn casings 100. The sealing member 380 may be fabricated from any number of conventional commercially available materials such as, for example, thermoset or thermoplastic polymers. In a preferred embodiment, the sealing member 380 is fabricated from thermoset polymers in order to optimally seal the interface between the radially expanded intermediate portion 425 of the tubular body 405 and the wellbore casing 100.


During placement of the tubular member 370 within the wellbore casing 100, the protective coatings provided on the exterior surfaces of the first and second ends, 420 and 430, of the tubular body 405 prevent abrasion with the interior surface of the wellbore casing 100. In a preferred embodiment, after radial expansion of the tubular body 405, the sealing member 380 seals the interface between the outside surface of the intermediate portions 425 of the tubular body 405 of the tubular member 370 and the inside surface of the wellbore casing 100. During placement of the tubular member 370 within the wellbore casing 100, the sealing member 380 is preferably protected from contact with the interior walls of the wellbore casing 100 by the recessed outer surface profile of the tubular member 370.


In a preferred embodiment, the tubular body 405 of the tubular member 370 further includes first and second transition portions, 435 and 440, coupled between the first and second ends, 420 and 430, and the intermediate portion 425 of the tubular body 405. In a preferred embodiment, the first and second transition portions, 435 and 440, are inclined at an angle, α, relative to the longitudinal direction ranging from about 0 to 30 degrees in order to optimally facilitate the radial expansion of the tubular member 370. In a preferred embodiment, the first and second transition portions, 435 and 440, provide a smooth transition between the first and second ends, 420 and 440, and the intermediate portion 425, of the tubular body 405 of the tubular member 370 in order to minimize stress concentrations.


Referring to FIG. 5, in a preferred embodiment, the tubular member 370 is formed by a process 500 that includes the steps of: (1) expanding both ends of the tubular body 405 in step 505; (2) stress relieving both radially expanded ends of the tubular body 405 in step 510; and (3) putting a sealing material on the outside diameter of the non-expanded intermediate portion 425 of the tubular body 405 in step 515. In an alternative embodiment, the process 500 further includes the step of putting layers of protective coatings onto the exterior surfaces of the radially expanded ends, 420 and 430, of the tubular body 405.


In a preferred embodiment, in steps 505 and 510, both ends, 420 and 430, of the tubular body 405 are radially expanded using conventional radial expansion methods, and then both ends, 420 and 430, of the tubular body 405 are stress relieved. The radially expanded ends, 420 and 430, of the tubular body 405 include interior diameters D1 and D2. In a preferred embodiment, the interior diameters D1 and D2 are substantially equal in order to provide a burst strength that is substantially equal. In a preferred embodiment, the ratio of the interior diameters D1 and D2 to the interior diameter DINT of the tubular body 405 ranges from about 100% to 120% in order to optimally provide a tubular member for subsequent radial expansion.


In a preferred embodiment, the relationship between the wall thicknesses t1, t2, and tINT of the tubular body 405; the inside diameters D1, D2 and DINT of the tubular body 405; the inside diameter Dwellbore of the wellbore casing 100 that the tubular body 405 will be inserted into; and the outside diameter Dcone of the expansion cone 375 that will be used to radially expand the tubular body 405 within the wellbore casing 100 is given by the following expression:










Dwellbore
-

2
*

t
1





D
1




1

t
1




[



(


t
1

-

t
INT


)

*

D
cone


+


t
INT

*

D
INT



]






(
1
)








where

    • t1=t2; and
    • D1=D2.


      By satisfying the relationship given in equation (1), the expansion forces placed upon the tubular body 405 during the subsequent radial expansion process are substantially equalized. More generally, the relationship given in equation (1) may be used to calculate the optimal geometry for the tubular body 405 for subsequent radial expansion of the tubular body 405 for fabricating and/or repairing a wellbore casing, a pipeline, or a structural support.


In a preferred embodiment, in step 515, the sealing member 380 is then applied onto the outside diameter of the non-expanded intermediate portion 425 of the tubular body 405. The sealing member 380 may be applied to the outside diameter of the non-expanded intermediate portion 425 of the tubular body 405 using any number of conventional commercially available methods. In a preferred embodiment, the sealing member 380 is applied to the outside diameter of the intermediate portion 425 of the tubular body 405 using commercially available chemical and temperature resistant adhesive bonding.


In a preferred embodiment, as illustrated in FIG. 6, the interior surface of the tubular body 405 of the tubular member 370 further includes a coating 605 of a lubricant. The coating 605 of lubricant may be applied using any number of conventional methods such as, for example, dipping, spraying, sputter coating or electrostatic deposition. In a preferred embodiment, the coating 605 of lubricant is chemically, mechanically, and/or adhesively bonded to the interior surface of the tubular body 405 of the tubular member 370 in order to optimally provide a durable and consistent lubricating effect. In a preferred embodiment, the force that bonds the lubricant to the interior surface of the tubular body 405 of the tubular member 370 is greater than the shear force applied during the radial expansion process.


In a preferred embodiment, the coating 605 of lubricant is applied to the interior surface of the tubular body 405 of the tubular member 370 by first applying a phenolic primer to the interior surface of the tubular body 405 of the tubular member 370, and then bonding the coating 605 of lubricant to the phenolic primer using an antifriction paste including the coating 605 of lubricant carried within an epoxy resin. In a preferred embodiment, the antifriction paste includes, by weight, 40–80% epoxy resin, 15–30% molybdenum disulfide, 10–15% graphite, 5–10% aluminum, 5–10% copper, 8–15% alumisilicate, and 5–10% polyethylenepolyamine. In a preferred embodiment, the antifriction paste is provided substantially as disclosed in U.S. Pat. No. 4,329,238, the disclosure of which is incorporate herein by reference.


The coating 605 of lubricant may be any number of conventional commercially available lubricants such as, for example, metallic soaps or zinc phosphates. In a preferred embodiment, the coating 605 of lubricant includes C-Lube-10, C-Phos-52, C-Phos-58-M, and/or C-Phos-58-R in order to optimally provide a coating of lubricant. In a preferred embodiment, the coating 605 of lubricant provides a sliding coefficient of friction less than about 0.20 in order to optimally reduce the force required to radially expand the tubular member 370 using the expansion cone 375.


In an alternative embodiment, the coating 605 includes a first part of a lubricant. In a preferred embodiment, the first part of the lubricant forms a first part of a metallic soap. In an preferred embodiment, the first part of the lubricant coating includes zinc phosphate. In a preferred embodiment, the second part of the lubricant is circulated within a fluidic carrier that is circulated into contact with the coating 605 of the first part of the lubricant during the radial expansion of the tubular member 370. In a preferred embodiment, the first and second parts of the lubricant react to form a lubricating layer between the interior surface of the tubular body 405 of the tubular member 370 and the exterior surface of the expansion cone 375 during the radial expansion process. In this manner, a lubricating layer is optimally provided in the exact concentration, exactly when and where it is needed. Furthermore, because the second part of the lubricant is circulated in a carrier fluid, the dynamic interface between the interior surface of the tubular body 405 of the tubular members 370 and the exterior surface of the expansion cone 375 is also preferably provided with hydrodynamic lubrication. In a preferred embodiment, the first and second parts of the lubricant react to form a metallic soap. In a preferred embodiment, the second part of the lubricant is sodium stearate.


The expansion cone 375 is movably coupled to the second support member 340. The expansion cone 375 is preferably adapted to be axially displaced upon the pressurization of the interior region 385 of the expandable tubular member 370. The expansion cone 375 is further preferably adapted to radially expand the expandable tubular member 370.


In a preferred embodiment, as illustrated in FIG. 7, the expansion cone 375 includes a conical outer surface 705 for radially expanding the tubular member 370 having an angle of attack α. In a preferred embodiment, as illustrated in FIG. 8, the angle of attack α ranges from about 10 to 40 degrees in order to minimize the required operating pressure of the interior portion 385 during the radial expansion process.


Referring to FIG. 9, an alternative preferred embodiment of an expansion cone 900 for use in the repair apparatus 300 includes a front end 905, a rear end 910, and a radial expansion section 915. In a preferred embodiment, when the expansion cone 900 is displaced in the longitudinal direction relative to the tubular member 370, the interaction of the exterior surface of the radial expansion section 915 with the interior surface of the tubular member 370 causes the tubular member 370 to expand in the radial direction.


The radial expansion section 915 preferably includes a leading radial expansion section 920 and a trailing radial expansion section 925. In a preferred embodiment, the leading and trailing radial expansion sections, 920 and 925, have substantially conical outer surfaces. In a preferred embodiment, the leading and trailing radial expansion sections, 920 and 925, have corresponding angles of attack, α1 and α2. In a preferred embodiment, the angle of attack α1 of the leading radial expansion section 920 is greater than the angle of attack α2 of the trailing radial expansion section 925 in order to optimize the radial expansion of the tubular member 370. More generally, the radial expansion section 915 may include one or more intermediate radial expansion sections positioned between the leading and trailing radial expansion sections, 920 and 925, wherein the corresponding angles of attack α increase in stepwise fashion from the leading radial expansion section 920 to the trailing radial expansion section 925.


Referring to FIG. 10, another alternative preferred embodiment of an expansion cone 1000 for use in the repair apparatus 300 includes a front end 1005, a rear end 1010, and a radial expansion section 1015. In a preferred embodiment, when the expansion cone 1000 is displaced in the longitudinal direction relative to the tubular member 370, the interaction of the exterior surface of the radial expansion section 1015 with the interior surface of the tubular member 370 causes the tubular member 370 to expand in the radial direction.


The radial expansion section 1015 preferably includes an outer surface 1020 having a substantially parabolic outer profile. In this manner, the outer surface 1020 provides an angle of attack that constantly decreases from a maximum at the front end 1005 of the expansion cone 1000 to a minimum at the rear end 1010 of the expansion cone 1000. The parabolic outer profile of the outer surface 1020 may be formed using a plurality of adjacent discrete conical sections and/or using a continuous curved surface. In this manner, the area of the outer surface 1020 adjacent to the front end 1005 of the expansion cone 1000 optimally radially overexpands the intermediate portion 425 of the tubular body 405 of the tubular members 370, while the area of the outer surface 1020 adjacent to the rear end 1010 of the expansion cone 1000 optimally radially overexpands the pre-expanded first and second ends, 420 and 430, of the tubular body 405 of the tubular member 370. In a preferred embodiment, the parabolic profile of the outer surface 1020 is selected to provide an angle of attack that ranges from about 8 to 20 degrees in the vicinity of the front end 1005 of the expansion cone 1000 and an angle of attack in the vicinity of the rear end 1010 of the expansion cone 1000 from about 4 to 15 degrees.


Referring to FIG. 11, the lubrication of the interface between the expansion cone 370 and the tubular member 375 during the radial expansion process will now be described. As illustrated in FIG. 31, during the radial expansion process, an expansion cone 370 radially expands the tubular member 375 by moving in an axial direction 1110 relative to the tubular member 375. The interface between the outer surface 1115 of the tapered conical portion 1120 of the expansion cone 370 and the inner surface 1125 of the tubular member 375 includes a leading edge portion 1130 and a trailing edge portion 1135.


During the radial expansion process, the leading and trailing edge portions, 1130 and 1135, are preferably lubricated by the presence of the coating 605 of lubricant. In a preferred embodiment, during the radial expansion process, the leading edge portion 5025 is further lubricated by the presence of lubricating fluids provided ahead of the expansion cone 370. However, because the radial clearance between the expansion cone 370 and the tubular member 375 in the trailing edge portion 1135 during the radial expansion process is typically extremely small, and the operating contact pressures between the tubular member 375 and the expansion cone 370 are extremely high, the quantity of lubricating fluid provided to the trailing edge portion 1135 is typically greatly reduced. In typical radial expansion operations, this reduction in the flow of lubricating fluids in the trailing edge portion 1135 increases the forces required to radially expand the tubular member 375.


Referring to FIG. 12, in a preferred embodiment, an expansion cone 1200 is used in the repair apparatus 300 that includes a front end 1200a, a rear end 1200b, a tapered portion 1205 having an outer surface 1210, one or more circumferential grooves 1215a and 1215b, and one more internal flow passages 1220a and 1220b.


In a preferred embodiment, the circumferential grooves 1215 are fluidicly coupled to the internal flow passages 1220. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1200a of the expansion cone 1200 into the circumferential grooves 1215. Thus, the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the internal flow passages 1220 using a fluid conduit that is coupled to the tapered end 1205 of the expansion cone 1200. Alternatively, lubricating fluids are provided for the internal flow passages 1220 using a supply of lubricating fluids provided adjacent to the front 1200a of the expansion cone 1200.


In a preferred embodiment, the expansion cone 1200 includes a plurality of circumferential grooves 1215. In a preferred embodiment, the cross sectional area of the circumferential grooves 1215 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1200 includes circumferential grooves 1215 concentrated about the axial midpoint of the tapered portion 1205 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and a tubular member during the radial expansion process. In a preferred embodiment, the circumferential grooves 1215 are equally spaced along the trailing edge portion of the expansion cone 1200 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1200 includes a plurality of flow passages 1220 coupled to each of the circumferential grooves 1215. In a preferred embodiment, the cross-sectional area of the flow passages 1220 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1215 is greater than the cross sectional area of the flow passage 1220 in order to minimize resistance to fluid flow.


Referring to FIG. 13, in an alternative embodiment, an expansion cone 1300 is used in the repair apparatus 300 that includes a front end 1300a and a rear end 1300b, includes a tapered portion 1305 having an outer surface 1310, one or more circumferential grooves 1315a and 1315b, and one or more axial grooves 1320a and 1320b.


In a preferred embodiment, the circumferential grooves 1315 are fluidicly coupled to the axial groves 1320. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1300a of the expansion cone 1300 into the circumferential grooves 1315. Thus, the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the axial grooves 1320 are provided with lubricating fluid using a supply of lubricating fluid positioned proximate the front end 1300a of the expansion cone 1300. In a preferred embodiment, the circumferential grooves 1315 are concentrated about the axial midpoint of the tapered portion 1305 of the expansion cone 1300 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1315 are equally spaced along the trailing edge portion of the expansion cone 1300 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1300 includes a plurality of circumferential grooves 1315. In a preferred embodiment, the cross sectional area of the circumferential grooves 1315 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1300 includes a plurality of axial grooves 1320 coupled to each of the circumferential grooves 1315. In a preferred embodiment, the cross sectional area of the axial grooves 1320 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1315 is greater than the cross sectional area of the axial grooves 1320 in order to minimize resistance to fluid flow. In a preferred embodiment, the axial groves 1320 are spaced apart in the circumferential direction by at least about 3 inches in order to optimally provide lubrication during the radial expansion process.


Referring to FIG. 14, in an alternative embodiment, an expansion cone 1400 is used in the repair apparatus 300 that includes a front end 1400a and a rear end 1400b, includes a tapered portion 1405 having an outer surface 1410, one or more circumferential grooves 1415a and 1415b, and one or more internal flow passages 1420a and 1420b.


In a preferred embodiment, the circumferential grooves 1415 are fluidicly coupled to the internal flow passages 1420. In this manner, during the radial expansion process, lubricating fluids are transmitted from the areas in front of the front 1400a and/or behind the rear 1400b of the expansion cone 1400 into the circumferential grooves 1415. Thus, the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. Furthermore, the lubricating fluids also preferably pass to the area in front of the expansion cone 1400. In this manner, the area adjacent to the front 1400a of the expansion cone 1400 is cleaned of foreign materials. In a preferred embodiment, the lubricating fluids are injected into the internal flow passages 1420 by pressurizing the area behind the rear 1400b of the expansion cone 1400 during the radial expansion process.


In a preferred embodiment, the expansion cone 1400 includes a plurality of circumferential grooves 1415. In a preferred embodiment, the cross sectional area of the circumferential grooves 1415 ranges from about 2×10−4 in2 to 5×10−2 in2 respectively, in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1400 includes circumferential grooves 1415 that are concentrated about the axial midpoint of the tapered portion 1405 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1415 are equally spaced along the trailing edge portion of the expansion cone 1400 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1400 includes a plurality of flow passages 1420 coupled to each of the circumferential grooves 1415. In a preferred embodiment, the flow passages 1420 fluidicly couple the front end 1400a and the rear end 1400b of the expansion cone 1400. In a preferred embodiment, the cross-sectional area of the flow passages 1420 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1415 is greater than the cross-sectional area of the flow passages 1420 in order to minimize resistance to fluid flow.


Referring to FIG. 15, an alternative embodiment of an expansion cone 1500 is used in the apparatus that includes a front end 1500a and a rear end 1500b, includes a tapered portion 1505 having an outer surface 1510, one or more circumferential grooves 1515a and 1515b, and one or more axial grooves 1520a and 1520b.


In a preferred embodiment, the circumferential grooves 1515 are fluidicly coupled to the axial grooves 1520. In this manner, during the radial expansion process, lubricating fluids are transmitted from the areas in front of the front 1500a and/or behind the rear 1500b of the expansion cone 1500 into the circumferential grooves 1515. Thus, the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. Furthermore, in a preferred embodiment, pressurized lubricating fluids pass from the fluid passages 1520 to the area in front of the front 1500a of the expansion cone 1500. In this manner, the area adjacent to the front 1500a of the expansion cone 1500 is cleaned of foreign materials. In a preferred embodiment, the lubricating fluids are injected into the internal flow passages 1520 by pressurizing the area behind the rear 1500b expansion cone 1500 during the radial expansion process.


In a preferred embodiment, the expansion cone 1500 includes a plurality of circumferential grooves 1515. In a preferred embodiment, the cross sectional area of the circumferential grooves 1515 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1500 includes circumferential grooves 1515 that are concentrated about the axial midpoint of the tapered portion 1505 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1515 are equally spaced along the trailing edge portion of the expansion cone 1500 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1500 includes a plurality of axial grooves 1520 coupled to each of the circumferential grooves 1515. In a preferred embodiment, the axial grooves 1520 fluidicly couple the front end and the rear end of the expansion cone 1500. In a preferred embodiment, the cross sectional area of the axial grooves 1520 range from about 2×10−4 in2 to 5×10−2 in2, respectively, in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1515 is greater than the cross sectional areas of the axial grooves 1520 in order to minimize resistance to fluid flow. In a preferred embodiment, the axial grooves 1520 are spaced apart in the circumferential direction by at least about 3 inches in order to optimally provide lubrication during the radial expansion process.


Referring to FIG. 16, in an alternative embodiment, an expansion cone 1600 is used in the repair apparatus 300 that includes a front end 1600a and a rear end 1600b, includes a tapered portion 1605 having an outer surface 1610, one or more circumferential grooves 1615a and 1615b, and one or more axial grooves 1620a and 1620b.


In a preferred embodiment, the circumferential grooves 1615 are fluidicly coupled to the axial grooves 1620. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1600a of the expansion cone 1600 into the circumferential grooves 1615. Thus, the trailing edge portion of the interface between the expansion cone 1600 and a tubular member is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the axial grooves 1620 using a fluid conduit that is coupled to the tapered end 3205 of the expansion cone 1600.


In a preferred embodiment, the expansion cone 1600 includes a plurality of circumferential grooves 1615. In a preferred embodiment, the cross sectional area of the circumferential grooves 1615 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1600 includes circumferential grooves 1615 that are concentrated about the axial midpoint of the tapered portion 1605 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1615 are equally spaced along the trailing edge portion of the expansion cone 1600 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1600 includes a plurality of axial grooves 1620 coupled to each of the circumferential grooves 1615. In a preferred embodiment, the axial grooves 1620 intersect each of the circumferential groves 1615 at an acute angle. In a preferred embodiment, the cross sectional area of the axial grooves 1620 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1615 is greater than the cross sectional area of the axial grooves 1620. In a preferred embodiment, the axial grooves 1620 are spaced apart in the circumferential direction by at least about 3 inches in order to optimally provide lubrication during the radial expansion process. In a preferred embodiment, the axial grooves 1620 intersect the longitudinal axis of the expansion cone 1600 at a larger angle than the angle of attack of the tapered portion 1605 in order to optimally provide lubrication during the radial expansion process.


Referring to FIG. 17, in an alternative embodiment, an expansion cone 1700 is used in the repair apparatus 300 that includes a front end 1700a and a rear end 1700b, includes a tapered portion 1705 having an outer surface 1710, a spiral circumferential groove 1715, and one or more internal flow passages 1720.


In a preferred embodiment, the circumferential groove 1715 is fluidicly coupled to the internal flow passage 1720. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1700a of the expansion cone 1700 into the circumferential groove 1715. Thus, the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member. In a preferred embodiment, the lubricating fluids are injected into the internal flow passage 1720 using a fluid conduit that is coupled to the tapered end 1705 of the expansion cone 1700.


In a preferred embodiment, the expansion cone 1700 includes a plurality of spiral circumferential grooves 1715. In a preferred embodiment, the cross sectional area of the circumferential groove 1715 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1700 includes circumferential grooves 1715 that are concentrated about the axial midpoint of the tapered portion 1705 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1715 are equally spaced along the trailing edge portion of the expansion cone 1700 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1700 includes a plurality of flow passages 1720 coupled to each of the circumferential grooves 1715. In a preferred embodiment, the cross-sectional area of the flow passages 1720 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential groove 1715 is greater than the cross sectional area of the flow passage 1720 in order to minimize resistance to fluid flow.


Referring to FIG. 18, in an alternative embodiment, an expansion cone 1800 is used in the repair apparatus 300 that includes a front end 1800a and a rear end 1800b, includes a tapered portion 1805 having an outer surface 1810, a spiral circumferential groove 1815, and one or more axial grooves 1820a, 1820b and 1820c.


In a preferred embodiment, the circumferential groove 1815 is fluidicly coupled to the axial grooves 1820. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1800a of the expansion cone 1800 into the circumferential groove 1815. Thus, the trailing edge portion of the interface between the expansion cone 1800 and a tubular member is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the axial grooves 1820 using a fluid conduit that is coupled to the tapered end 1805 of the expansion cone 1800.


In a preferred embodiment, the expansion cone 1800 includes a plurality of spiral circumferential grooves 1815. In a preferred embodiment, the cross sectional area of the circumferential grooves 1815 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1800 includes circumferential grooves 1815 concentrated about the axial midpoint of the tapered portion 1805 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1815 are equally spaced along the trailing edge portion of the expansion cone 1800 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1800 includes a plurality of axial grooves 1820 coupled to each of the circumferential grooves 1815. In a preferred embodiment, the cross sectional area of the axial grooves 1820 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the axial grooves 1820 intersect the circumferential grooves 1815 in a perpendicular manner. In a preferred embodiment, the cross sectional area of the circumferential groove 1815 is greater than the cross sectional area of the axial grooves 1820 in order to minimize resistance to fluid flow. In a preferred embodiment, the circumferential spacing of the axial grooves is greater than about 3 inches in order to optimally provide lubrication during the radial expansion process. In a preferred embodiment, the axial grooves 1820 intersect the longitudinal axis of the expansion cone at an angle greater than the angle of attack of the tapered portion 1805 in order to optimally provide lubrication during the radial expansion process.


Referring to FIG. 19, in an alternative embodiment, an expansion cone 1900 is used in the repair apparatus 300 that includes a front end 1900a and a rear end 1900b, includes a tapered portion 1905 having an outer surface 1910, a circumferential groove 1915, a first axial groove 1920, and one or more second axial grooves 1925a, 1925b, 1925c and 1925d.


In a preferred embodiment, the circumferential groove 1915 is fluidicly coupled to the axial grooves 1920 and 1925. In this manner, during the radial expansion process, lubricating fluids are preferably transmitted from the area behind the back 1900b of the expansion cone 1900 into the circumferential groove 1915. Thus, the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the first axial groove 1920 by pressurizing the region behind the back 1900b of the expansion cone 1900. In a preferred embodiment, the lubricant is further transmitted into the second axial grooves 1925 where the lubricant preferably cleans foreign materials from the tapered portion 1905 of the expansion cone 1900.


In a preferred embodiment, the expansion cone 1900 includes a plurality of circumferential grooves 1915. In a preferred embodiment, the cross sectional area of the circumferential groove 1915 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1900 includes circumferential grooves 1915 concentrated about the axial midpoint of the tapered portion 1905 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1915 are equally spaced along the trailing edge portion of the expansion cone 1900 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process.


In a preferred embodiment, the expansion cone 1900 includes a plurality of first axial grooves 1920 coupled to each of the circumferential grooves 1915. In a preferred embodiment, the first axial grooves 1920 extend from the back 1900b of the expansion cone 1900 and intersect the circumferential groove 1915. In a preferred embodiment, the cross sectional area of the first axial groove 1920 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the first axial groove 1920 intersects the circumferential groove 1915 in a perpendicular manner. In a preferred embodiment, the cross sectional area of the circumferential groove 1915 is greater than the cross sectional area of the first axial groove 1920 in order to minimize resistance to fluid flow. In a preferred embodiment, the circumferential spacing of the first axial grooves 1920 is greater than about 3 inches in order to optimally provide lubrication during the radial expansion process.


In a preferred embodiment, the expansion cone 1900 includes a plurality of second axial grooves 1925 coupled to each of the circumferential grooves 1915. In a preferred embodiment, the second axial grooves 1925 extend from the front 1900a of the expansion cone 1900 and intersect the circumferential groove 1915. In a preferred embodiment, the cross sectional area of the second axial grooves 1925 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the second axial grooves 1925 intersect the circumferential groove 1915 in a perpendicular manner. In a preferred embodiment, the cross sectional area of the circumferential groove 1915 is greater than the cross sectional area of the second axial grooves 1925 in order to minimize resistance to fluid flow. In a preferred embodiment, the circumferential spacing of the second axial grooves 1925 is greater than about 3 inches in order to optimally provide lubrication during the radial expansion process. In a preferred embodiment, the second axial grooves 1925 intersect the longitudinal axis of the expansion cone 1900 at an angle greater than the angle of attack of the tapered portion 1905 in order to optimally provide lubrication during the radial expansion process.


Referring to FIG. 20, in a preferred embodiment, the first axial groove 1920 includes a first portion 2005 having a first radius of curvature 2010, a second portion 2015 having a second radius of curvature 2020, and a third portion 2025 having a third radius of curvature 2030. In a preferred embodiment, the radius of curvatures, 2010, 2020 and 2030 are substantially equal. In an exemplary embodiment, the radius of curvatures, 2010, 2020 and 2030 are all substantially equal to 0.0625 inches.


Referring to FIG. 21, in a preferred embodiment, the circumferential groove 1915 includes a first portion 2105 having a first radius of curvature 2110, a second portion 2115 having a second radius of curvature 2120, and a third portion 2125 having a third radius of curvature 2130. In a preferred embodiment, the radius of curvatures, 2110, 2120 and 2130 are substantially equal. In an exemplary embodiment, the radius of curvatures, 2110, 2120 and 2130 are all substantially equal to 0.125 inches.


Referring to FIG. 22, in a preferred embodiment, the second axial groove 1925 includes a first portion 2205 having a first radius of curvature 2210, a second portion 2215 having a second radius of curvature 2220, and a third portion 2225 having a third radius of curvature 2230. In a preferred embodiment, the first radius of curvature 2210 is greater than the third radius of curvature 2230. In an exemplary embodiment, the first radius of curvature 2210 is equal to 0.5 inches, the second radius of curvature 2220 is equal to 0.0625 inches, and the third radius of curvature 2230 is equal to 0.125 inches.


Referring to FIG. 23, in an alternative embodiment, an expansion cone 2300 is used in the repair apparatus 300 that includes an internal flow passage 2305 having an insert 2310 including a flow passage 2315. In a preferred embodiment, the cross sectional area of the flow passage 2315 is less than the cross sectional area of the flow passage 2305. More generally, in a preferred embodiment, a plurality of inserts 2310 are provided, each with different sizes of flow passages 2315. In this manner, the flow passage 2305 is machined to a standard size, and the lubricant supply is varied by using different sized inserts 2310. In a preferred embodiment, the teachings of the expansion cone 2300 are incorporated into the expansion cones 1200, 1300, 1400, and 1700.


Referring to FIG. 24, in a preferred embodiment, the insert 2310 includes a filter 2405 for filtering particles and other foreign materials from the lubricant that passes into the flow passage 2305. In this manner, the foreign materials are prevented from clogging the flow passage 2305 and other flow passages within the expansion cone 2300.


The increased lubrication provided to the trailing edge portion of the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800, and 1900 greatly reduces the amount of galling or seizure caused by the interface between the expansion cones and the tubular member 370 during the radial expansion process thereby permitting larger continuous sections of tubulars to be radially expanded in a single continuous operation. Thus, use of the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800, and 1900 reduces the operating pressures required for radial expansion and thereby reduces the size of the pump 325. In addition, failure, bursting, and/or buckling of the tubular member 370 during the radial expansion process is significantly reduced, and the success ratio of the radial expansion process is greatly increased.


In a preferred embodiment, the lubricating fluids used with the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800 and 1900 for expanding the tubular member 370 have viscosities ranging from about 1 to 10,000 centipoise in order to optimize the injection of the lubricating fluids into the circumferential grooves of the expansion cones during the radial expansion process. In a preferred embodiment, the lubricating fluids used with the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800 and 1900 for expanding the tubular member 370 comprise various conventional lubricants available from various commercial vendors consistent with the teachings of the present disclosure in order to optimize the injection of the lubricating fluids into the circumferential grooves of the expansion cones during the radial expansion process.


In a preferred embodiment, as illustrated in FIG. 25, the expansion cone 375 further includes a central passage 2505 for receiving the support member 340 and the repair apparatus 300 further includes one or more sealing members 2510 and one or more bearing members 2515.


The sealing members 2510 are preferably adapted to fluidicly seal the dynamic interface between the central passage 2505 of the expansion cone 375 and the support member 340. The sealing members 2510 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing members 2510 are conventional O-rings sealing members available from various commercial suppliers in order to optimally provide a fluidic seal.


The bearing members 2515 are preferably adapted to provide a sliding interface between the central passage 2505 of the expansion cone 375 and the support member 340. The bearing members 2515 may be any number of conventional commercially available bearings. In a preferred embodiment, the bearing members 2515 are wear bands available from Haliburton Energy Services in order to optimally provide a sliding interface that minimizes wear.


The sealing member 380 is coupled to the exterior surface of the expandable tubular member 375. The sealing member 380 is preferably adapted to fluidicly seal the interface between the expandable tubular member 375 and the wellbore casing 100 after the radial expansion of the expandable tubular member 375. The sealing member 380 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing member 380 is a nitrile rubber sealing member available from Eustler, Inc. in order to optimally provide a high pressure, high load bearing seal between the expandable tubular member 375 and the casing 100.


As illustrated in FIG. 3a, in a preferred embodiment, during placement of the repair apparatus 300 within the wellbore casing 100, the repair apparatus 300 is supported by the support member 305. In a preferred embodiment, during placement of the repair apparatus 300 within the wellbore casing 100, fluidic materials within the wellbore casing 100 are conveyed to a location above the repair apparatus 300 using the fluid conduits 335, 345, and 355. In this manner, surge pressures during placement of the repair apparatus 300 within the wellbore casing 100 are minimized.


In a preferred embodiment, prior to placement of the repair apparatus 300 in the wellbore, the outer surfaces of the repair apparatus 300 are coated with a lubricating fluid to facilitate their placement the wellbore and reduce surge pressures. In a preferred embodiment, the lubricating fluid comprises BARO-LUB GOLD-SEAL™ brand drilling mud lubricant, available from Baroid Drilling Fluids, Inc. In this manner, the insertion of the repair apparatus 300 into the wellbore casing 100 is optimized.


In a preferred embodiment, after placement of the repair apparatus 300 within the wellbore casing 100, in step 210, the logging tool 310 is used in a conventional manner to locate the openings 115 in the wellbore casing 100.


In a preferred embodiment, once the openings 115 have been located by the logging tool 310, in step 215, the repair apparatus 300 is further positioned within the wellbore casing 100 with the sealing member 380 placed in opposition to the openings 115.


As illustrated in FIGS. 3b and 3c, in a preferred embodiment, after the repair apparatus 300 has been positioned with the sealing member 380 in opposition to the openings 115, in step 220, the tubular member 370 is radially expanded into contact with the wellbore casing 100. In a preferred embodiment, the tubular member 370 is radially expanded by displacing the expansion cone 375 in the axial direction. In a preferred embodiment, the expansion cone 375 is displaced in the axial direction by pressurizing the interior portion 385. In a preferred embodiment, the interior portion 385 is pressurized by pumping fluidic materials into the interior portion 385 using the pump 325.


In a preferred embodiment, the pump 325 pumps fluidic materials from the region above and proximate to the repair apparatus 300 into the interior portion 385 using the fluidic passages 320 and 330. In this manner, the interior portion 385 is pressurized and the expansion cone 375 is displaced in the axial direction. In this manner, the tubular member 370 is radially expanded into contact with the wellbore casing 100. In a preferred embodiment, the interior portion 385 is pressurized to operating pressures ranging from about 0 to 12,000 psi using flow rates ranging from about 0 to 500 gallons/minute. In a preferred embodiment, fluidic materials displaced by the axial movement of the expansion cone 375 are conveyed to a location above the repair apparatus 300 by the fluid conduits 335, 345, and 355. In a preferred embodiment, during the pumping of fluidic materials into the interior portion 385 by the pump 325, the tubular member 370 is maintained in a substantially stationary position.


As illustrated in FIG. 3d, after the completion of the radial expansion of the tubular member 370, the locking member 365 is decoupled from the tubular member 370 and the repair apparatus 300 is removed from the wellbore casing 100. In a preferred embodiment, during the removal of the repair apparatus 300 from the wellbore casing 100, fluidic materials above the repair apparatus 300 are conveyed to a location below the repair apparatus 300 using the fluid conduits 335, 345 and 355. In this manner, the removal of the repair apparatus 300 from the wellbore casing is facilitated.


As illustrated in FIG. 3e, in a preferred embodiment, the openings 115 in the wellbore casing 100 are sealed off by the radially expanded tubular member 370 and the sealing member 380. In this manner, the repair apparatus 300 provides a compact and efficient device for repairing wellbore casings. More generally, the repair apparatus 300 is used to repair and form wellbore casings, pipelines, and structural supports.


Referring to FIG. 26a, in an alternative embodiment, in step 205, a repair apparatus 2600 is positioned within the wellbore casing 100.


The repair apparatus 2600 preferably includes a first support member 2605, a logging tool 2610, a housing 2615, a first fluid conduit 2620, a pump 2625, a second fluid conduit 2630, a first valve 2635, a third fluid conduit 2640, a second valve 2645, a fourth fluid conduit 2650, a second support member 2655, a fifth fluid conduit 2660, the third support member 2665, a sixth fluid conduit 2670, sealing members 2675, a locking member 2680, an expandable tubular 2685, an expansion cone 2690, a sealing member 2695, a packer 2700, a seventh fluid conduit 2705, and a third valve 2710.


The first support member 2605 is preferably coupled to the logging tool 2610 and the housing 2615. The first support member 2605 is preferably adapted to be coupled to and supported by a conventional support member such as, for example, a wireline or a drill string. The first support member 2605 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials from the apparatus 2600. The first support member 2605 is further preferably adapted to convey electrical power and communication signals to the logging tool 2610, the pump 2625, the valves 2635, 2645, and 2710, and the packer 2700.


The logging tool 2610 is preferably coupled to the first support member 2605. The logging tool 2610 is preferably adapted to detect defects in the wellbore casing 100. The logging tool 2610 may be any number of conventional commercially available logging tools suitable for detecting defects in wellbore casings, pipelines, or structural supports. In a preferred embodiment, the logging tool 2610 is a CAST logging tool, available from Halliburton Energy Services in order to optimally provide detection of defects in the wellbore casing 100. In a preferred embodiment, the logging tool 2610 is contained within the housing 2615 in order to provide a repair apparatus 2600 that is rugged and compact.


The housing 2615 is preferably coupled to the first support member 2605, the second support member 2655, the sealing members 2675, and the locking member 2680. The housing 2615 is preferably releasably coupled to the tubular member 2685. The housing 2615 is further preferably adapted to contain and support the logging tool 2610 and the pump 2625.


The first fluid conduit 2620 is preferably fluidicly coupled to the inlet of the pump 2625, the exterior region above the housing 2615, and the second fluid conduit 2630. The first fluid conduit 2620 may be contained within the first support member 2605 and the housing 2615. The first fluid conduit 2620 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 2690.


The pump 2625 is fluidicly coupled to the first fluid conduit 2620 and the third fluid conduit 2640. The pump 2625 is further preferably contained within and support by the housing 2615. The pump 2625 is preferably adapted to convey fluidic materials from the first fluid conduit 2620 to the third fluid conduit 2640 at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide operating pressure for propagating the expansion cone 2690. The pump 2625 may be any number of conventional commercially available pumps. In a preferred embodiment, the pump 2625 is a flow control pump out section, available from Halliburton Energy Services in order to optimally provide fluid pressure for propagating the expansion cone 2690. The pump 2625 is preferably adapted to pressurize an interior portion 2715 of the expandable tubular member 2685 to operating pressures ranging from about 0 to 12,000 psi.


The second fluid conduit 2630 is fluidicly coupled to the first fluid conduit 2620 and the third fluid conduit 2640. The second fluid conduit 2630 is further preferably contained within the housing 2615. The second fluid conduit 2630 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide propagation of the expansion cone 2690.


The first valve 2635 is preferably adapted to controllably block the second fluid conduit 2630. In this manner, the flow of fluidic materials through the second fluid conduit 2630 is controlled. The first valve 2635 may be any number of conventional commercially available flow control valves. In a preferred embodiment, the first valve 2635 is a conventional ball valve available from various commercial suppliers.


The third fluid conduit 2640 is fluidicly coupled to the outlet of the pump 2625, the second fluid conduit 2630, and the fifth fluid conduit 2660. The third fluid conduit 2640 is further preferably contained within the housing 2615. The third fluid conduit 2640 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide propagation of the expansion cone 2690.


The second valve 2645 is preferably adapted to controllably block the third fluid conduit 2640. In this manner, the flow of fluidic materials through the third fluid conduit 2640 is controlled. The second valve 2645 may be any number of conventional commercially available flow control valves. In a preferred embodiment, the second valve 2645 is a conventional ball valve available from various commercial sources.


The fourth fluid conduit 2650 is fluidicly coupled to the exterior region above the housing 2615 and the interior region 2720 within the expandable tubular member 2685. The fourth fluid conduit 2650 is further preferably contained within the housing 2615. The fourth fluid conduit 2650 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 5,000 psi and 0 to 500 gallons/minute in order to optimally vent fluidic materials in front of the expansion cone 2690 during the radial expansion process.


The second support member 2655 is coupled to the housing 2615 and the third support member 2665. The second support member 2655 is further preferably movably and sealingly coupled to the expansion cone 2690. The second support member 2655 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials. In a preferred embodiment, the second support member 2655 is centrally positioned within the expandable tubular member 2685.


The fifth fluid conduit 2660 is fluidicly coupled to the third fluid conduit 2640 and the sixth fluid conduit 2670. The fifth fluid conduit 2660 is further preferably contained within the second support member 2655. The fifth fluid conduit 2660 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 2690.


The third support member 2665 is coupled to the second support member 2655. The third support member 2665 is further preferably adapted to support the expansion cone 2690. The third support member 2665 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials.


The sixth fluid conduit 2670 is fluidicly coupled to the fifth fluid conduit 2660 and the interior region 2715 of the expandable tubular member 2685 below the expansion cone 2690. The sixth fluid conduit 2670 is further preferably contained within the third support member 2665. The sixth fluid conduit 2670 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 2690.


The sealing members 2675 are preferably coupled to the housing 2615. The sealing members 2675 are preferably adapted to seal the interface between the exterior surface of the housing 2615 and the interior surface of the expandable tubular member 2685. In this manner, the interior portion 2730 of the expandable tubular member 2685 is fluidicly isolated from the exterior region above the housing 2615. The sealing members 2675 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing members 2675 are conventional O-ring sealing members available from various commercial suppliers in order to optimally provide a pressure seal.


The locking member 2680 is preferably coupled to the housing 2615. The locking member 2680 is further preferably releasably coupled to the expandable tubular member 2685. In this manner, the housing 2615 is controllably coupled to the expandable tubular member 2685. In this manner, the housing 2615 is preferably released from the expandable tubular member 2685 upon the completion of the radial expansion of the expandable tubular member 2685. The locking member 2680 may be any number of conventional commercially available releasable locking members. In a preferred embodiment, the locking member 2680 is a hydraulically released slip available from various commercial vendors in order to optimally provide support during the radial expansion process.


In an alternative embodiment, the locking member 2680 is replaced by or supplemented by one or more conventional shear pins in order to provide an alternative means of controllably releasing the housing 2615 from the expandable tubular member 2685.


In another alternative embodiment, the seals 2675 and locking member 2680 are omitted.


The expandable tubular member 2685 is releasably coupled to the locking member 2680. The expandable tubular member 2685 is preferably adapted to be radially expanded by the axial displacement of the expansion cone 2690. In a preferred embodiment, the expandable tubular member 2685 is substantially identical to the expandable tubular member 370 described above with reference to the repair apparatus 300.


The expansion cone 2690 is movably coupled to the second support member 2655. The expansion cone 2690 is preferably adapted to be axially displaced upon the pressurization of the interior region 2715 of the expandable tubular member 2685. The expansion cone 2690 is further preferably adapted to radially expand the expandable tubular member 2685. In a preferred embodiment, the expansion cone 2690 is substantially identical to the expansion cone 375 described above with reference to the repair apparatus 300.


The sealing member 2695 is coupled to the exterior surface of the expandable tubular member 2685. The sealing member 2695 is preferably adapted to fluidicly seal the interface between the expandable tubular member 2685 and the wellbore casing 100 after the radial expansion of the expandable tubular member 2685. The sealing member 2695 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing member 2695 is a nitrile rubber sealing member available from Eustler, Inc. in order to optimally provide a high pressure seal between the casing 100 and the expandable tubular member 2685.


The packer 2700 is coupled to the third support member 2665. The packer 2700 is further releasably coupled to the expandable tubular member 2685. The packer 2700 is preferably adapted to fluidicly seal the interior region 2715 of the expandable tubular member 2685. In this manner, the interior region 2715 of the expandable tubular member 2685 is pressurized. The packer 2700 may be any number of conventional commercially available packer devices. In a preferred embodiment, the packer 2700 is an EZ Drill Packer available from Halliburton Energy Services in order to optimally provide a high pressure seal below the expansion cone 2690 that can be easily removed upon the completion of the radial expansion process.


The seventh fluid conduit 2705 is fluidicly coupled to the interior region 2715 of the expandable tubular member 2685 and an exterior region below the apparatus 2600. The seventh fluid conduit 2705 is further preferably contained within the packer 2700. The seventh fluid conduit 2705 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 1,500 psi and 0 to 200 gallons/minute in order to optimally provide a fluid conduit that minimizes back pressure on the apparatus 2600 when the apparatus 2600 is positioned within the wellbore casing 100.


The third valve 2710 is preferably adapted to controllably block the seventh fluid conduit 2705. In this manner, the flow of fluidic materials through the seventh fluid conduit 2705 is controlled. The third valve 2710 may be any number of conventional commercially available flow control valves. In a preferred embodiment, the third valve 2710 is a EZ Drill one-way check valve available from Halliburton Energy Services in order to optimally provide one-way flow through the packer 2700 while providing a pressure seal during the radial expansion process.


As illustrated in FIG. 26a, in a preferred embodiment, during placement of the repair apparatus 2600 within the wellbore casing 100, the apparatus 2600 is supported by the support member 2605. In a preferred embodiment, during placement of the apparatus 2600 within the wellbore casing 100, fluidic materials within the wellbore casing 100 are conveyed to a location above the apparatus 2600 using the fluid conduits 2705, 2670, 2660, 2640, 2630, and 2620. In this manner, surge pressures during placement of the apparatus 2600 within the wellbore casing 100 are minimized.


In a preferred embodiment, prior to placement of the apparatus 2600 in the wellbore casing 100, the outer surfaces of the apparatus 2600 are coated with a lubricating fluid to facilitate their placement the wellbore and reduce surge pressures. In a preferred embodiment, the lubricating fluid comprises BARO-LUB GOLD-SEAL™ brand drilling mud lubricant, available from Baroid Drilling Fluids, Inc. In this manner, the insertion of the apparatus 2600 into the wellbore casing 100 is optimized.


In a preferred embodiment, after placement of the apparatus 2600 within the wellbore casing 100, in step 210, the logging tool 2610 is used in a conventional manner to locate the openings 115 in the wellbore casing 100.


In a preferred embodiment, once the openings 115 have been located by the logging tool 2610, in step 215, the apparatus 2600 is further positioned within the wellbore casing 100 with the sealing member 2695 placed in opposition to the openings 115.


As illustrated in FIGS. 26b and 26c, in a preferred embodiment, after the apparatus 2600 has been positioned with the sealing member 2695 in opposition to the openings 115, in step 220, the tubular member 2685 is radially expanded into contact with the wellbore casing 100. In a preferred embodiment, the tubular member 2685 is radially expanded by displacing the expansion cone 2690 in the axial direction. In a preferred embodiment, the expansion cone 2690 is displaced in the axial direction by pressurizing the interior chamber 2715. In a preferred embodiment, the interior chamber 2715 is pressurized by pumping fluidic materials into the interior chamber 2715 using the pump 2625.


In a preferred embodiment, the pump 2625 pumps fluidic materials from the region above and proximate to the apparatus 2600 into the interior chamber 2715 using the fluid conduits 2620, 2640, 2660, and 2670. In this manner, the interior chamber 2715 is pressurized and the expansion cone 2690 is displaced in the axial direction. In this manner, the tubular member 2685 is radially expanded into contact with the wellbore casing 100. In a preferred embodiment, the interior chamber 2715 is pressurized to operating pressures ranging from about 0 to 12,000 psi using flow rates ranging from about 0 to 500 gallons/minute. In a preferred embodiment, fluidic materials within the interior chamber 2720 displaced by the axial movement of the expansion cone 2690 are conveyed to a location above the apparatus 2600 by the fluid conduit 2650. In a preferred embodiment, during the pumping of fluidic materials into the interior chamber 2715 by the pump 2625, the tubular member 2685 is maintained in a substantially stationary position.


As illustrated in FIG. 26d, after the completion of the radial expansion of the tubular member 2685, the locking member 2680 and packer 2700 are decoupled from the tubular member 2685, and the apparatus 2600 is removed from the wellbore casing 100. In a preferred embodiment, during the removal of the apparatus 2600 from the wellbore casing 100, fluidic materials above the apparatus 2600 are conveyed to a location below the apparatus 2600 using the fluid conduits 2620, 2630, 2640, 2660, and 2670. In this manner, the removal of the apparatus 2600 from the wellbore casing is facilitated.


As illustrated in FIG. 26e, in a preferred embodiment, the openings 115 in the wellbore casing 100 are sealed off by the radially expanded tubular member 2685 and the sealing member 2695. In this manner, the repair apparatus 2600 provides a compact and efficient device for repairing wellbore casings. More generally, the repair apparatus 2600 is used to repair and form wellbore casings, pipelines, and structural supports.


A method of repairing an opening in a tubular member has been described that includes positioning an expandable tubular, an expansion cone, and a pump within the tubular member, positioning the expandable tubular in opposition to the opening in the tubular member, pressurizing an interior portion of the expandable tubular using the pump, and radially expanding the expandable tubular into intimate contact with the tubular member using the expansion cone. In a preferred embodiment, the method further includes locating the opening in the tubular member using an opening locator. In a preferred embodiment, the tubular member is a wellbore casing. In a preferred embodiment, the tubular member is a pipeline. In a preferred embodiment, the tubular member is a structural support. In a preferred embodiment, the method further includes lubricating the interface between the expandable tubular member and the expansion cone. In a preferred embodiment, lubricating includes coating the expandable tubular member with a lubricant. In a preferred embodiment, lubricating includes injecting a lubricating fluid into the trailing edge of the interface between the expandable tubular member and the expansion cone. In a preferred embodiment, lubricating includes coating the expandable tubular member with a first component of a lubricant and circulating a second component of the lubricant into contact with the coating on the expandable tubular member. In a preferred embodiment, the method further includes sealing off a portion of the expandable tubular member.


An apparatus for repairing a tubular member also has been described that includes a support member, an expandable tubular member removably coupled to the support member, an expansion cone movably coupled to the support member and a pump coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member. In a preferred embodiment, the expandable tubular member includes a coating of a lubricant. In a preferred embodiment, the expandable tubular member includes a coating of a first component of a lubricant. In a preferred embodiment, the expandable tubular member includes a sealing member coupled to the outer surface of the expandable tubular member. In a preferred embodiment, the expandable tubular member includes a first end having a first outer diameter, an intermediate portion coupled to the first end having an intermediate outer diameter and a second end having a second outer diameter coupled to the intermediate portion having a second outer diameter, wherein the first and second outer diameters are greater than the intermediate outer diameter. In a preferred embodiment, the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the tubular member that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone is given by the following expression:








D
TUBE

-

2
*

t
1





D
1




1

t
1




[



(


t
1

-

t
INT


)

*

D
cone


+


t
INT

*

D
INT



]







where t1=t2; and D1=D2. In a preferred embodiment, the expandable tubular member includes a sealing member coupled to the outside surface of the intermediate portion. In a preferred embodiment, the expandable tubular member includes a first transition portion coupled to the first end and the intermediate portion inclined at a first angle and a second transition portion coupled to the second end and the intermediate portion inclined at a second angle, wherein the first and second angles range from about 5 to 45 degrees. In a preferred embodiment, the expansion cone includes an expansion cone surface having an angle of attack ranging from about 10 to 40 degrees. In a preferred embodiment, the expansion cone includes a first expansion cone surface having a first angle of attack and a second expansion cone surface having a second angle of attack, wherein the first angle of attack is greater than the second angle of attack. In a preferred embodiment, the expansion cone includes an expansion cone surface having a substantially parabolic profile. In a preferred embodiment the expansion cone includes an inclined surface including one or more lubricating grooves. In a preferred embodiment, the expansion cone includes one or more internal lubricating passages coupled to each of the lubricating grooves.


A method of coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member also has been described that includes positioning at least a portion of the first tubular member within the second tubular member, pressurizing a portion of the interior of the first tubular member by pumping fluidic materials proximate the first tubular member into the portion of the interior of the first tubular member, and displacing an expansion cone within the interior of the first tubular member. In a preferred embodiment, the second tubular member is selected from the group consisting of a wellbore casing, a pipeline, and a structural support. In a preferred embodiment, the method further includes lubricating the interface between the first tubular member and the expansion cone. In a preferred embodiment, the lubricating includes coating the first tubular member with a lubricant. In a preferred embodiment, the lubricating includes injecting a lubricating fluid into the trailing edge of the interface between the first tubular member and the expansion cone. In a preferred embodiment, the lubricating includes coating the first tubular member with a first component of a lubricant and circulating a second component of the lubricant into contact with the coating on the first tubular member. In a preferred embodiment, the method further includes sealing off a portion of the first tubular member.


Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Claims
  • 1. A method of repairing an opening in a tubular member, comprising: positioning an expandable tubular, an expansion cone, and a pump within the tubular member;positioning the expandable tubular in opposition to the opening in the tubular member;pressurizing an interior portion of the expandable tubular by operating the pump within the tubular member; andradially expanding the expandable tubular into intimate contact with the tubular member using the expansion cone.
  • 2. The method of claim 1, further comprising: locating the opening in the tubular member using an opening locator.
  • 3. The method of claim 1, wherein the tubular member comprises a wellbore casing.
  • 4. The method of claim 1, wherein the tubular member comprises a pipeline.
  • 5. The method of claim 1, wherein the tubular member comprises a structural support.
  • 6. The method of claim 1, further comprising: sealing off a portion of the expandable tubular member.
  • 7. The method of claim 1, further comprising: lubricating the interface between the expandable tubular member and the expansion cone.
  • 8. The method of claim 7, wherein lubricating comprises: coating the expandable tubular member with a lubricant.
  • 9. The method of claim 7, wherein lubricating comprises: injecting a lubricating fluid into the trailing edge of the interface between the expandable tubular member and the expansion cone.
  • 10. The method of claim 7, wherein lubricating comprises: coating the expandable tubular member with a first component of a lubricant; and circulating a second component of the lubricant into contact with the coating on the expandable tubular member.
  • 11. An apparatus for repairing a tubular member, comprising: a support member; an expandable tubular member removably coupled to the support member;an expansion cone movably coupled to the support member; anda pump coupled to the support member positioned within the expandable tubular member adapted to pressurize a portion of the interior of the expandable tubular member;wherein the expandable tubular member includes:a first end having a first outer diameter; an intermediate portion coupled to the first end having an intermediate outer diameter; and a second end having a second outer diameter coupled to the intermediate portion having a second outer diameter;wherein the first and second outer diameters are greater than the intermediate outer diameter.
  • 12. The apparatus of claim 11, wherein the expandable tubular member comprises: a coating of a lubricant.
  • 13. The apparatus of claim 11, wherein the expandable tubular member comprises: a coating of a first component of a lubricant.
  • 14. The apparatus of claim 11, wherein the expandable tubular member comprises: a sealing member coupled to the outer surface of the expandable tubular member.
  • 15. The apparatus of claim 11, wherein the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and wherein the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the tubular member that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone is given by the following expression:
  • 16. The apparatus of claim 11, wherein the expandable tubular member comprises: a sealing member coupled to the outside surface of the intermediate portion.
  • 17. The apparatus of claim 11, wherein the expandable tubular member comprises: a first transition portion coupled to the first end and the intermediate portion inclined at a first angle; and a second transition portion coupled to the second end and the intermediate portion inclined at a second angle; wherein the first and second angles range from about 5 to 45 degrees.
  • 18. The apparatus of claim 11, wherein the expansion cone comprises: an expansion cone surface having an angle of attack ranging from about 10 to 40 degrees.
  • 19. The apparatus of claim 11, wherein the expansion cone comprises: a first expansion cone surface having a first angle of attack; anda second expansion cone surface having a second angle of attack;wherein the first angle of attack is greater than the second angle of attack.
  • 20. The apparatus of claim 11, wherein the expansion cone comprises: an expansion cone surface having a substantially parabolic profile.
  • 21. The apparatus of claim 11, wherein the expansion cone comprises: an inclined surface including one or more lubricating grooves.
  • 22. The apparatus of claim 21, wherein the expansion cone comprises: one or more internal lubricating passages coupled to each of the lubricating grooves.
  • 23. A method of coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member, comprising: positioning at least a portion of the first tubular member within the second tubular member;positioning a pump within the first tubular member;pressurizing a portion of the interior of the first tubular member by pumping fluidic materials proximate the first tubular member into the portion of the interior of the first tubular member using the pump; anddisplacing an expansion cone within the interior of the first tubular member.
  • 24. The method of claim 23, wherein the second tubular member is selected from the group consisting of a wellbore casing, a pipeline, and a structural support.
  • 25. The method of claim 23, further comprising: sealing off a portion of the first tubular member.
  • 26. The method of claim 23, further comprising: lubricating the interface between the first tubular member and the expansion cone.
  • 27. The method of claim 26, wherein lubricating comprises: coating the first tubular member with a lubricant.
  • 28. The method of claim 26, wherein lubricating comprises: injecting a lubricating fluid into the trailing edge of the interface between the first tubular member and the expansion cone.
  • 29. The method of claim 26, wherein lubricating comprises: coating the first tubular member with a first component of a lubricant; andcirculating a second component of the lubricant into contact with the coating on the first tubular member.
  • 30. An apparatus for repairing an opening in a tubular member, comprising: means for positioning an expandable tubular, and an expansion cone within the tubular member;means for positioning the expandable tubular in opposition to the opening in the tubular member;means for pressurizing an interior portion of the expandable tubular; andmeans for radially expanding the expandable tubular into intimate contact with the tubular member using the expansion cone.
  • 31. The apparatus of claim 30, further comprising: means for locating the opening in the tubular member.
  • 32. The apparatus of claim 30, wherein the tubular member comprises a wellbore casing.
  • 33. The apparatus of claim 30, wherein the tubular member comprises a structural support.
  • 34. The apparatus of claim 30, further comprising: means for coating the expandable tubular member with a lubricant.
  • 35. The apparatus of claim 30, further comprising: means for injecting a lubricating fluid into the trailing edge of the interface between the expandable tubular member and the expansion cone.
  • 36. The apparatus of claim 30, further comprising: means for coating the expandable tubular member with a first component of a lubricant; and means for circulating a second component of the lubricant into contact with the coating on the expandable tubular member.
  • 37. The apparatus of claim 30, further comprising: means for sealing off a portion of the expandable tubular member.
  • 38. The apparatus of claim 30, wherein the tubular member comprises a pipeline.
  • 39. An apparatus for coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member, comprising: means for positioning at least a portion of the first tubular member within the second tubular member;means for pressurizing a portion of the interior of the first tubular member by pumping fluidic materials proximate the first tubular member into the portion of the interior of the first tubular member;means for displacing an expansion cone within the interior of the first tubular member.
  • 40. The apparatus of claim 39, wherein the second tubular member is selected from the group consisting of a wellbore casing, a pipeline, and a structural support.
  • 41. The apparatus of claim 39, further comprising: means for coating the first tubular member with a lubricant.
  • 42. The apparatus of claim 39, further comprising: means for injecting a lubricating fluid into the trailing edge of the interface between the first tubular member and the expansion cone.
  • 43. The apparatus of claim 39, further comprising: means for coating the first tubular member with a first component of a lubricant; and means for circulating a second component of the lubricant into contact with the coating on the first tubular member.
  • 44. The apparatus of claim 39, further comprising: means for sealing off a portion of the first tubular member.
  • 45. An apparatus for repairing a tubular member, comprising: a support member; an expandable tubular member removably coupled to the support member;an expansion cone movably coupled to the support member; anda pump positioned within the expandable tubular member coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member;wherein the expansion cone includes an inclined surface including one or more lubricating grooves.
  • 46. An apparatus for repairing a tubular member, comprising: a support member; an expandable tubular member removably coupled to the support member;an expansion cone movably coupled to the support member; anda pump positioned within the expandable tubular member coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member;wherein the expansion cone includes an inclined surface including one or more lubricating grooves; andwherein the expansion cone includes one or more internal lubricating passages coupled to each of the lubricating grooves.
  • 47. A method of repairing an opening in a tubular member, comprising: positioning an expandable tubular, an expansion cone, and a pump within the tubular member;positioning the expandable tubular in opposition to the opening in the tubular member;injecting fluidic materials into an interior portion of the expandable tubular using the pump to pressurize the interior portion of the expandable tubular; anddisplacing the expansion cone relative to the expandable tubular member to radial expand the expandable tubular into intimate contact with the tubular member.
  • 48. The method of claim 47, further comprising: locating the opening in the tubular member using an opening locator.
  • 49. The method of claim 47, wherein the tubular member comprises a wellbore casing.
  • 50. The method of claim 47, wherein the tubular member comprises a pipeline.
  • 51. The method of claim 47, wherein the tubular member comprises a structural support.
  • 52. The method of claim 47, further comprising: lubricating the interface between the expandable tubular member and the expansion cone.
  • 53. The method of claim 52, wherein lubricating comprising: coating the expandable tubular member with a lubricant.
  • 54. The method of claim 52, wherein lubricating comprises: injecting a lubricating fluid into the trailing edge of the interface between the expandable tubular member and the expansion cone.
  • 55. The method of claim 52, wherein lubricating comprises: coating the expandable tubular member with a first component of a lubricant; and circulating a second component of the lubricant into contact with the coating on the expandable tubular member.
  • 56. The method of claim 47, further comprising: sealing off a portion of the expandable tubular member.
  • 57. An apparatus for repairing a tubular member, comprising: a support member;an expandable tubular member removably coupled to the support member;a tubular expansion cone movably coupled to the support member; anda pump positioned within the expandable tubular member coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member.
  • 58. The apparatus of claim 57, wherein the expandable tubular member comprises: a coating of a lubricant.
  • 59. The apparatus of claim 57, wherein the expandable tubular member comprises: a coating of a first component of a lubricant.
  • 60. The apparatus of claim 57, wherein the expandable tubular member comprises: a sealing member coupled to the outer surface of the expandable tubular member.
  • 61. The apparatus of claim 57, wherein the expandable tubular member comprises: a first end having a first outer diameter; an intermediate portion coupled to the first end having an intermediate outer diameter; and a second end having a second outer diameter coupled to the intermediate portion having a second outer diameter; wherein the first and second outer diameters are greater than the intermediate outer diameter.
  • 62. The apparatus of claim 61, wherein the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and wherein the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the tubular member that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone is given by the following expression:
  • 63. The apparatus of claim 61, wherein the expandable tubular member comprises: a sealing member coupled to the outside surface of the intermediate portion.
  • 64. The apparatus of claim 61, wherein the expandable tubular member comprises: a first transition portion coupled to the first end and the intermediate portion inclined at a first angle; and a second transition portion coupled to the second end and the intermediate portion inclined at a second angle; wherein the first and second angles range from about 5 to 45 degrees.
  • 65. The apparatus of claim 57, wherein the tubular expansion cone comprises: an expansion cone surface having an angle of attack ranging from about 10 to 40 degrees.
  • 66. The apparatus of claim 57, wherein the tubular expansion cone comprises: a first expansion cone surface having a first angle of attack; and a second expansion cone surface having a second angle of attack; wherein the first angle of attack is greater than the second angle of attack.
  • 67. The apparatus of claim 57, wherein the tubular expansion cone comprises: an expansion cone surface having a substantially parabolic profile.
  • 68. The apparatus of claim 57, wherein the tubular expansion cone comprises: an inclined surface including one or more lubricating grooves.
  • 69. The apparatus of claim 68, wherein the tubular expansion cone comprises: one or more internal lubricating passages coupled to each of the lubricating grooves.
  • 70. A method of coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member, comprising: positioning at least a portion of the first tubular member within the second tubular member;positioning a pump within the first tubular member;pressurizing a portion of the interior of the first tubular member by pumping fluidic materials into the portion of the interior of the first tubular member by operating the pump; anddisplacing a tubular expansion cone within the interior of the first tubular member.
  • 71. The method of claim 70, wherein the second tubular member is selected from the group consisting of a wellbore casing, a pipeline, and a structural support.
  • 72. The method of claim 70, further comprising: lubricating the interface between the first tubular member and the expansion cone.
  • 73. The method of claim 72, wherein lubricating comprises: coating the first tubular member with a lubricant.
  • 74. The method of claim 73, wherein lubricating comprises: coating the first tubular member with a first component of a lubricant; and circulating a second component of the lubricant into contact with the coating on the first tubular member.
  • 75. The method of claim 72, wherein lubricating comprises: injecting a lubricating fluid into the trailing edge of the interface between the first tubular member and the tubular expansion cone.
  • 76. The method of claim 70, further comprising: sealing off a portion of the first tubular member.
  • 77. An apparatus for repairing an opening in a tubular member, comprising: means for positioning an expandable tubular, an expansion cone, and a pump within the tubular member;means for positioning the expandable tubular in opposition to the opening in the tubular member;means for injecting fluidic materials into an interior portion of the expandable tubular using the pump to pressurize the interior portion of the expandable tubular; andmeans for displacing the expansion cone relative to the expandable tubular member to radial expand the expandable tubular into intimate contact with the tubular member.
  • 78. The apparatus of claim 77, further comprising: means for locating the opening in the tubular member.
  • 79. The apparatus of claim 77, wherein the tubular member comprises a wellbore casing.
  • 80. The apparatus of claim 77, wherein the tubular member comprises a pipeline.
  • 81. The apparatus of claim 77, wherein the tubular member comprises a structural support.
  • 82. The apparatus of claim 77, further comprising: means for lubricating the interface between the expandable tubular member and the expansion cone.
  • 83. The apparatus of claim 82, further comprising: means for coating the expandable tubular member with a lubricant.
  • 84. The apparatus of claim 82, further comprising: means for injecting a lubricating fluid into the trailing edge of the interface between the expandable tubular member and the expansion cone.
  • 85. The apparatus of claim 82, further comprising: means for coating the expandable tubular member with a first component of a lubricant; and means for circulating a second component of the lubricant into contact with the coating on the expandable tubular member.
  • 86. The apparatus of claim 77, further comprising: means for sealing off a portion of the expandable tubular member.
  • 87. An apparatus for coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member, comprising: means for positioning at least a portion of the first tubular member within the second tubular member;means for pressurizing a portion of the interior of the first tubular member by pumping fluidic materials into the portion of the interior of the first tubular member; andmeans for displacing a tubular expansion cone within the interior of the first tubular member.
  • 88. The apparatus of claim 87, wherein the second tubular member is selected from the group consisting of a wellbore casing, a pipeline, and a structural support.
  • 89. The apparatus of claim 87, further comprising: means for lubricating the interface between the first tubular member and the tubular expansion cone.
  • 90. The apparatus of claim 89, further comprising: means for coating the first tubular member with a lubricant.
  • 91. The apparatus of claim 89, further comprising: means for injecting a lubricating fluid into the trailing edge of the interface between the first tubular member and the tubular expansion cone.
  • 92. The apparatus of claim 89, further comprising: means for coating the first tubular member with a first component of a lubricant; and means for circulating a second component of the lubricant into contact with the coating on the first tubular member.
  • 93. The apparatus of claim 87, further comprising: means for sealing off a portion of the first tubular member.
  • 94. An apparatus for repairing a tubular member, comprising: a support member; an expandable tubular member removably coupled to the support member;an expansion cone movably coupled to the support member; anda pump coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member;wherein the expandable tubular member comprises:a first end having a first outer diameter;an intermediate portion coupled to the first end having an intermediate outer diameter; anda second end having a second outer diameter coupled to the intermediate portion having a second outer diameter;wherein the first and second outer diameters are greater than the intermediate outer diameter;wherein the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and wherein the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the tubular member that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone is given by the following expression:
  • 95. An apparatus for radially expanding and plastically deforming a tubular member into engagement with a preexisting tubular member, comprising: a support member; an expandable tubular member operably coupled to the support member; andan expansion device coupled to the support member;wherein the expandable tubular member comprises:a first end having a first outer diameter;an intermediate portion coupled to the first end having an intermediate outer diameter; anda second end having a second outer diameter coupled to the intermediate portion having a second outer diameter;wherein the first and second outer diameters are greater than the intermediate outer diameter;wherein the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and wherein the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the preexisting tubular member that the expandable tubular member will be inserted into, and the outside diameter DEXPANSION DEVICE of the expansion device is given by the following expression:
  • 96. A method of repairing a tubular member, comprising: positioning an expandable tubular member, an expansion device, and a pump within the tubular member; andpressurizing and interior portion of the expandable tubular member using the pump; anddisplacing the expansion device relative to the expandable tubular member to radially expand and plastically deform the expandable tubular member into engagement with the tubular member;wherein the expandable tubular member comprises:a first end having a first outer diameter;an intermediate portion coupled to the first end having an intermediate outer diameter; anda second end having a second outer diameter coupled to the intermediate portion having a second outer diameter;wherein the first and second outer diameters are greater than the intermediate outer diameter;wherein the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and wherein the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the tubular member that the expandable tubular member will be inserted into, and the outside diameter DEXPANSION DEVICE of the expansion device is given by the following expression:
  • 97. An apparatus for repairing a tubular member using an expandable tubular member, comprising: a support member;an expandable tubular member removably coupled to the support member;an expansion device movably coupled to the support member and positioned within the expandable tubular member; anda pump coupled to the support member positioned proximate the expansion device adapted to pressurize a portion of the interior of the expandable tubular member.
  • 98. An apparatus for coupling an expandable tubular member to a preexisting tubular member, comprising: means for positioning an expandable tubular member, and an expansion device within the preexisting tubular member;means for positioning the expandable tubular member in opposition to the preexisting tubular member;means for pressurizing an interior portion of the expandable tubular member; andmeans for radially expanding the expandable tubular member into engagement with the preexisting tubular member using the expansion device;wherein during the radial expansion of the expandable tubular member, the interior portion of the preexisting tubular member is not pressurized.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to the following co-pending U.S. patent applications: Provisional patentapplicationAttorneySer. No.Docket No.Filing Date60/108,55825791.9Nov. 16, 199860/111,29325791.3Dec. 7, 199860/119,61125791.8Feb. 11, 199960/121,70225791.7Feb. 25, 199960/121,84125791.12Feb. 26, 199960/121,90725791.16Feb. 26, 199960/124,04225791.11Mar. 11, 199960/131,10625791.23Apr. 26, 199960/137,99825791.17Jun. 7, 199960/143,03925791.26Jul. 9, 199960/146,20325791.25Jul. 29, 199960/154,04725791.29Sep. 16, 199960/159,08225791.34Oct. 12, 199960/159,03925791.36Oct. 12, 199960/159,03325791.37Oct. 12, 1999 Applicants incorporate by reference the disclosures of these applications. This application is a National Phase of the International Application No. PCT/US00/30022 based on U.S. Provisional application Ser. No. 60/162,671, filed on Nov. 1, 1999.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US00/30022 10/31/2000 WO 00 9/25/2002
Publishing Document Publishing Date Country Kind
WO01/33037 5/10/2001 WO A
US Referenced Citations (610)
Number Name Date Kind
46818 Patterson Mar 1865 A
331940 Bole Dec 1885 A
332184 Bole Dec 1885 A
341237 Healey May 1886 A
519805 Bavier May 1894 A
802880 Philips Oct 1905 A
806156 Marshall Dec 1905 A
958517 Mettler May 1910 A
984449 Stewart Feb 1911 A
1166040 Burlingham Dec 1915 A
1233888 Leonard Jul 1917 A
1494128 Primrose May 1924 A
1589781 Anderson Jun 1926 A
1590357 Feisthamel Jun 1926 A
1597212 Spengler Aug 1926 A
1613461 Johnson Jan 1927 A
1880218 Simmons Oct 1932 A
1981525 Price Nov 1934 A
2046870 Clasen et al. Jul 1936 A
2087185 Dillom Jul 1937 A
2122757 Scott Jul 1938 A
2145165 Flagg Jan 1939 A
2160263 Fletcher May 1939 A
2187275 McLennan Jan 1940 A
2204586 Grau Jun 1940 A
2214226 English Sep 1940 A
2226804 Carroll Dec 1940 A
2273017 Boynton Feb 1942 A
2301495 Abegg Nov 1942 A
2371840 Otis Mar 1945 A
2447629 Beissinger et al. Aug 1948 A
2500276 Church Mar 1950 A
2546295 Boice Mar 1951 A
2583316 Bannister Jan 1952 A
2647847 Black, et al. Aug 1953 A
2734580 Layne Feb 1956 A
2796134 Binkley Jun 1957 A
2812025 Teague et al. Nov 1957 A
2907589 Knox Oct 1959 A
2929741 Strock, et al. Jan 1960 A
3015362 Moosman Jan 1962 A
3015500 Barnett Jan 1962 A
3018547 Marskell Jan 1962 A
3039530 Condra Jun 1962 A
3067819 Gore Dec 1962 A
3068563 Reverman Dec 1962 A
3104703 Rike et al. Sep 1963 A
3111991 O'Neal Nov 1963 A
3167122 Lang Jan 1965 A
3175618 Lang Mar 1965 A
3179168 Vincent Apr 1965 A
3188816 Koch Jun 1965 A
3191677 Kinley Jun 1965 A
3191680 Vincent Jun 1965 A
3203451 Vincent Aug 1965 A
3203483 Vincent Aug 1965 A
3209546 Lawton Oct 1965 A
3210102 Joslin Oct 1965 A
3233315 Levake Feb 1966 A
3245471 Howard Apr 1966 A
3270817 Papaila Sep 1966 A
3297092 Jennings Jan 1967 A
3326293 Skipper Jun 1967 A
3343252 Reesor Sep 1967 A
3353599 Swift Nov 1967 A
3354955 Berry Nov 1967 A
3358760 Blagg Dec 1967 A
3358769 Berry Dec 1967 A
3364993 Skipper Jan 1968 A
3371717 Chenoweth Mar 1968 A
3412565 Lindsey et. al. Nov 1968 A
3419080 Lebourg Dec 1968 A
3424244 Kinley Jan 1969 A
3427707 Nowosadko Feb 1969 A
3477506 Malone Nov 1969 A
3489220 Kinley Jan 1970 A
3498376 Sizer et al. Mar 1970 A
3504515 Reardon Apr 1970 A
3520049 Lysenko, et al. Jul 1970 A
3528498 Carothers Sep 1970 A
3568773 Chancellor Mar 1971 A
3578081 Bodine May 1971 A
3579805 Kast May 1971 A
3605887 Lambie Sep 1971 A
3631926 Young Jan 1972 A
3665591 Kowal May 1972 A
3667547 Ahlstone Jun 1972 A
3669190 Sizer et al. Jun 1972 A
3682256 Stuart Aug 1972 A
3687196 Mullins Aug 1972 A
3691624 Kinley Sep 1972 A
3693717 Wuenschel Sep 1972 A
3704730 Witzig Dec 1972 A
3709306 Curington Jan 1973 A
3711123 Arnold Jan 1973 A
3712376 Owen et al. Jan 1973 A
3746068 Deckert et al. Jul 1973 A
3746091 Owen et al. Jul 1973 A
3746092 Land Jul 1973 A
3764168 Kisling, III et al. Oct 1973 A
3776307 Young Dec 1973 A
3779025 Godley, et al. Dec 1973 A
3780562 Kinley Dec 1973 A
3781966 Lieberman Jan 1974 A
3785193 Kinley et al. Jan 1974 A
3797259 Kammerer, Jr. Mar 1974 A
3812912 Wuenschel May 1974 A
3818734 Bateman Jun 1974 A
3834742 McPhillips Sep 1974 A
3866954 Slator et al. Feb 1975 A
3885298 Pogonowski May 1975 A
3887006 Pitts Jun 1975 A
3893718 Powell Jul 1975 A
3898163 Mott Aug 1975 A
3915478 Al et al. Oct 1975 A
3935910 Gaudy et al. Feb 1976 A
3942824 Sable Mar 1976 A
3945444 Knudson Mar 1976 A
3948321 Owen et al. Apr 1976 A
3970336 O'Sickey et al. Jul 1976 A
3977473 Page, Jr. Aug 1976 A
3989280 Schwarz Nov 1976 A
3997193 Tsuda et al. Dec 1976 A
4011652 Black Mar 1977 A
4019579 Thuse Apr 1977 A
4026583 Gottlieb May 1977 A
4053247 Marsh Oct 1977 A
4069573 Rogers, Jr. et al. Jan 1978 A
4076287 Bill et al. Feb 1978 A
4096913 Kenneday et al. Jun 1978 A
4098334 Crowe Jul 1978 A
4125937 Brown et al. Nov 1978 A
4152821 Scott May 1979 A
4168747 Youmans Sep 1979 A
4190108 Webber Feb 1980 A
4205422 Hardwick Jun 1980 A
4253687 Maples Mar 1981 A
4274665 Marsh, Jr. Jun 1981 A
RE30802 Rogers, Jr. Nov 1981 E
4304428 Grigorian et al. Dec 1981 A
4328983 Gibson May 1982 A
4359889 Kelly Nov 1982 A
4363358 Ellis Dec 1982 A
4366971 Lula Jan 1983 A
4368571 Cooper, Jr. Jan 1983 A
4379471 Kuenzel Apr 1983 A
4380347 Sable Apr 1983 A
4384625 Roper et al. May 1983 A
4388752 Vinciguerra et al. Jun 1983 A
4391325 Baker et al. Jul 1983 A
4393931 Muse et al. Jul 1983 A
4396061 Tamplen et al. Aug 1983 A
4402372 Cherrington Sep 1983 A
4407681 Ina et al. Oct 1983 A
4411435 McStravick Oct 1983 A
4413395 Garnier Nov 1983 A
4413682 Callihan et al. Nov 1983 A
4420866 Mueller Dec 1983 A
4421169 Dearth et al. Dec 1983 A
4422317 Mueller Dec 1983 A
4422507 Reimert Dec 1983 A
4423889 Weise Jan 1984 A
4423986 Skogberg Jan 1984 A
4429741 Hyland Feb 1984 A
4440233 Baugh et al. Apr 1984 A
4444250 Keithahn et al. Apr 1984 A
4462471 Hipp Jul 1984 A
4467630 Kelly Aug 1984 A
4468309 White Aug 1984 A
4469356 Duret et al. Sep 1984 A
4473245 Raulins et al. Sep 1984 A
4483399 Colgate Nov 1984 A
4485847 Wentzell Dec 1984 A
4491001 Yoshida Jan 1985 A
4501327 Retz Feb 1985 A
4505017 Schukei Mar 1985 A
4505987 Yamada et al. Mar 1985 A
4507019 Thompson Mar 1985 A
4508129 Brown Apr 1985 A
4511289 Herron Apr 1985 A
4519456 Cochran May 1985 A
4526232 Hughson et al. Jul 1985 A
4526839 Herman et al. Jul 1985 A
4541655 Hunter Sep 1985 A
4550782 Lawson Nov 1985 A
4553776 Dodd Nov 1985 A
4573248 Hackett Mar 1986 A
4576386 Benson et al. Mar 1986 A
4581817 Kelly Apr 1986 A
4590227 Nakamura et al. May 1986 A
4590995 Evans May 1986 A
4592577 Ayres et al. Jun 1986 A
4595063 Jennings et al. Jun 1986 A
4601343 Lindsey, et al. Jul 1986 A
4605063 Ross Aug 1986 A
4611662 Harrington Sep 1986 A
4614233 Menard Sep 1986 A
4629218 Dubois Dec 1986 A
4630849 Fukui et al. Dec 1986 A
4632944 Thompson Dec 1986 A
4634317 Skogberg et al. Jan 1987 A
4635333 Finch Jan 1987 A
4637436 Stewart, Jr. et al. Jan 1987 A
4646787 Rush et al. Mar 1987 A
4649492 Sinha et al. Mar 1987 A
4651836 Richards Mar 1987 A
4656779 Fedeli Apr 1987 A
4660863 Bailey et al. Apr 1987 A
4662446 Brisco et al. May 1987 A
4669541 Bissonnette Jun 1987 A
4674572 Gallus Jun 1987 A
4682797 Hildner Jul 1987 A
4685191 Mueller et al. Aug 1987 A
4685834 Jordan Aug 1987 A
4693498 Baugh et al. Sep 1987 A
4711474 Patrick Dec 1987 A
4714117 Dech Dec 1987 A
4730851 Watts Mar 1988 A
4735444 Skipper Apr 1988 A
4739654 Pilkington et al. Apr 1988 A
4739916 Ayres et al. Apr 1988 A
4758025 Frick Jul 1988 A
4776394 Lynde et al. Oct 1988 A
4778088 Miller Oct 1988 A
4793382 Szalvay Dec 1988 A
4796668 Depret Jan 1989 A
4817710 Edwards et al. Apr 1989 A
4817712 Bodine Apr 1989 A
4817716 Taylor et al. Apr 1989 A
4826347 Baril et al. May 1989 A
4827594 Cartry et al. May 1989 A
4828033 Frison May 1989 A
4830109 Wedel May 1989 A
4832382 Kapgan May 1989 A
4836579 Wester et al. Jun 1989 A
4842082 Springer Jun 1989 A
4848459 Blackwell, et al. Jul 1989 A
4856592 Van Bilderbeek et al. Aug 1989 A
4865127 Koster Sep 1989 A
4871199 Ridenour, et al. Oct 1989 A
4872253 Carstensen Oct 1989 A
4887646 Groves Dec 1989 A
4892337 Gunderson Jan 1990 A
4893658 Kimura et al. Jan 1990 A
4904136 Matsumoto Feb 1990 A
4907828 Change Mar 1990 A
4911237 Melenyzer Mar 1990 A
4913758 Koster Apr 1990 A
4915177 Claycomb Apr 1990 A
4915426 Skipper Apr 1990 A
4934312 Koster et al. Jun 1990 A
4938291 Lynde et al. Jul 1990 A
4941512 McParland Jul 1990 A
4941532 Hurt et al. Jul 1990 A
4942925 Themig Jul 1990 A
4942926 Lessi Jul 1990 A
4958691 Hipp Sep 1990 A
4968184 Reid Nov 1990 A
4971152 Koster et al. Nov 1990 A
4976322 Abdrakhmanov et al. Dec 1990 A
4981250 Persson Jan 1991 A
4995464 Watkins et al. Feb 1991 A
5014779 Meling et al. May 1991 A
5015017 Geary May 1991 A
5026074 Hoes et al. Jun 1991 A
5031699 Artynov et al. Jul 1991 A
5040283 Pelgrom Aug 1991 A
5044676 Burton et al. Sep 1991 A
5052483 Hudson Oct 1991 A
5059043 Kuhne Oct 1991 A
5064004 Lundell Nov 1991 A
5079837 Vanselow Jan 1992 A
5083608 Abdrakhmanov et al. Jan 1992 A
5093015 Oldiges Mar 1992 A
5095991 Milberger Mar 1992 A
5107221 N'Guyen et al. Apr 1992 A
5119661 Abdrakhmanov et al. Jun 1992 A
5134891 Canevet Aug 1992 A
5150755 Cassel et al. Sep 1992 A
5156043 Ose Oct 1992 A
5156213 George et al. Oct 1992 A
5156223 Hipp Oct 1992 A
5174376 Singeetham Dec 1992 A
5181571 Mueller et al. Jan 1993 A
5197553 Leturno Mar 1993 A
5209600 Koster May 1993 A
5226492 Solaeche P. et al. Jul 1993 A
5242017 Hailey Sep 1993 A
5275242 Payne Jan 1994 A
5282508 Ellingsen et al. Feb 1994 A
5286393 Oldiges et al. Feb 1994 A
5309621 ODonnell, et al. May 1994 A
5314014 Tucker May 1994 A
5314209 Kuhne May 1994 A
5318122 Murray et al. Jun 1994 A
5318131 Baker Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5326137 Lorenz et al. Jul 1994 A
5330850 Suzuki et al. Jul 1994 A
5332038 Tapp et al. Jul 1994 A
5332049 Tew Jul 1994 A
5333692 Baugh et al. Aug 1994 A
5335736 Windsor Aug 1994 A
5337808 Graham Aug 1994 A
5337823 Nobileau Aug 1994 A
5337827 Hromas et al. Aug 1994 A
5339894 Stotler Aug 1994 A
5343949 Ross et al. Sep 1994 A
5346007 Dillon et al. Sep 1994 A
5348087 Williamson, Jr. Sep 1994 A
5348093 Wood et al. Sep 1994 A
5348095 Worrall et al. Sep 1994 A
5348668 Oldiges et al. Sep 1994 A
5351752 Wood et al. Oct 1994 A
5360239 Klementich Nov 1994 A
5360292 Allen et al. Nov 1994 A
5361843 Shy et al. Nov 1994 A
5366010 Zwart Nov 1994 A
5366012 Lohbeck Nov 1994 A
5368075 Bäro et al. Nov 1994 A
5370425 Dougherty et al. Dec 1994 A
5375661 Daneshy et al. Dec 1994 A
5388648 Jordan, Jr. Feb 1995 A
5390735 Williamson, Jr. Feb 1995 A
5390742 Dines et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5400827 Baro et al. Mar 1995 A
5405171 Allen et al. Apr 1995 A
5413180 Ross et al. May 1995 A
5425559 Nobileau Jun 1995 A
5426130 Thurber et al. Jun 1995 A
5431831 Vincent Jul 1995 A
5435395 Connell Jul 1995 A
5439320 Abrams Aug 1995 A
5447201 Mohn Sep 1995 A
5454419 Vloedman Oct 1995 A
5456319 Schmidt et al. Oct 1995 A
5458194 Brooks Oct 1995 A
5462120 Gondouin Oct 1995 A
5467822 Zwart Nov 1995 A
5472055 Simson et al. Dec 1995 A
5474334 Eppink Dec 1995 A
5492173 Kilgore et al. Feb 1996 A
5494106 Gueguen et al. Feb 1996 A
5507343 Carlton et al. Apr 1996 A
5511620 Baugh et al. Apr 1996 A
5524937 Sides et al. Jun 1996 A
5535824 Hudson Jul 1996 A
5536422 Oldiges et al. Jul 1996 A
5540281 Round Jul 1996 A
5554244 Ruggles et al. Sep 1996 A
5566772 Coone et al. Oct 1996 A
5576485 Serata Nov 1996 A
5584512 Carstensen Dec 1996 A
5606792 Schafer Mar 1997 A
5611399 Richard et al. Mar 1997 A
5613557 Blount et al. Mar 1997 A
5617918 Cooksey et al. Apr 1997 A
5662180 Coffman et al. Sep 1997 A
5664327 Swars Sep 1997 A
5667011 Gill et al. Sep 1997 A
5667252 Schafer et al. Sep 1997 A
5678609 Washburn Oct 1997 A
5685369 Ellis et al. Nov 1997 A
5689871 Carstensen Nov 1997 A
5695008 Bertet et al. Dec 1997 A
5695009 Hipp Dec 1997 A
5697449 Hennig et al. Dec 1997 A
5718288 Bertet et al. Feb 1998 A
5743335 Bussear Apr 1998 A
5749419 Coronado et al. May 1998 A
5749585 Lembcke May 1998 A
5775422 Wong et al. Jul 1998 A
5785120 Smalley et al. Jul 1998 A
5787933 Russ et al. Aug 1998 A
5791419 Valisalo Aug 1998 A
5794702 Nobileau Aug 1998 A
5797454 Hipp Aug 1998 A
5829520 Johnson Nov 1998 A
5829524 Flanders et al. Nov 1998 A
5833001 Song et al. Nov 1998 A
5845945 Carstensen Dec 1998 A
5849188 Voll et al. Dec 1998 A
5857524 Harris Jan 1999 A
5862866 Springer Jan 1999 A
5875851 Vick, Jr. et al. Mar 1999 A
5885941 Sateva et al. Mar 1999 A
5895079 Carstensen et al. Apr 1999 A
5901789 Donnelly et al. May 1999 A
5918677 Head Jul 1999 A
5924745 Campbell Jul 1999 A
5931511 DeLange et al. Aug 1999 A
5944100 Hipp Aug 1999 A
5944107 Ohmer Aug 1999 A
5944108 Baugh et al. Aug 1999 A
5951207 Chen Sep 1999 A
5957195 Bailey et al. Sep 1999 A
5971443 Noel et al. Oct 1999 A
5975587 Wood et al. Nov 1999 A
5979560 Nobileau Nov 1999 A
5984369 Crook et al. Nov 1999 A
5984568 Lohbeck Nov 1999 A
6012521 Zunkel et al. Jan 2000 A
6012522 Donnelly et al. Jan 2000 A
6012523 Campbell et al. Jan 2000 A
6012874 Groneck et al. Jan 2000 A
6015012 Reddick Jan 2000 A
6017168 Fraser et al. Jan 2000 A
6021850 Wood et al. Feb 2000 A
6029748 Forsyth et al. Feb 2000 A
6035954 Hipp Mar 2000 A
6044906 Saltel Apr 2000 A
6047505 Willow Apr 2000 A
6047774 Allen Apr 2000 A
6050341 Metcalf Apr 2000 A
6050346 Hipp Apr 2000 A
6056059 Ohmer May 2000 A
6056324 Reimert et al. May 2000 A
6062324 Hipp May 2000 A
6065500 Metcalfe May 2000 A
6070671 Cumming et al. Jun 2000 A
6073692 Wood et al. Jun 2000 A
6074133 Kelsey Jun 2000 A
6078031 Bliault et al. Jun 2000 A
6079495 Ohmer Jun 2000 A
6085838 Vercaemer et al. Jul 2000 A
6089320 LaGrange Jul 2000 A
6098717 Bailey et al. Aug 2000 A
6102119 Raines Aug 2000 A
6109355 Reid Aug 2000 A
6112818 Campbell Sep 2000 A
6131265 Bird Oct 2000 A
6135208 Gano et al. Oct 2000 A
6138761 Freeman et al. Oct 2000 A
6142230 Smalley et al. Nov 2000 A
6158963 Hollis Dec 2000 A
6167970 Stout Jan 2001 B1
6182775 Hipp Feb 2001 B1
6196336 Fincher et al. Mar 2001 B1
6226855 Maine May 2001 B1
6231086 Tierling May 2001 B1
6250385 Montaron Jun 2001 B1
6263966 Haut et al. Jul 2001 B1
6263968 Freeman et al. Jul 2001 B1
6263972 Richard et al. Jul 2001 B1
6267181 Rhein Knudson et al. Jul 2001 B1
6275556 Kinney et al. Aug 2001 B1
6283211 Vloedman Sep 2001 B1
6315043 Farrant et al. Nov 2001 B1
6318457 Den Boer et al. Nov 2001 B1
6318465 Coon et al. Nov 2001 B1
6322109 Campbell et al. Nov 2001 B1
6325148 Trahan et al. Dec 2001 B1
6328113 Cook Dec 2001 B1
6343495 Cheppe et al. Feb 2002 B1
6343657 Baugh et al. Feb 2002 B1
6345431 Greig Feb 2002 B1
6352112 Mills Mar 2002 B1
6354373 Vercaemer et al. Mar 2002 B1
6390720 LeBegue et al. May 2002 B1
6405761 Shimizu et al. Jun 2002 B1
6406063 Pfeiffer Jun 2002 B1
6409175 Evans et al. Jun 2002 B1
6419026 MacKenzie et al. Jul 2002 B1
6419033 Hahn et al. Jul 2002 B1
6419147 Daniel Jul 2002 B1
6425444 Metcalfe et al. Jul 2002 B1
6431277 Cox et al. Aug 2002 B1
6446724 Baugh et al. Sep 2002 B1
6450261 Baugh Sep 2002 B1
6454013 Metcalfe Sep 2002 B1
6457532 Simpson Oct 2002 B1
6457533 Metcalfe Oct 2002 B1
6457749 Heijnen Oct 2002 B1
6460615 Heijnen Oct 2002 B1
6464008 Roddy et al. Oct 2002 B1
6464014 Bernat Oct 2002 B1
6470966 Cook et al. Oct 2002 B1
6470996 Kyle et al. Oct 2002 B1
6478092 Voll et al. Nov 2002 B1
6491108 Slup et al. Dec 2002 B1
6497289 Cook et al. Dec 2002 B1
6516887 Nguyen et al. Feb 2003 B1
6517126 Peterson et al. Feb 2003 B1
6527049 Metcalfe et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6543552 Metcalfe et al. Apr 2003 B1
6550539 Maguire et al. Apr 2003 B1
6550821 DeLange et al. Apr 2003 B1
6557640 Cook et al. May 2003 B1
6561227 Cook et al. May 2003 B1
6561279 MacKenzie et al. May 2003 B1
6564875 Bullock May 2003 B1
6568471 Cook et al. May 2003 B1
6568488 Wentworth et al. May 2003 B1
6575240 Cook et al. Jun 2003 B1
6578630 Simpson et al. Jun 2003 B1
6585053 Coon Jul 2003 B1
6591905 Coon Jul 2003 B1
6598677 Baugh et al. Jul 2003 B1
6598678 Simpson Jul 2003 B1
6604763 Cook et al. Aug 2003 B1
6607220 Sivley Aug 2003 B1
6619696 Baugh et al. Sep 2003 B1
6629567 Lauritzen et al. Oct 2003 B1
6631759 Cook et al. Oct 2003 B1
6631760 Cook et al. Oct 2003 B1
6631765 Baugh et al. Oct 2003 B1
6631769 Cook et al. Oct 2003 B1
6634431 Cook et al. Oct 2003 B1
6640895 Murray Nov 2003 B1
6640903 Cook et al. Nov 2003 B1
6648075 Badrak et al. Nov 2003 B1
6668937 Murray Dec 2003 B1
6672759 Feger Jan 2004 B1
6679328 Davis et al. Jan 2004 B1
6681862 Freeman Jan 2004 B1
6684947 Cook et al. Feb 2004 B1
6688397 McClurkin et al. Feb 2004 B1
6695012 Ring et al. Feb 2004 B1
6695065 Simpson et al. Feb 2004 B1
6698517 Simpson Mar 2004 B1
6705395 Cook et al. Mar 2004 B1
6712154 Cook et al. Mar 2004 B1
6719064 Price-Smith et al. Apr 2004 B1
6722427 Gano et al. Apr 2004 B1
6722437 Vercaemer et al. Apr 2004 B1
6725919 Cook et al. Apr 2004 B1
6725934 Coronado et al. Apr 2004 B1
6725939 Richard Apr 2004 B1
6732806 Mauldin et al. May 2004 B1
6739392 Cook et al. May 2004 B1
6745845 Cook et al. Jun 2004 B1
6758278 Cook et al. Jul 2004 B1
6796380 Xu Sep 2004 B1
6814147 Baugh Nov 2004 B1
6820690 Vercaemer et al. Nov 2004 B1
6823937 Cook et al. Nov 2004 B1
6832649 Bode et al. Dec 2004 B1
6834725 Whanger et al. Dec 2004 B1
6857473 Cook et al. Feb 2005 B1
20010002626 Frank et al. Jun 2001 A1
20010020532 Baugh et al. Sep 2001 A1
20010045284 Simpson et al. Nov 2001 A1
20010047870 Cook et al. Dec 2001 A1
20020011339 Murray Jan 2002 A1
20020020524 Gano Feb 2002 A1
20020020531 Ohmer Feb 2002 A1
20020033261 Metcalfe Mar 2002 A1
20020062956 Murray et al. May 2002 A1
20020066576 Cook et al. Jun 2002 A1
20020066578 Broome Jun 2002 A1
20020070023 Turner et al. Jun 2002 A1
20020070031 Voll et al. Jun 2002 A1
20020079101 Baugh et al. Jun 2002 A1
20020084070 Voll et al. Jul 2002 A1
20020092654 Coronado et al. Jul 2002 A1
20020108756 Harrall et al. Aug 2002 A1
20020139540 Lauritzen Oct 2002 A1
20020144822 Hackworth et al. Oct 2002 A1
20020148612 Cook et al. Oct 2002 A1
20020185274 Simpson et al. Dec 2002 A1
20020189816 Cook et al. Dec 2002 A1
20020195252 Maguire et al. Dec 2002 A1
20020195256 Metcalfe et al. Dec 2002 A1
20030024708 Ring et al. Feb 2003 A1
20030024711 Simpson et al. Feb 2003 A1
20030034177 Chitwood et al. Feb 2003 A1
20030047323 Jackson et al. Mar 2003 A1
20030056991 Hahn et al. Mar 2003 A1
20030066655 Cook et al. Apr 2003 A1
20030067166 Maguire Apr 2003 A1
20030075338 Sivley Apr 2003 A1
20030094277 Cook et al. May 2003 A1
20030094278 Cook et al. May 2003 A1
20030094279 Ring et al. May 2003 A1
20030098154 Cook et al. May 2003 A1
20030098162 Cook May 2003 A1
20030107217 Daigle et al. Jun 2003 A1
20030116325 Cook et al. Jun 2003 A1
20030121550 Cook et al. Jul 2003 A1
20030121669 Cook et al. Jul 2003 A1
20030173090 Cook et al. Sep 2003 A1
20030192705 Cook et al. Oct 2003 A1
20030222455 Cook et al. Dec 2003 A1
20040011534 Simonds et al. Jan 2004 A1
20040045616 Cook et al. Mar 2004 A1
20040045718 Brisco et al. Mar 2004 A1
20040060706 Stephenson Apr 2004 A1
20040065466 Tran et al. Apr 2004 A1
20040069499 Cook et al. Apr 2004 A1
20040112589 Cook et al. Jun 2004 A1
20040112606 Lewis et al. Jun 2004 A1
20040118574 Cook et al. Jun 2004 A1
20040123983 Cook et al. Jul 2004 A1
20040123988 Cook et al. Jul 2004 A1
20040188099 Cook et al. Sep 2004 A1
20040216873 Frost et al. Nov 2004 A1
20040231855 Cook et al. Nov 2004 A1
20040238181 Cook et al. Dec 2004 A1
20040244968 Cook et al. Dec 2004 A1
20050028988 Cook et al. Feb 2005 A1
20050039928 Cook et al. Feb 2005 A1
20050045324 Cook et al. Mar 2005 A1
20050045341 Cook et al. Mar 2005 A1
20050056433 Watson et al. Mar 2005 A1
20050056434 Ring et al. Mar 2005 A1
20050077051 Cook et al. Apr 2005 A1
20050081358 Cook et al. Apr 2005 A1
20050087337 Brisco et al. Apr 2005 A1
Foreign Referenced Citations (461)
Number Date Country
767364 Feb 2004 AU
770008 Jul 2004 AU
770359 Jul 2004 AU
771884 Aug 2004 AU
736288 Jun 1966 CA
771462 Nov 1967 CA
1171310 Jul 1984 CA
174521 Apr 1953 DE
2458188 Jun 1975 DE
203767 Nov 1983 DE
233607 Mar 1986 DE
278517 May 1990 DE
0084940 Aug 1983 EP
0272511 Dec 1987 EP
0294264 May 1988 EP
0 553566 Dec 1992 EP
0633391 Jan 1995 EP
0713953 Nov 1995 EP
0823534 Feb 1998 EP
0881354 Dec 1998 EP
0881359 Dec 1998 EP
0899420 Mar 1999 EP
0937861 Aug 1999 EP
0952305 Oct 1999 EP
0952306 Oct 1999 EP
1152120 Nov 2001 EP
1152120 Nov 2001 EP
1325596 Apr 1963 FR
2717855 Sep 1995 FR
2741907 Jun 1997 FR
2771133 May 1999 FR
2780751 Jan 2000 FR
2841626 Jan 2004 FR
851096 Oct 1960 GB
961750 Jun 1964 GB
1000383 Oct 1965 GB
1062610 Mar 1967 GB
1111536 May 1968 GB
557823 Dec 1973 GB
1448304 Sep 1976 GB
1460864 Jan 1977 GB
1542847 Mar 1979 GB
1563740 Mar 1980 GB
2058877 Apr 1981 GB
2108228 May 1983 GB
2115860 Sep 1983 GB
2125876 Mar 1984 GB
2211537 Jul 1989 GB
2216926 Oct 1989 GB
2243191 Oct 1991 GB
2256910 Dec 1992 GB
2257184 Jun 1993 GB
2305682 Apr 1997 GB
2325949 May 1998 GB
2322655 Sep 1998 GB
2326896 Jan 1999 GB
2329916 Apr 1999 GB
2329918 Apr 1999 GB
2336383 Oct 1999 GB
2355738 Apr 2000 GB
2343691 May 2000 GB
2344606 Jun 2000 GB
2368865 Jul 2000 GB
2346165 Aug 2000 GB
2346632 Aug 2000 GB
2347445 Sep 2000 GB
2347446 Sep 2000 GB
2347950 Sep 2000 GB
2347952 Sep 2000 GB
2348223 Sep 2000 GB
2348657 Oct 2000 GB
2357099 Dec 2000 GB
2356651 May 2001 GB
2350137 Aug 2001 GB
2361724 Oct 2001 GB
2359837 Apr 2002 GB
2370301 Jun 2002 GB
2371064 Jul 2002 GB
2371574 Jul 2002 GB
2373524 Sep 2002 GB
2367842 Oct 2002 GB
2374622 Oct 2002 GB
2375560 Nov 2002 GB
2380213 Apr 2003 GB
2380503 Apr 2003 GB
2381019 Apr 2003 GB
2343691 May 2003 GB
2344606 Aug 2003 GB
2380213 Aug 2003 GB
2380214 Aug 2003 GB
2380215 Aug 2003 GB
2348223 Sep 2003 GB
2347952 Oct 2003 GB
2348657 Oct 2003 GB
2384800 Oct 2003 GB
2384801 Oct 2003 GB
2384802 Oct 2003 GB
2384803 Oct 2003 GB
2384804 Oct 2003 GB
2384805 Oct 2003 GB
2384806 Oct 2003 GB
2384807 Oct 2003 GB
2384808 Oct 2003 GB
2385353 Oct 2003 GB
2385354 Oct 2003 GB
2385355 Oct 2003 GB
2385356 Oct 2003 GB
2385357 Oct 2003 GB
2385358 Oct 2003 GB
2385359 Oct 2003 GB
2385360 Oct 2003 GB
2385361 Oct 2003 GB
2385362 Oct 2003 GB
2385363 Oct 2003 GB
2385619 Oct 2003 GB
2385620 Oct 2003 GB
2385621 Oct 2003 GB
2385622 Oct 2003 GB
2385623 Oct 2003 GB
2387405 Oct 2003 GB
2388134 Nov 2003 GB
2388860 Nov 2003 GB
2355738 Dec 2003 GB
2388391 Dec 2003 GB
2388392 Dec 2003 GB
2388393 Dec 2003 GB
2388394 Dec 2003 GB
2388395 Dec 2003 GB
2356651 Feb 2004 GB
2368865 Feb 2004 GB
2388860 Feb 2004 GB
2388861 Feb 2004 GB
2388862 Feb 2004 GB
2390628 Mar 2004 GB
2391033 Mar 2004 GB
2392686 Mar 2004 GB
2373524 Apr 2004 GB
2390387 Apr 2004 GB
2392686 Apr 2004 GB
2392691 Apr 2004 GB
2391575 May 2004 GB
2392932 Jun 2004 GB
2396635 Jun 2004 GB
2396640 Jun 2004 GB
2396641 Jun 2004 GB
2396642 Jun 2004 GB
2396643 Jun 2004 GB
2396644 Jun 2004 GB
2373468 Jul 2004 GB
2397261 Jul 2004 GB
2397262 Jul 2004 GB
2397263 Jul 2004 GB
2397264 Jul 2004 GB
2397265 Jul 2004 GB
2398317 Aug 2004 GB
2398318 Aug 2004 GB
2398319 Aug 2004 GB
2398320 Aug 2004 GB
2398321 Aug 2004 GB
2398322 Aug 2004 GB
2398323 Aug 2004 GB
2382367 Sep 2004 GB
2396643 Sep 2004 GB
2397261 Sep 2004 GB
2397262 Sep 2004 GB
2397263 Sep 2004 GB
2397264 Sep 2004 GB
2397265 Sep 2004 GB
2399120 Sep 2004 GB
2399579 Sep 2004 GB
2399580 Sep 2004 GB
2399848 Sep 2004 GB
2399849 Sep 2004 GB
2399850 Sep 2004 GB
2384502 Oct 2004 GB
2396644 Oct 2004 GB
2400624 Oct 2004 GB
2396640 Nov 2004 GB
2396642 Nov 2004 GB
2401136 Nov 2004 GB
2401137 Nov 2004 GB
2401138 Nov 2004 GB
2401630 Nov 2004 GB
2401631 Nov 2004 GB
2401632 Nov 2004 GB
2401633 Nov 2004 GB
2401634 Nov 2004 GB
2401635 Nov 2004 GB
2401636 Nov 2004 GB
2401637 Nov 2004 GB
2401638 Nov 2004 GB
2401136 Dec 2004 GB
2401137 Dec 2004 GB
2401138 Dec 2004 GB
2400624 Feb 2005 GB
2404676 Feb 2005 GB
2384807 Mar 2005 GB
2388134 Mar 2005 GB
2398320 Mar 2005 GB
2398323 Mar 2005 GB
2399848 Mar 2005 GB
2399849 Mar 2005 GB
2405893 Mar 2005 GB
2406117 Mar 2005 GB
2406118 Mar 2005 GB
2406119 Mar 2005 GB
2406120 Mar 2005 GB
2406125 Mar 2005 GB
2406126 Mar 2005 GB
208458 Oct 1985 JP
6475715 Mar 1989 JP
102875 Apr 1995 JP
11-169975 Jun 1999 JP
94068 Apr 2000 JP
107870 Apr 2000 JP
162192 Jun 2000 JP
2001-47161 Feb 2001 JP
9001081 Dec 1991 NL
113267 May 1998 RO
1786241 Jan 1993 RU
1804543 Mar 1993 RU
1810482 Apr 1993 RU
1818459 May 1993 RU
2016345 Jul 1994 RU
2039214 Jul 1995 RU
2056201 Mar 1996 RU
2064357 Jul 1996 RU
2068940 Nov 1996 RU
2068943 Nov 1996 RU
2079633 May 1997 RU
2083798 Jul 1997 RU
2091655 Sep 1997 RU
2095179 Nov 1997 RU
2105128 Feb 1998 RU
2108445 Apr 1998 RU
2144128 Jan 2000 RU
350833 Sep 1972 SU
511468 Sep 1976 SU
607950 May 1978 SU
612004 May 1978 SU
620582 Jul 1978 SU
641070 Jan 1979 SU
909114 May 1979 SU
832049 May 1981 SU
853089 Aug 1981 SU
874952 Oct 1981 SU
894169 Jan 1982 SU
899850 Jan 1982 SU
907220 Feb 1982 SU
953172 Aug 1982 SU
959878 Sep 1982 SU
976019 Nov 1982 SU
976020 Nov 1982 SU
989038 Jan 1983 SU
1002514 Mar 1983 SU
1041671 Sep 1983 SU
1051222 Oct 1983 SU
1086118 Apr 1984 SU
1077803 Jul 1984 SU
1158400 May 1985 SU
1212575 Feb 1986 SU
1250637 Aug 1986 SU
1324772 Jul 1987 SU
1411434 Jul 1988 SU
1430498 Oct 1988 SU
1432190 Oct 1988 SU
1601330 Oct 1990 SU
1627663 Feb 1991 SU
1659621 Jun 1991 SU
1663179 Jul 1991 SU
1663180 Jul 1991 SU
1677225 Sep 1991 SU
1677248 Sep 1991 SU
1686123 Oct 1991 SU
1686124 Oct 1991 SU
1686125 Oct 1991 SU
1698413 Dec 1991 SU
1710694 Feb 1992 SU
1730429 Apr 1992 SU
1745873 Jul 1992 SU
1747673 Jul 1992 SU
1749267 Jul 1992 SU
1295799 Feb 1995 SU
8100132 Jan 1981 WO
9005598 Mar 1990 WO
9201859 Feb 1992 WO
9208875 May 1992 WO
9325799 Dec 1993 WO
9325800 Dec 1993 WO
9421887 Sep 1994 WO
9425655 Nov 1994 WO
9503476 Feb 1995 WO
9601937 Jan 1996 WO
9621083 Jul 1996 WO
9626350 Aug 1996 WO
9637681 Nov 1996 WO
9706346 Feb 1997 WO
9711306 Mar 1997 WO
9717524 May 1997 WO
9717526 May 1997 WO
9717527 May 1997 WO
9720130 Jun 1997 WO
9721901 Jun 1997 WO
WO9735084 Sep 1997 WO
9800626 Jan 1998 WO
9807957 Feb 1998 WO
9809053 Mar 1998 WO
9822690 May 1998 WO
9826152 Jun 1998 WO
9842947 Oct 1998 WO
9849423 Nov 1998 WO
9902818 Jan 1999 WO
9904135 Jan 1999 WO
9906670 Feb 1999 WO
9908827 Feb 1999 WO
9908828 Feb 1999 WO
9918328 Apr 1999 WO
9923354 May 1999 WO
9925524 May 1999 WO
9925951 May 1999 WO
9935368 Jul 1999 WO
9943923 Sep 1999 WO
0001926 Jan 2000 WO
0004271 Jan 2000 WO
0008301 Feb 2000 WO
0026500 May 2000 WO
0026501 May 2000 WO
0026502 May 2000 WO
0031375 Jun 2000 WO
0037767 Jun 2000 WO
0037768 Jun 2000 WO
0037771 Jun 2000 WO
0037772 Jun 2000 WO
WO0337766 Jun 2000 WO
0039432 Jul 2000 WO
0046484 Aug 2000 WO
0050727 Aug 2000 WO
0050732 Aug 2000 WO
0050733 Aug 2000 WO
0077431 Dec 2000 WO
WO0104520 Jan 2001 WO
WO0104535 Jan 2001 WO
WO0118354 Mar 2001 WO
WO0133037 May 2001 WO
WO0160545 Aug 2001 WO
WO0183943 Nov 2001 WO
WO0198623 Dec 2001 WO
WO0201102 Jan 2002 WO
WO0210550 Feb 2002 WO
WO0210551 Feb 2002 WO
WO 0220941 Mar 2002 WO
WO0225059 Mar 2002 WO
WO02095181 May 2002 WO
WO02053867 Jul 2002 WO
WO02053867 Jul 2002 WO
WO02066783 Aug 2002 WO
WO02068792 Sep 2002 WO
WO02075107 Sep 2002 WO
WO02077411 Oct 2002 WO
WO02081863 Oct 2002 WO
WO02081864 Oct 2002 WO
WO02086285 Oct 2002 WO
WO02086286 Oct 2002 WO
WO02090713 Nov 2002 WO
WO02103150 Dec 2002 WO
WO03004819 Jan 2003 WO
WO03004819 Jan 2003 WO
WO03004820 Jan 2003 WO
WO03008756 Jan 2003 WO
WO03004820 Jan 2003 WO
WO03012255 Feb 2003 WO
WO03016669 Feb 2003 WO
WO03016669 Feb 2003 WO
WO03023178 Mar 2003 WO
WO03023178 Mar 2003 WO
WO03023179 Mar 2003 WO
WO03023179 Mar 2003 WO
WO03029607 Apr 2003 WO
WO03029608 Apr 2003 WO
WO03042486 May 2003 WO
WO03042486 May 2003 WO
WO03042487 May 2003 WO
WO03042487 May 2003 WO
WO03042489 May 2003 WO
WO03048520 Jun 2003 WO
WO03048521 Jun 2003 WO
WO03055616 Jul 2003 WO
WO03058022 Jul 2003 WO
WO03058022 Jul 2003 WO
WO03059549 Jul 2003 WO
WO03064813 Aug 2003 WO
WO03071086 Aug 2003 WO
WO03071086 Aug 2003 WO
WO03078785 Sep 2003 WO
WO03078785 Sep 2003 WO
WO03086675 Oct 2003 WO
WO03089161 Oct 2003 WO
WO03089161 Oct 2003 WO
WO03093623 Nov 2003 WO
WO03093623 Nov 2003 WO
WO03102365 Dec 2003 WO
WO03104601 Dec 2003 WO
WO03104601 Dec 2003 WO
WO03106130 Dec 2003 WO
WO04003337 Jan 2004 WO
WO04009950 Jan 2004 WO
WO04010039 Jan 2004 WO
WO04010039 Jan 2004 WO
WO04011776 Feb 2004 WO
WO04011776 Feb 2004 WO
WO04018823 Mar 2004 WO
WO04018824 Mar 2004 WO
WO04018824 Mar 2004 WO
WO04020895 Mar 2004 WO
WO04020895 Mar 2004 WO
WO04023014 Mar 2004 WO
WOO4023014 Mar 2004 WO
WO04026017 Apr 2004 WO
WO04026017 Apr 2004 WO
WO04026073 Apr 2004 WO
WO04026073 Apr 2004 WO
WO04026500 Apr 2004 WO
WO04026500 Apr 2004 WO
WO04027200 Apr 2004 WO
WO04027200 Apr 2004 WO
WO04027204 Apr 2004 WO
WO04027204 Apr 2004 WO
WO04027205 Apr 2004 WO
WO04027205 Apr 2004 WO
WO04027392 Apr 2004 WO
WO04027786 Apr 2004 WO
WO04027786 Apr 2004 WO
WO04053434 Jun 2004 WO
WO04053434 Jun 2004 WO
WO04057715 Jul 2004 WO
WO04057715 Jul 2004 WO
WO04067961 Aug 2004 WO
WO04067961 Aug 2004 WO
WO04074622 Sep 2004 WO
WO04074622 Sep 2004 WO
WO04076798 Sep 2004 WO
WO04076798 Sep 2004 WO
WO04081346 Sep 2004 WO
WO04083591 Sep 2004 WO
WO04083591 Sep 2004 WO
WO04083592 Sep 2004 WO
WO04083593 Sep 2004 WO
WO04083594 Sep 2004 WO
WO04085790 Oct 2004 WO
WO04089608 Oct 2004 WO
WO04092527 Oct 2004 WO
WO04092528 Oct 2004 WO
WO04092530 Oct 2004 WO
WO04092530 Oct 2004 WO
WO04094766 Nov 2004 WO
WO05017303 Feb 2005 WO
WO05021921 Mar 2005 WO
WO05021922 Mar 2005 WO
WO05024170 Mar 2005 WO
WO05024171 Mar 2005 WO
WO05028803 Mar 2005 WO
Provisional Applications (1)
Number Date Country
60162671 Nov 1999 US