This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.
Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.
Conventionally, when an opening is formed in the sidewalls of an existing wellbore casing, whether through damage to the casing or because of an intentional perforation of the casing to facilitate production or a fracturing operation, it is often necessary to seal off the opening in the existing wellbore casing. Conventional methods of sealing off such openings are expensive and unreliable.
The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming and repairing wellbores.
According to one aspect of the present invention, a method of repairing an opening in a tubular member is provided that includes positioning an expandable tubular, an expansion cone, and a pump within the tubular member, positioning the expandable tubular in opposition to the opening in the tubular member, pressurizing an interior portion of the expandable tubular using the pump, and radially expanding the expandable tubular into intimate contact with the tubular member using the expansion cone.
According to another aspect of the present invention, an apparatus for repairing a tubular member is provided that includes a support member, an expandable tubular member removably coupled to the support member, an expansion cone movably coupled to the support member and a pump coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member.
According to another aspect of the present invention, a method of coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member, is provided that includes positioning at least a portion of the first tubular member within the second tubular member, pressurizing a portion of the interior of the first tubular member by pumping fluidic materials proximate the first tubular member into the portion of the interior of the first tubular member, and displacing an expansion cone within the interior of the first tubular member.
a is a fragmentary cross-sectional view of the placement of an embodiment of a repair apparatus within the wellbore casing of
b is a fragmentary cross-sectional view of the radial expansion of the expandable tubular of the apparatus of
c is a fragmentary cross-sectional view of the completion of the radial expansion of the expandable tubular of the apparatus of
d is a fragmentary cross-sectional view of the removal of the repair apparatus from the repaired wellbore casing of
e is a fragmentary cross-sectional view of the repaired wellbore casing of
a is a fragmentary cross-sectional view of the placement of another embodiment of a repair apparatus within the wellbore casing of
b is a fragmentary cross-sectional view of the radial expansion of the expandable tubular of the apparatus of
c is a fragmentary cross-sectional view of the completion of the radial expansion of the expandable tubular of the apparatus of
d is a fragmentary cross-sectional view of the removal of the repair apparatus from the repaired wellbore casing of
e is a fragmentary cross-sectional view of the repaired wellbore casing of
An apparatus and method for repairing a wellbore casing within a subterranean formation is provided. The apparatus and method permits a wellbore casing to be repaired in a subterranean formation by placing a tubular member, an expansion cone, and a pump in an existing section of a wellbore, and then extruding the tubular member off of the expansion cone by pressurizing an interior portion of the tubular member using the pump. The apparatus and method further permits adjacent tubular members in the wellbore to be joined using an overlapping joint that prevents fluid and or gas passage. The apparatus and method further permits a new tubular member to be supported by an existing tubular member by expanding the new tubular member into engagement with the existing tubular member. The apparatus and method further minimizes the reduction in the hole size of the wellbore casing necessitated by the addition of new sections of wellbore casing. The apparatus and method provide an efficient and reliable method for forming and repairing wellbore casings, pipelines, and structural supports.
The apparatus and method preferably further includes a lubrication and self-cleaning system for the expansion cone. In a preferred implementation, the expansion cone includes one or more circumferential grooves and one or more axial grooves for providing a supply of lubricating fluid to the trailing edge portion of the interface between the expansion cone and a tubular member during the radial expansion process. In this manner, the frictional forces created during the radial expansion process are reduced which results in a reduction in the required operating pressures for radially expanding the tubular member. Furthermore, the supply of lubricating fluid preferably removes loose material from tapered end of the expansion cone that is formed during the radial expansion process.
The apparatus and method preferably further includes an expandable tubular member that includes pre-expanded ends. In this manner, the subsequent radial expansion of the expandable tubular member is optimized.
The apparatus and method preferably further includes an expansion cone for expanding the tubular member includes a first outer surface having a first angle of attack and a second outer surface having a second angle of attack less than the first angle of attack. In this manner, the expansion of tubular members is optimally provided.
In several alternative embodiments, the apparatus and methods are used to form and/or repair wellbore casings, pipelines, and/or structural supports.
Referring initially to
Referring to
As illustrated in
In a preferred embodiment, the repair apparatus 300 includes a first support member 305, a logging tool 310, a housing 315, a first fluid conduit 320, a pump 325, a second fluid conduit 330, a third fluid conduit 335, a second support member 340, a fourth fluid conduit 345, a third support member 350, a fifth fluid conduit 355, sealing members 360, a locking member 365, an expandable tubular 370, an expansion cone 375, and a sealing member 380.
The first support member 305 is preferably coupled to the logging tool 310 and the housing 315. The first support member 305 is preferably adapted to be coupled to and supported by a conventional support member such as, for example, a wireline, coiled tubing, or a drill string. The first support member 305 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials from the repair apparatus 300. The first support member 305 is further preferably adapted to convey electrical power and communication signals to the logging tool 310, the pump 325, and the locking member 365.
The logging tool 310 is preferably coupled to the first support member 305. The logging tool 310 is preferably adapted to detect defects in the wellbore casing 100. The logging tool 310 may be any number of conventional commercially available logging tools suitable for detecting defects in wellbore casings, pipelines, or structural supports. In a preferred embodiment, the logging tool 310 is a CAST logging tool, available from Halliburton Energy Services in order to optimally provide detection of defects in the wellbore casing 100. In a preferred embodiment, the logging tool 310 is contained within the housing 315 in order to provide an repair apparatus 300 that is rugged and compact.
The housing 315 is preferably coupled to the first support member 305, the second support member 340, the sealing members 360, and the locking member 365. The housing 315 is preferably releasably coupled to the tubular member 370. The housing 315 is further preferably adapted to contain and/or support the logging tool 310 and the pump 325.
The first fluid conduit 320 is preferably fluidicly coupled to the inlet of the pump 325 and the exterior region above the housing 315. The first fluid conduit 320 may be contained within the first support member 305 and the housing 315. The first fluid conduit 320 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.
The pump 325 is fluidicly coupled to the first fluid conduit 320 and the second fluid conduit 330. The pump 325 is further preferably contained within and supported by the housing 315. Alternatively, the pump 325 may be positioned above the housing 315. The pump 325 is preferably adapted to convey fluidic materials from the first fluid conduit 320 to the second fluid conduit 330 at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide the operating pressure for propagating the expansion cone 375. The pump 325 may be any number of conventional commercially available pumps. In a preferred embodiment, the pump 325 is a flow control pump out section for dirty fluids, available from Halliburton Energy Services in order to optimally provide the operating pressures and flow rates for propagating the expansion cone 375. The pump 325 is preferably adapted to pressurize an interior portion 385 of the expandable tubular member 370 to operating pressures ranging from about 0 to 12,000 psi.
The second fluid conduit 330 is fluidicly coupled to the outlet of the pump 325 and the interior portion 385 of the expandable tubular member 370. The second fluid conduit 330 is further preferably contained within the housing 315. The second fluid conduit 330 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.
The third fluid conduit 335 is fluidicly coupled to the exterior region above the housing 315 and the interior portion 385 of the expandable tubular member 370. The third fluid conduit 335 is further preferably contained within the housing 315. The third fluid conduit 330 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.
The second support member 340 is coupled to the housing 315 and the third support member 350. The second support member 340 is further preferably movably and sealingly coupled to the expansion cone 375. The second support member 340 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials. In a preferred embodiment, the second support member 340 is centrally positioned within the expandable tubular member 370.
The fourth fluid conduit 345 is fluidicly coupled to the third fluid conduit 335 and the fifth fluid conduit 355. The fourth fluid conduit 345 is further preferably contained within the second support member 340. The fourth fluid conduit 345 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.
The third support member 350 is coupled to the second support member 340. The third support member 350 is further preferably adapted to support the expansion cone 375. The third support member 350 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials.
The fifth fluid conduit 355 is fluidicly coupled to the fourth fluid conduit 345 and a portion 390 of the expandable tubular member 375 below the expansion cone 375. The fifth fluid conduit 355 is further preferably contained within the third support member 350. The fifth fluid conduit 355 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 375.
The sealing members 360 are preferably coupled to the housing 315. The sealing members 360 are preferably adapted to seal the interface between the exterior surface of the housing 315 and the interior surface of the expandable tubular member 370. In this manner, the interior portion 385 of the expandable tubular member 375 is fluidicly isolated from the exterior region above the housing 315. The sealing members 360 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing members 360 are conventional O-ring sealing members available from various commercial suppliers in order to optimally provide a high pressure seal.
The locking member 365 is preferably coupled to the housing 315. The locking member 365 is further preferably releasably coupled to the expandable tubular member 370. In this manner, the housing 365 is controllably coupled to the expandable tubular member 370. In this manner, the housing 365 is preferably released from the expandable tubular member 370 upon the completion of the radial expansion of the expandable tubular member 370. The locking member 365 may be any number of conventional commercially available releasable locking members. In a preferred embodiment, the locking member 365 is an electrically releasable locking member in order to optimally provide an easily retrievable running expansion system.
In an alternative embodiment, the locking member 365 is replaced by or supplemented by one or more conventional shear pins in order to provide an alternative means of controllably releasing the housing 315 from the expandable tubular member 370.
The expandable tubular member 370 is releasably coupled to the locking member 365. The expandable tubular member 370 is preferably adapted to be radially expanded by the axial displacement of the expansion cone 375.
In a preferred embodiment, as illustrated in
The tubular body 405 of the tubular member 370 preferably has a substantially annular cross section. The tubular body 405 may be fabricated from any number of conventional commercially available materials such as, for example, Oilfield Country Tubular Goods (OCTG), 13 chromium steel, 4140 steel, or automotive grade steel tubing/casing, or L83, J55, or P110 API casing. In a preferred embodiment, the tubular body 405 of the tubular member 370 is further provided substantially as disclosed in one or more of the following co-pending U.S. patent applications:
Applicants incorporate by reference the disclosures of these applications.
The interior region 410 of the tubular body 405 preferably has a substantially circular cross section. The interior region 410 of the tubular body 405 preferably includes a first inside diameter D1, an intermediate inside diameter DINT, and a second inside diameter D2. In a preferred embodiment, the first and second inside diameters, D1 and D2, are substantially equal. In a preferred embodiment, the first and second inside diameters, D1 and D2; are greater than the intermediate inside diameter DINT.
The first end 420 of the tubular body 405 is coupled to the intermediate portion 425 of the tubular body 405. The exterior surface of the first end 420 of the tubular body 405 preferably further includes a protective coating fabricated from tungsten carbide, or other similar wear resistant materials in order to protect the first end 420 of the tubular body 405 during placement of the repair apparatus 300 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the first end 420 of the tubular body 405 is greater than the outside diameter of the intermediate portion 425 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the first end 420 of the tubular body 405 is substantially equal to the outside diameter of the second end 430 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the first end 420 of the tubular member 370 is adapted to permit insertion of the tubular member 370 into the typical range of wellbore casings. The first end 420 of the tubular member 370 includes a wall thickness t1.
The intermediate portion 425 of the tubular body 405 is coupled to the first end 420 of the tubular body 405 and the second end 430 of the tubular body 405. The intermediate portion 425 of the tubular body 405 preferably includes the sealing member 380. In a preferred embodiment, the outside diameter of the intermediate portion 425 of the tubular body 405 is less than the outside diameter of the first and second ends, 420 and 430, of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the intermediate portion 425 of the tubular body 405 ranges from about 75% to 98% of the outside diameters of the first and second ends, 420 and 430, in order to optimally protect the sealing member 380 during placement of the tubular member 370 within the wellbore casing 100. The intermediate portion 425 of the tubular body 405 includes a wall thickness tINT.
The second end 430 of the tubular body 405 is coupled to the intermediate portion 425 of the tubular body 405. The exterior surface of the second end 430 of the tubular body 405 preferably further includes a protective coating fabricated from a wear resistant material such as, for example, tungsten carbide in order to protect the second end 430 of the tubular body 405 during placement of the repair apparatus 300 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the second end 430 of the tubular body 405 is greater than the outside diameter of the intermediate portion 425 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within a wellbore casing 100. In a preferred embodiment, the outside diameter of the second end 430 of the tubular body 405 is substantially equal to the outside diameter of the first end 420 of the tubular body 405. In this manner, the sealing member 380 is optimally protected during placement of the tubular member 370 within the wellbore casing 100. In a preferred embodiment, the outside diameter of the second end 430 of the tubular member 370 is adapted to permit insertion of the tubular member 370 into the typical range of wellbore casings. The second end 430 of the tubular member 370 includes a wall thickness t2.
In a preferred embodiment, the wall thicknesses t1 and t2 are substantially equal in order to provide substantially equal burst strength for the first and second ends, 420 and 430, of the tubular member 370. In a preferred embodiment, the wall thicknesses t1 and t2 are both greater than the wall thickness tINT in order to optimally match the burst strength of the first and second ends, 420 and 430, of the tubular member 370 with the intermediate portion 425 of the tubular member 370.
The sealing member 380 is preferably coupled to the outer surface of the intermediate portion 425 of the tubular body 405. The sealing member 380 preferably seals the interface between the intermediate portion 425 of the tubular body 405 and interior surface of the wellbore casing 100 after radial expansion of the intermediate portion 425 of the tubular body 405. The sealing member 380 preferably has a substantially annular cross section. The outside diameter of the sealing member 380 is preferably selected to be less than the outside diameters of the first and second ends, 420 and 430, of the tubular body 405 in order to optimally protect the sealing member 380 during placement of the tubular member 370 within the typical range of wellborn casings 100. The sealing member 380 may be fabricated from any number of conventional commercially available materials such as, for example, thermoset or thermoplastic polymers. In a preferred embodiment, the sealing member 380 is fabricated from thermoset polymers in order to optimally seal the interface between the radially expanded intermediate portion 425 of the tubular body 405 and the wellbore casing 100.
During placement of the tubular member 370 within the wellbore casing 100, the protective coatings provided on the exterior surfaces of the first and second ends, 420 and 430, of the tubular body 405 prevent abrasion with the interior surface of the wellbore casing 100. In a preferred embodiment, after radial expansion of the tubular body 405, the sealing member 380 seals the interface between the outside surface of the intermediate portions 425 of the tubular body 405 of the tubular member 370 and the inside surface of the wellbore casing 100. During placement of the tubular member 370 within the wellbore casing 100, the sealing member 380 is preferably protected from contact with the interior walls of the wellbore casing 100 by the recessed outer surface profile of the tubular member 370.
In a preferred embodiment, the tubular body 405 of the tubular member 370 further includes first and second transition portions, 435 and 440, coupled between the first and second ends, 420 and 430, and the intermediate portion 425 of the tubular body 405. In a preferred embodiment, the first and second transition portions, 435 and 440, are inclined at an angle, α, relative to the longitudinal direction ranging from about 0 to 30 degrees in order to optimally facilitate the radial expansion of the tubular member 370. In a preferred embodiment, the first and second transition portions, 435 and 440, provide a smooth transition between the first and second ends, 420 and 440, and the intermediate portion 425, of the tubular body 405 of the tubular member 370 in order to minimize stress concentrations.
Referring to
In a preferred embodiment, in steps 505 and 510, both ends, 420 and 430, of the tubular body 405 are radially expanded using conventional radial expansion methods, and then both ends, 420 and 430, of the tubular body 405 are stress relieved. The radially expanded ends, 420 and 430, of the tubular body 405 include interior diameters D1 and D2. In a preferred embodiment, the interior diameters D1 and D2 are substantially equal in order to provide a burst strength that is substantially equal. In a preferred embodiment, the ratio of the interior diameters D1 and D2 to the interior diameter DINT of the tubular body 405 ranges from about 100% to 120% in order to optimally provide a tubular member for subsequent radial expansion.
In a preferred embodiment, the relationship between the wall thicknesses t1, t2, and tINT of the tubular body 405; the inside diameters D1, D2 and DINT of the tubular body 405; the inside diameter Dwellbore of the wellbore casing 100 that the tubular body 405 will be inserted into; and the outside diameter Dcone of the expansion cone 375 that will be used to radially expand the tubular body 405 within the wellbore casing 100 is given by the following expression:
where
In a preferred embodiment, in step 515, the sealing member 380 is then applied onto the outside diameter of the non-expanded intermediate portion 425 of the tubular body 405. The sealing member 380 may be applied to the outside diameter of the non-expanded intermediate portion 425 of the tubular body 405 using any number of conventional commercially available methods. In a preferred embodiment, the sealing member 380 is applied to the outside diameter of the intermediate portion 425 of the tubular body 405 using commercially available chemical and temperature resistant adhesive bonding.
In a preferred embodiment, as illustrated in
In a preferred embodiment, the coating 605 of lubricant is applied to the interior surface of the tubular body 405 of the tubular member 370 by first applying a phenolic primer to the interior surface of the tubular body 405 of the tubular member 370, and then bonding the coating 605 of lubricant to the phenolic primer using an antifriction paste including the coating 605 of lubricant carried within an epoxy resin. In a preferred embodiment, the antifriction paste includes, by weight, 40–80% epoxy resin, 15–30% molybdenum disulfide, 10–15% graphite, 5–10% aluminum, 5–10% copper, 8–15% alumisilicate, and 5–10% polyethylenepolyamine. In a preferred embodiment, the antifriction paste is provided substantially as disclosed in U.S. Pat. No. 4,329,238, the disclosure of which is incorporate herein by reference.
The coating 605 of lubricant may be any number of conventional commercially available lubricants such as, for example, metallic soaps or zinc phosphates. In a preferred embodiment, the coating 605 of lubricant includes C-Lube-10, C-Phos-52, C-Phos-58-M, and/or C-Phos-58-R in order to optimally provide a coating of lubricant. In a preferred embodiment, the coating 605 of lubricant provides a sliding coefficient of friction less than about 0.20 in order to optimally reduce the force required to radially expand the tubular member 370 using the expansion cone 375.
In an alternative embodiment, the coating 605 includes a first part of a lubricant. In a preferred embodiment, the first part of the lubricant forms a first part of a metallic soap. In an preferred embodiment, the first part of the lubricant coating includes zinc phosphate. In a preferred embodiment, the second part of the lubricant is circulated within a fluidic carrier that is circulated into contact with the coating 605 of the first part of the lubricant during the radial expansion of the tubular member 370. In a preferred embodiment, the first and second parts of the lubricant react to form a lubricating layer between the interior surface of the tubular body 405 of the tubular member 370 and the exterior surface of the expansion cone 375 during the radial expansion process. In this manner, a lubricating layer is optimally provided in the exact concentration, exactly when and where it is needed. Furthermore, because the second part of the lubricant is circulated in a carrier fluid, the dynamic interface between the interior surface of the tubular body 405 of the tubular members 370 and the exterior surface of the expansion cone 375 is also preferably provided with hydrodynamic lubrication. In a preferred embodiment, the first and second parts of the lubricant react to form a metallic soap. In a preferred embodiment, the second part of the lubricant is sodium stearate.
The expansion cone 375 is movably coupled to the second support member 340. The expansion cone 375 is preferably adapted to be axially displaced upon the pressurization of the interior region 385 of the expandable tubular member 370. The expansion cone 375 is further preferably adapted to radially expand the expandable tubular member 370.
In a preferred embodiment, as illustrated in
Referring to
The radial expansion section 915 preferably includes a leading radial expansion section 920 and a trailing radial expansion section 925. In a preferred embodiment, the leading and trailing radial expansion sections, 920 and 925, have substantially conical outer surfaces. In a preferred embodiment, the leading and trailing radial expansion sections, 920 and 925, have corresponding angles of attack, α1 and α2. In a preferred embodiment, the angle of attack α1 of the leading radial expansion section 920 is greater than the angle of attack α2 of the trailing radial expansion section 925 in order to optimize the radial expansion of the tubular member 370. More generally, the radial expansion section 915 may include one or more intermediate radial expansion sections positioned between the leading and trailing radial expansion sections, 920 and 925, wherein the corresponding angles of attack α increase in stepwise fashion from the leading radial expansion section 920 to the trailing radial expansion section 925.
Referring to
The radial expansion section 1015 preferably includes an outer surface 1020 having a substantially parabolic outer profile. In this manner, the outer surface 1020 provides an angle of attack that constantly decreases from a maximum at the front end 1005 of the expansion cone 1000 to a minimum at the rear end 1010 of the expansion cone 1000. The parabolic outer profile of the outer surface 1020 may be formed using a plurality of adjacent discrete conical sections and/or using a continuous curved surface. In this manner, the area of the outer surface 1020 adjacent to the front end 1005 of the expansion cone 1000 optimally radially overexpands the intermediate portion 425 of the tubular body 405 of the tubular members 370, while the area of the outer surface 1020 adjacent to the rear end 1010 of the expansion cone 1000 optimally radially overexpands the pre-expanded first and second ends, 420 and 430, of the tubular body 405 of the tubular member 370. In a preferred embodiment, the parabolic profile of the outer surface 1020 is selected to provide an angle of attack that ranges from about 8 to 20 degrees in the vicinity of the front end 1005 of the expansion cone 1000 and an angle of attack in the vicinity of the rear end 1010 of the expansion cone 1000 from about 4 to 15 degrees.
Referring to
During the radial expansion process, the leading and trailing edge portions, 1130 and 1135, are preferably lubricated by the presence of the coating 605 of lubricant. In a preferred embodiment, during the radial expansion process, the leading edge portion 5025 is further lubricated by the presence of lubricating fluids provided ahead of the expansion cone 370. However, because the radial clearance between the expansion cone 370 and the tubular member 375 in the trailing edge portion 1135 during the radial expansion process is typically extremely small, and the operating contact pressures between the tubular member 375 and the expansion cone 370 are extremely high, the quantity of lubricating fluid provided to the trailing edge portion 1135 is typically greatly reduced. In typical radial expansion operations, this reduction in the flow of lubricating fluids in the trailing edge portion 1135 increases the forces required to radially expand the tubular member 375.
Referring to
In a preferred embodiment, the circumferential grooves 1215 are fluidicly coupled to the internal flow passages 1220. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1200a of the expansion cone 1200 into the circumferential grooves 1215. Thus, the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the internal flow passages 1220 using a fluid conduit that is coupled to the tapered end 1205 of the expansion cone 1200. Alternatively, lubricating fluids are provided for the internal flow passages 1220 using a supply of lubricating fluids provided adjacent to the front 1200a of the expansion cone 1200.
In a preferred embodiment, the expansion cone 1200 includes a plurality of circumferential grooves 1215. In a preferred embodiment, the cross sectional area of the circumferential grooves 1215 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1200 includes circumferential grooves 1215 concentrated about the axial midpoint of the tapered portion 1205 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and a tubular member during the radial expansion process. In a preferred embodiment, the circumferential grooves 1215 are equally spaced along the trailing edge portion of the expansion cone 1200 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1200 includes a plurality of flow passages 1220 coupled to each of the circumferential grooves 1215. In a preferred embodiment, the cross-sectional area of the flow passages 1220 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1200 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1215 is greater than the cross sectional area of the flow passage 1220 in order to minimize resistance to fluid flow.
Referring to
In a preferred embodiment, the circumferential grooves 1315 are fluidicly coupled to the axial groves 1320. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1300a of the expansion cone 1300 into the circumferential grooves 1315. Thus, the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the axial grooves 1320 are provided with lubricating fluid using a supply of lubricating fluid positioned proximate the front end 1300a of the expansion cone 1300. In a preferred embodiment, the circumferential grooves 1315 are concentrated about the axial midpoint of the tapered portion 1305 of the expansion cone 1300 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1315 are equally spaced along the trailing edge portion of the expansion cone 1300 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1300 includes a plurality of circumferential grooves 1315. In a preferred embodiment, the cross sectional area of the circumferential grooves 1315 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1300 includes a plurality of axial grooves 1320 coupled to each of the circumferential grooves 1315. In a preferred embodiment, the cross sectional area of the axial grooves 1320 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1300 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1315 is greater than the cross sectional area of the axial grooves 1320 in order to minimize resistance to fluid flow. In a preferred embodiment, the axial groves 1320 are spaced apart in the circumferential direction by at least about 3 inches in order to optimally provide lubrication during the radial expansion process.
Referring to
In a preferred embodiment, the circumferential grooves 1415 are fluidicly coupled to the internal flow passages 1420. In this manner, during the radial expansion process, lubricating fluids are transmitted from the areas in front of the front 1400a and/or behind the rear 1400b of the expansion cone 1400 into the circumferential grooves 1415. Thus, the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. Furthermore, the lubricating fluids also preferably pass to the area in front of the expansion cone 1400. In this manner, the area adjacent to the front 1400a of the expansion cone 1400 is cleaned of foreign materials. In a preferred embodiment, the lubricating fluids are injected into the internal flow passages 1420 by pressurizing the area behind the rear 1400b of the expansion cone 1400 during the radial expansion process.
In a preferred embodiment, the expansion cone 1400 includes a plurality of circumferential grooves 1415. In a preferred embodiment, the cross sectional area of the circumferential grooves 1415 ranges from about 2×10−4 in2 to 5×10−2 in2 respectively, in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1400 includes circumferential grooves 1415 that are concentrated about the axial midpoint of the tapered portion 1405 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1415 are equally spaced along the trailing edge portion of the expansion cone 1400 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1400 includes a plurality of flow passages 1420 coupled to each of the circumferential grooves 1415. In a preferred embodiment, the flow passages 1420 fluidicly couple the front end 1400a and the rear end 1400b of the expansion cone 1400. In a preferred embodiment, the cross-sectional area of the flow passages 1420 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1400 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1415 is greater than the cross-sectional area of the flow passages 1420 in order to minimize resistance to fluid flow.
Referring to
In a preferred embodiment, the circumferential grooves 1515 are fluidicly coupled to the axial grooves 1520. In this manner, during the radial expansion process, lubricating fluids are transmitted from the areas in front of the front 1500a and/or behind the rear 1500b of the expansion cone 1500 into the circumferential grooves 1515. Thus, the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. Furthermore, in a preferred embodiment, pressurized lubricating fluids pass from the fluid passages 1520 to the area in front of the front 1500a of the expansion cone 1500. In this manner, the area adjacent to the front 1500a of the expansion cone 1500 is cleaned of foreign materials. In a preferred embodiment, the lubricating fluids are injected into the internal flow passages 1520 by pressurizing the area behind the rear 1500b expansion cone 1500 during the radial expansion process.
In a preferred embodiment, the expansion cone 1500 includes a plurality of circumferential grooves 1515. In a preferred embodiment, the cross sectional area of the circumferential grooves 1515 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1500 includes circumferential grooves 1515 that are concentrated about the axial midpoint of the tapered portion 1505 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1515 are equally spaced along the trailing edge portion of the expansion cone 1500 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1500 includes a plurality of axial grooves 1520 coupled to each of the circumferential grooves 1515. In a preferred embodiment, the axial grooves 1520 fluidicly couple the front end and the rear end of the expansion cone 1500. In a preferred embodiment, the cross sectional area of the axial grooves 1520 range from about 2×10−4 in2 to 5×10−2 in2, respectively, in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1500 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1515 is greater than the cross sectional areas of the axial grooves 1520 in order to minimize resistance to fluid flow. In a preferred embodiment, the axial grooves 1520 are spaced apart in the circumferential direction by at least about 3 inches in order to optimally provide lubrication during the radial expansion process.
Referring to
In a preferred embodiment, the circumferential grooves 1615 are fluidicly coupled to the axial grooves 1620. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1600a of the expansion cone 1600 into the circumferential grooves 1615. Thus, the trailing edge portion of the interface between the expansion cone 1600 and a tubular member is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the axial grooves 1620 using a fluid conduit that is coupled to the tapered end 3205 of the expansion cone 1600.
In a preferred embodiment, the expansion cone 1600 includes a plurality of circumferential grooves 1615. In a preferred embodiment, the cross sectional area of the circumferential grooves 1615 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1600 includes circumferential grooves 1615 that are concentrated about the axial midpoint of the tapered portion 1605 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1615 are equally spaced along the trailing edge portion of the expansion cone 1600 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1600 includes a plurality of axial grooves 1620 coupled to each of the circumferential grooves 1615. In a preferred embodiment, the axial grooves 1620 intersect each of the circumferential groves 1615 at an acute angle. In a preferred embodiment, the cross sectional area of the axial grooves 1620 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1600 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential grooves 1615 is greater than the cross sectional area of the axial grooves 1620. In a preferred embodiment, the axial grooves 1620 are spaced apart in the circumferential direction by at least about 3 inches in order to optimally provide lubrication during the radial expansion process. In a preferred embodiment, the axial grooves 1620 intersect the longitudinal axis of the expansion cone 1600 at a larger angle than the angle of attack of the tapered portion 1605 in order to optimally provide lubrication during the radial expansion process.
Referring to
In a preferred embodiment, the circumferential groove 1715 is fluidicly coupled to the internal flow passage 1720. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1700a of the expansion cone 1700 into the circumferential groove 1715. Thus, the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member. In a preferred embodiment, the lubricating fluids are injected into the internal flow passage 1720 using a fluid conduit that is coupled to the tapered end 1705 of the expansion cone 1700.
In a preferred embodiment, the expansion cone 1700 includes a plurality of spiral circumferential grooves 1715. In a preferred embodiment, the cross sectional area of the circumferential groove 1715 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1700 includes circumferential grooves 1715 that are concentrated about the axial midpoint of the tapered portion 1705 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1715 are equally spaced along the trailing edge portion of the expansion cone 1700 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1700 includes a plurality of flow passages 1720 coupled to each of the circumferential grooves 1715. In a preferred embodiment, the cross-sectional area of the flow passages 1720 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1700 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the cross sectional area of the circumferential groove 1715 is greater than the cross sectional area of the flow passage 1720 in order to minimize resistance to fluid flow.
Referring to
In a preferred embodiment, the circumferential groove 1815 is fluidicly coupled to the axial grooves 1820. In this manner, during the radial expansion process, lubricating fluids are transmitted from the area ahead of the front 1800a of the expansion cone 1800 into the circumferential groove 1815. Thus, the trailing edge portion of the interface between the expansion cone 1800 and a tubular member is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the axial grooves 1820 using a fluid conduit that is coupled to the tapered end 1805 of the expansion cone 1800.
In a preferred embodiment, the expansion cone 1800 includes a plurality of spiral circumferential grooves 1815. In a preferred embodiment, the cross sectional area of the circumferential grooves 1815 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1800 includes circumferential grooves 1815 concentrated about the axial midpoint of the tapered portion 1805 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1815 are equally spaced along the trailing edge portion of the expansion cone 1800 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1800 includes a plurality of axial grooves 1820 coupled to each of the circumferential grooves 1815. In a preferred embodiment, the cross sectional area of the axial grooves 1820 range from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1800 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the axial grooves 1820 intersect the circumferential grooves 1815 in a perpendicular manner. In a preferred embodiment, the cross sectional area of the circumferential groove 1815 is greater than the cross sectional area of the axial grooves 1820 in order to minimize resistance to fluid flow. In a preferred embodiment, the circumferential spacing of the axial grooves is greater than about 3 inches in order to optimally provide lubrication during the radial expansion process. In a preferred embodiment, the axial grooves 1820 intersect the longitudinal axis of the expansion cone at an angle greater than the angle of attack of the tapered portion 1805 in order to optimally provide lubrication during the radial expansion process.
Referring to
In a preferred embodiment, the circumferential groove 1915 is fluidicly coupled to the axial grooves 1920 and 1925. In this manner, during the radial expansion process, lubricating fluids are preferably transmitted from the area behind the back 1900b of the expansion cone 1900 into the circumferential groove 1915. Thus, the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 is provided with an increased supply of lubricant, thereby reducing the amount of force required to radially expand the tubular member 370. In a preferred embodiment, the lubricating fluids are injected into the first axial groove 1920 by pressurizing the region behind the back 1900b of the expansion cone 1900. In a preferred embodiment, the lubricant is further transmitted into the second axial grooves 1925 where the lubricant preferably cleans foreign materials from the tapered portion 1905 of the expansion cone 1900.
In a preferred embodiment, the expansion cone 1900 includes a plurality of circumferential grooves 1915. In a preferred embodiment, the cross sectional area of the circumferential groove 1915 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the expansion cone 1900 includes circumferential grooves 1915 concentrated about the axial midpoint of the tapered portion 1905 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the circumferential grooves 1915 are equally spaced along the trailing edge portion of the expansion cone 1900 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process.
In a preferred embodiment, the expansion cone 1900 includes a plurality of first axial grooves 1920 coupled to each of the circumferential grooves 1915. In a preferred embodiment, the first axial grooves 1920 extend from the back 1900b of the expansion cone 1900 and intersect the circumferential groove 1915. In a preferred embodiment, the cross sectional area of the first axial groove 1920 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the first axial groove 1920 intersects the circumferential groove 1915 in a perpendicular manner. In a preferred embodiment, the cross sectional area of the circumferential groove 1915 is greater than the cross sectional area of the first axial groove 1920 in order to minimize resistance to fluid flow. In a preferred embodiment, the circumferential spacing of the first axial grooves 1920 is greater than about 3 inches in order to optimally provide lubrication during the radial expansion process.
In a preferred embodiment, the expansion cone 1900 includes a plurality of second axial grooves 1925 coupled to each of the circumferential grooves 1915. In a preferred embodiment, the second axial grooves 1925 extend from the front 1900a of the expansion cone 1900 and intersect the circumferential groove 1915. In a preferred embodiment, the cross sectional area of the second axial grooves 1925 ranges from about 2×10−4 in2 to 5×10−2 in2 in order to optimally provide lubrication to the trailing edge portion of the interface between the expansion cone 1900 and the tubular member 370 during the radial expansion process. In a preferred embodiment, the second axial grooves 1925 intersect the circumferential groove 1915 in a perpendicular manner. In a preferred embodiment, the cross sectional area of the circumferential groove 1915 is greater than the cross sectional area of the second axial grooves 1925 in order to minimize resistance to fluid flow. In a preferred embodiment, the circumferential spacing of the second axial grooves 1925 is greater than about 3 inches in order to optimally provide lubrication during the radial expansion process. In a preferred embodiment, the second axial grooves 1925 intersect the longitudinal axis of the expansion cone 1900 at an angle greater than the angle of attack of the tapered portion 1905 in order to optimally provide lubrication during the radial expansion process.
Referring to
Referring to
Referring to
Referring to
Referring to
The increased lubrication provided to the trailing edge portion of the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800, and 1900 greatly reduces the amount of galling or seizure caused by the interface between the expansion cones and the tubular member 370 during the radial expansion process thereby permitting larger continuous sections of tubulars to be radially expanded in a single continuous operation. Thus, use of the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800, and 1900 reduces the operating pressures required for radial expansion and thereby reduces the size of the pump 325. In addition, failure, bursting, and/or buckling of the tubular member 370 during the radial expansion process is significantly reduced, and the success ratio of the radial expansion process is greatly increased.
In a preferred embodiment, the lubricating fluids used with the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800 and 1900 for expanding the tubular member 370 have viscosities ranging from about 1 to 10,000 centipoise in order to optimize the injection of the lubricating fluids into the circumferential grooves of the expansion cones during the radial expansion process. In a preferred embodiment, the lubricating fluids used with the expansion cones 1200, 1300, 1400, 1500, 1600, 1700, 1800 and 1900 for expanding the tubular member 370 comprise various conventional lubricants available from various commercial vendors consistent with the teachings of the present disclosure in order to optimize the injection of the lubricating fluids into the circumferential grooves of the expansion cones during the radial expansion process.
In a preferred embodiment, as illustrated in
The sealing members 2510 are preferably adapted to fluidicly seal the dynamic interface between the central passage 2505 of the expansion cone 375 and the support member 340. The sealing members 2510 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing members 2510 are conventional O-rings sealing members available from various commercial suppliers in order to optimally provide a fluidic seal.
The bearing members 2515 are preferably adapted to provide a sliding interface between the central passage 2505 of the expansion cone 375 and the support member 340. The bearing members 2515 may be any number of conventional commercially available bearings. In a preferred embodiment, the bearing members 2515 are wear bands available from Haliburton Energy Services in order to optimally provide a sliding interface that minimizes wear.
The sealing member 380 is coupled to the exterior surface of the expandable tubular member 375. The sealing member 380 is preferably adapted to fluidicly seal the interface between the expandable tubular member 375 and the wellbore casing 100 after the radial expansion of the expandable tubular member 375. The sealing member 380 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing member 380 is a nitrile rubber sealing member available from Eustler, Inc. in order to optimally provide a high pressure, high load bearing seal between the expandable tubular member 375 and the casing 100.
As illustrated in
In a preferred embodiment, prior to placement of the repair apparatus 300 in the wellbore, the outer surfaces of the repair apparatus 300 are coated with a lubricating fluid to facilitate their placement the wellbore and reduce surge pressures. In a preferred embodiment, the lubricating fluid comprises BARO-LUB GOLD-SEAL™ brand drilling mud lubricant, available from Baroid Drilling Fluids, Inc. In this manner, the insertion of the repair apparatus 300 into the wellbore casing 100 is optimized.
In a preferred embodiment, after placement of the repair apparatus 300 within the wellbore casing 100, in step 210, the logging tool 310 is used in a conventional manner to locate the openings 115 in the wellbore casing 100.
In a preferred embodiment, once the openings 115 have been located by the logging tool 310, in step 215, the repair apparatus 300 is further positioned within the wellbore casing 100 with the sealing member 380 placed in opposition to the openings 115.
As illustrated in
In a preferred embodiment, the pump 325 pumps fluidic materials from the region above and proximate to the repair apparatus 300 into the interior portion 385 using the fluidic passages 320 and 330. In this manner, the interior portion 385 is pressurized and the expansion cone 375 is displaced in the axial direction. In this manner, the tubular member 370 is radially expanded into contact with the wellbore casing 100. In a preferred embodiment, the interior portion 385 is pressurized to operating pressures ranging from about 0 to 12,000 psi using flow rates ranging from about 0 to 500 gallons/minute. In a preferred embodiment, fluidic materials displaced by the axial movement of the expansion cone 375 are conveyed to a location above the repair apparatus 300 by the fluid conduits 335, 345, and 355. In a preferred embodiment, during the pumping of fluidic materials into the interior portion 385 by the pump 325, the tubular member 370 is maintained in a substantially stationary position.
As illustrated in
As illustrated in
Referring to
The repair apparatus 2600 preferably includes a first support member 2605, a logging tool 2610, a housing 2615, a first fluid conduit 2620, a pump 2625, a second fluid conduit 2630, a first valve 2635, a third fluid conduit 2640, a second valve 2645, a fourth fluid conduit 2650, a second support member 2655, a fifth fluid conduit 2660, the third support member 2665, a sixth fluid conduit 2670, sealing members 2675, a locking member 2680, an expandable tubular 2685, an expansion cone 2690, a sealing member 2695, a packer 2700, a seventh fluid conduit 2705, and a third valve 2710.
The first support member 2605 is preferably coupled to the logging tool 2610 and the housing 2615. The first support member 2605 is preferably adapted to be coupled to and supported by a conventional support member such as, for example, a wireline or a drill string. The first support member 2605 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials from the apparatus 2600. The first support member 2605 is further preferably adapted to convey electrical power and communication signals to the logging tool 2610, the pump 2625, the valves 2635, 2645, and 2710, and the packer 2700.
The logging tool 2610 is preferably coupled to the first support member 2605. The logging tool 2610 is preferably adapted to detect defects in the wellbore casing 100. The logging tool 2610 may be any number of conventional commercially available logging tools suitable for detecting defects in wellbore casings, pipelines, or structural supports. In a preferred embodiment, the logging tool 2610 is a CAST logging tool, available from Halliburton Energy Services in order to optimally provide detection of defects in the wellbore casing 100. In a preferred embodiment, the logging tool 2610 is contained within the housing 2615 in order to provide a repair apparatus 2600 that is rugged and compact.
The housing 2615 is preferably coupled to the first support member 2605, the second support member 2655, the sealing members 2675, and the locking member 2680. The housing 2615 is preferably releasably coupled to the tubular member 2685. The housing 2615 is further preferably adapted to contain and support the logging tool 2610 and the pump 2625.
The first fluid conduit 2620 is preferably fluidicly coupled to the inlet of the pump 2625, the exterior region above the housing 2615, and the second fluid conduit 2630. The first fluid conduit 2620 may be contained within the first support member 2605 and the housing 2615. The first fluid conduit 2620 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 2690.
The pump 2625 is fluidicly coupled to the first fluid conduit 2620 and the third fluid conduit 2640. The pump 2625 is further preferably contained within and support by the housing 2615. The pump 2625 is preferably adapted to convey fluidic materials from the first fluid conduit 2620 to the third fluid conduit 2640 at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide operating pressure for propagating the expansion cone 2690. The pump 2625 may be any number of conventional commercially available pumps. In a preferred embodiment, the pump 2625 is a flow control pump out section, available from Halliburton Energy Services in order to optimally provide fluid pressure for propagating the expansion cone 2690. The pump 2625 is preferably adapted to pressurize an interior portion 2715 of the expandable tubular member 2685 to operating pressures ranging from about 0 to 12,000 psi.
The second fluid conduit 2630 is fluidicly coupled to the first fluid conduit 2620 and the third fluid conduit 2640. The second fluid conduit 2630 is further preferably contained within the housing 2615. The second fluid conduit 2630 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide propagation of the expansion cone 2690.
The first valve 2635 is preferably adapted to controllably block the second fluid conduit 2630. In this manner, the flow of fluidic materials through the second fluid conduit 2630 is controlled. The first valve 2635 may be any number of conventional commercially available flow control valves. In a preferred embodiment, the first valve 2635 is a conventional ball valve available from various commercial suppliers.
The third fluid conduit 2640 is fluidicly coupled to the outlet of the pump 2625, the second fluid conduit 2630, and the fifth fluid conduit 2660. The third fluid conduit 2640 is further preferably contained within the housing 2615. The third fluid conduit 2640 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally provide propagation of the expansion cone 2690.
The second valve 2645 is preferably adapted to controllably block the third fluid conduit 2640. In this manner, the flow of fluidic materials through the third fluid conduit 2640 is controlled. The second valve 2645 may be any number of conventional commercially available flow control valves. In a preferred embodiment, the second valve 2645 is a conventional ball valve available from various commercial sources.
The fourth fluid conduit 2650 is fluidicly coupled to the exterior region above the housing 2615 and the interior region 2720 within the expandable tubular member 2685. The fourth fluid conduit 2650 is further preferably contained within the housing 2615. The fourth fluid conduit 2650 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 5,000 psi and 0 to 500 gallons/minute in order to optimally vent fluidic materials in front of the expansion cone 2690 during the radial expansion process.
The second support member 2655 is coupled to the housing 2615 and the third support member 2665. The second support member 2655 is further preferably movably and sealingly coupled to the expansion cone 2690. The second support member 2655 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials. In a preferred embodiment, the second support member 2655 is centrally positioned within the expandable tubular member 2685.
The fifth fluid conduit 2660 is fluidicly coupled to the third fluid conduit 2640 and the sixth fluid conduit 2670. The fifth fluid conduit 2660 is further preferably contained within the second support member 2655. The fifth fluid conduit 2660 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 2690.
The third support member 2665 is coupled to the second support member 2655. The third support member 2665 is further preferably adapted to support the expansion cone 2690. The third support member 2665 preferably has a substantially annular cross section in order to provide one or more conduits for conveying fluidic materials.
The sixth fluid conduit 2670 is fluidicly coupled to the fifth fluid conduit 2660 and the interior region 2715 of the expandable tubular member 2685 below the expansion cone 2690. The sixth fluid conduit 2670 is further preferably contained within the third support member 2665. The sixth fluid conduit 2670 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 12,000 psi and 0 to 500 gallons/minute in order to optimally propagate the expansion cone 2690.
The sealing members 2675 are preferably coupled to the housing 2615. The sealing members 2675 are preferably adapted to seal the interface between the exterior surface of the housing 2615 and the interior surface of the expandable tubular member 2685. In this manner, the interior portion 2730 of the expandable tubular member 2685 is fluidicly isolated from the exterior region above the housing 2615. The sealing members 2675 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing members 2675 are conventional O-ring sealing members available from various commercial suppliers in order to optimally provide a pressure seal.
The locking member 2680 is preferably coupled to the housing 2615. The locking member 2680 is further preferably releasably coupled to the expandable tubular member 2685. In this manner, the housing 2615 is controllably coupled to the expandable tubular member 2685. In this manner, the housing 2615 is preferably released from the expandable tubular member 2685 upon the completion of the radial expansion of the expandable tubular member 2685. The locking member 2680 may be any number of conventional commercially available releasable locking members. In a preferred embodiment, the locking member 2680 is a hydraulically released slip available from various commercial vendors in order to optimally provide support during the radial expansion process.
In an alternative embodiment, the locking member 2680 is replaced by or supplemented by one or more conventional shear pins in order to provide an alternative means of controllably releasing the housing 2615 from the expandable tubular member 2685.
In another alternative embodiment, the seals 2675 and locking member 2680 are omitted.
The expandable tubular member 2685 is releasably coupled to the locking member 2680. The expandable tubular member 2685 is preferably adapted to be radially expanded by the axial displacement of the expansion cone 2690. In a preferred embodiment, the expandable tubular member 2685 is substantially identical to the expandable tubular member 370 described above with reference to the repair apparatus 300.
The expansion cone 2690 is movably coupled to the second support member 2655. The expansion cone 2690 is preferably adapted to be axially displaced upon the pressurization of the interior region 2715 of the expandable tubular member 2685. The expansion cone 2690 is further preferably adapted to radially expand the expandable tubular member 2685. In a preferred embodiment, the expansion cone 2690 is substantially identical to the expansion cone 375 described above with reference to the repair apparatus 300.
The sealing member 2695 is coupled to the exterior surface of the expandable tubular member 2685. The sealing member 2695 is preferably adapted to fluidicly seal the interface between the expandable tubular member 2685 and the wellbore casing 100 after the radial expansion of the expandable tubular member 2685. The sealing member 2695 may be any number of conventional commercially available sealing members. In a preferred embodiment, the sealing member 2695 is a nitrile rubber sealing member available from Eustler, Inc. in order to optimally provide a high pressure seal between the casing 100 and the expandable tubular member 2685.
The packer 2700 is coupled to the third support member 2665. The packer 2700 is further releasably coupled to the expandable tubular member 2685. The packer 2700 is preferably adapted to fluidicly seal the interior region 2715 of the expandable tubular member 2685. In this manner, the interior region 2715 of the expandable tubular member 2685 is pressurized. The packer 2700 may be any number of conventional commercially available packer devices. In a preferred embodiment, the packer 2700 is an EZ Drill Packer available from Halliburton Energy Services in order to optimally provide a high pressure seal below the expansion cone 2690 that can be easily removed upon the completion of the radial expansion process.
The seventh fluid conduit 2705 is fluidicly coupled to the interior region 2715 of the expandable tubular member 2685 and an exterior region below the apparatus 2600. The seventh fluid conduit 2705 is further preferably contained within the packer 2700. The seventh fluid conduit 2705 is preferably adapted to convey fluidic materials such as, for example, drilling muds, water, and lubricants at operating pressures and flow rates ranging from about 0 to 1,500 psi and 0 to 200 gallons/minute in order to optimally provide a fluid conduit that minimizes back pressure on the apparatus 2600 when the apparatus 2600 is positioned within the wellbore casing 100.
The third valve 2710 is preferably adapted to controllably block the seventh fluid conduit 2705. In this manner, the flow of fluidic materials through the seventh fluid conduit 2705 is controlled. The third valve 2710 may be any number of conventional commercially available flow control valves. In a preferred embodiment, the third valve 2710 is a EZ Drill one-way check valve available from Halliburton Energy Services in order to optimally provide one-way flow through the packer 2700 while providing a pressure seal during the radial expansion process.
As illustrated in
In a preferred embodiment, prior to placement of the apparatus 2600 in the wellbore casing 100, the outer surfaces of the apparatus 2600 are coated with a lubricating fluid to facilitate their placement the wellbore and reduce surge pressures. In a preferred embodiment, the lubricating fluid comprises BARO-LUB GOLD-SEAL™ brand drilling mud lubricant, available from Baroid Drilling Fluids, Inc. In this manner, the insertion of the apparatus 2600 into the wellbore casing 100 is optimized.
In a preferred embodiment, after placement of the apparatus 2600 within the wellbore casing 100, in step 210, the logging tool 2610 is used in a conventional manner to locate the openings 115 in the wellbore casing 100.
In a preferred embodiment, once the openings 115 have been located by the logging tool 2610, in step 215, the apparatus 2600 is further positioned within the wellbore casing 100 with the sealing member 2695 placed in opposition to the openings 115.
As illustrated in
In a preferred embodiment, the pump 2625 pumps fluidic materials from the region above and proximate to the apparatus 2600 into the interior chamber 2715 using the fluid conduits 2620, 2640, 2660, and 2670. In this manner, the interior chamber 2715 is pressurized and the expansion cone 2690 is displaced in the axial direction. In this manner, the tubular member 2685 is radially expanded into contact with the wellbore casing 100. In a preferred embodiment, the interior chamber 2715 is pressurized to operating pressures ranging from about 0 to 12,000 psi using flow rates ranging from about 0 to 500 gallons/minute. In a preferred embodiment, fluidic materials within the interior chamber 2720 displaced by the axial movement of the expansion cone 2690 are conveyed to a location above the apparatus 2600 by the fluid conduit 2650. In a preferred embodiment, during the pumping of fluidic materials into the interior chamber 2715 by the pump 2625, the tubular member 2685 is maintained in a substantially stationary position.
As illustrated in
As illustrated in
A method of repairing an opening in a tubular member has been described that includes positioning an expandable tubular, an expansion cone, and a pump within the tubular member, positioning the expandable tubular in opposition to the opening in the tubular member, pressurizing an interior portion of the expandable tubular using the pump, and radially expanding the expandable tubular into intimate contact with the tubular member using the expansion cone. In a preferred embodiment, the method further includes locating the opening in the tubular member using an opening locator. In a preferred embodiment, the tubular member is a wellbore casing. In a preferred embodiment, the tubular member is a pipeline. In a preferred embodiment, the tubular member is a structural support. In a preferred embodiment, the method further includes lubricating the interface between the expandable tubular member and the expansion cone. In a preferred embodiment, lubricating includes coating the expandable tubular member with a lubricant. In a preferred embodiment, lubricating includes injecting a lubricating fluid into the trailing edge of the interface between the expandable tubular member and the expansion cone. In a preferred embodiment, lubricating includes coating the expandable tubular member with a first component of a lubricant and circulating a second component of the lubricant into contact with the coating on the expandable tubular member. In a preferred embodiment, the method further includes sealing off a portion of the expandable tubular member.
An apparatus for repairing a tubular member also has been described that includes a support member, an expandable tubular member removably coupled to the support member, an expansion cone movably coupled to the support member and a pump coupled to the support member adapted to pressurize a portion of the interior of the expandable tubular member. In a preferred embodiment, the expandable tubular member includes a coating of a lubricant. In a preferred embodiment, the expandable tubular member includes a coating of a first component of a lubricant. In a preferred embodiment, the expandable tubular member includes a sealing member coupled to the outer surface of the expandable tubular member. In a preferred embodiment, the expandable tubular member includes a first end having a first outer diameter, an intermediate portion coupled to the first end having an intermediate outer diameter and a second end having a second outer diameter coupled to the intermediate portion having a second outer diameter, wherein the first and second outer diameters are greater than the intermediate outer diameter. In a preferred embodiment, the first end, second end, and intermediate portion of the expandable tubular member have wall thicknesses t1, t2, and tINT and inside diameters D1, D2 and DINT; and the relationship between the wall thicknesses t1, t2, and tINT, the inside diameters D1, D2 and DINT, the inside diameter DTUBE of the tubular member that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone is given by the following expression:
where t1=t2; and D1=D2. In a preferred embodiment, the expandable tubular member includes a sealing member coupled to the outside surface of the intermediate portion. In a preferred embodiment, the expandable tubular member includes a first transition portion coupled to the first end and the intermediate portion inclined at a first angle and a second transition portion coupled to the second end and the intermediate portion inclined at a second angle, wherein the first and second angles range from about 5 to 45 degrees. In a preferred embodiment, the expansion cone includes an expansion cone surface having an angle of attack ranging from about 10 to 40 degrees. In a preferred embodiment, the expansion cone includes a first expansion cone surface having a first angle of attack and a second expansion cone surface having a second angle of attack, wherein the first angle of attack is greater than the second angle of attack. In a preferred embodiment, the expansion cone includes an expansion cone surface having a substantially parabolic profile. In a preferred embodiment the expansion cone includes an inclined surface including one or more lubricating grooves. In a preferred embodiment, the expansion cone includes one or more internal lubricating passages coupled to each of the lubricating grooves.
A method of coupling a first tubular member to a second tubular member, wherein the outside diameter of the first tubular member is less than the inside diameter of the second tubular member also has been described that includes positioning at least a portion of the first tubular member within the second tubular member, pressurizing a portion of the interior of the first tubular member by pumping fluidic materials proximate the first tubular member into the portion of the interior of the first tubular member, and displacing an expansion cone within the interior of the first tubular member. In a preferred embodiment, the second tubular member is selected from the group consisting of a wellbore casing, a pipeline, and a structural support. In a preferred embodiment, the method further includes lubricating the interface between the first tubular member and the expansion cone. In a preferred embodiment, the lubricating includes coating the first tubular member with a lubricant. In a preferred embodiment, the lubricating includes injecting a lubricating fluid into the trailing edge of the interface between the first tubular member and the expansion cone. In a preferred embodiment, the lubricating includes coating the first tubular member with a first component of a lubricant and circulating a second component of the lubricant into contact with the coating on the first tubular member. In a preferred embodiment, the method further includes sealing off a portion of the first tubular member.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
This application is related to the following co-pending U.S. patent applications: Provisional patentapplicationAttorneySer. No.Docket No.Filing Date60/108,55825791.9Nov. 16, 199860/111,29325791.3Dec. 7, 199860/119,61125791.8Feb. 11, 199960/121,70225791.7Feb. 25, 199960/121,84125791.12Feb. 26, 199960/121,90725791.16Feb. 26, 199960/124,04225791.11Mar. 11, 199960/131,10625791.23Apr. 26, 199960/137,99825791.17Jun. 7, 199960/143,03925791.26Jul. 9, 199960/146,20325791.25Jul. 29, 199960/154,04725791.29Sep. 16, 199960/159,08225791.34Oct. 12, 199960/159,03925791.36Oct. 12, 199960/159,03325791.37Oct. 12, 1999 Applicants incorporate by reference the disclosures of these applications. This application is a National Phase of the International Application No. PCT/US00/30022 based on U.S. Provisional application Ser. No. 60/162,671, filed on Nov. 1, 1999.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US00/30022 | 10/31/2000 | WO | 00 | 9/25/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/33037 | 5/10/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
46818 | Patterson | Mar 1865 | A |
331940 | Bole | Dec 1885 | A |
332184 | Bole | Dec 1885 | A |
341237 | Healey | May 1886 | A |
519805 | Bavier | May 1894 | A |
802880 | Philips | Oct 1905 | A |
806156 | Marshall | Dec 1905 | A |
958517 | Mettler | May 1910 | A |
984449 | Stewart | Feb 1911 | A |
1166040 | Burlingham | Dec 1915 | A |
1233888 | Leonard | Jul 1917 | A |
1494128 | Primrose | May 1924 | A |
1589781 | Anderson | Jun 1926 | A |
1590357 | Feisthamel | Jun 1926 | A |
1597212 | Spengler | Aug 1926 | A |
1613461 | Johnson | Jan 1927 | A |
1880218 | Simmons | Oct 1932 | A |
1981525 | Price | Nov 1934 | A |
2046870 | Clasen et al. | Jul 1936 | A |
2087185 | Dillom | Jul 1937 | A |
2122757 | Scott | Jul 1938 | A |
2145165 | Flagg | Jan 1939 | A |
2160263 | Fletcher | May 1939 | A |
2187275 | McLennan | Jan 1940 | A |
2204586 | Grau | Jun 1940 | A |
2214226 | English | Sep 1940 | A |
2226804 | Carroll | Dec 1940 | A |
2273017 | Boynton | Feb 1942 | A |
2301495 | Abegg | Nov 1942 | A |
2371840 | Otis | Mar 1945 | A |
2447629 | Beissinger et al. | Aug 1948 | A |
2500276 | Church | Mar 1950 | A |
2546295 | Boice | Mar 1951 | A |
2583316 | Bannister | Jan 1952 | A |
2647847 | Black, et al. | Aug 1953 | A |
2734580 | Layne | Feb 1956 | A |
2796134 | Binkley | Jun 1957 | A |
2812025 | Teague et al. | Nov 1957 | A |
2907589 | Knox | Oct 1959 | A |
2929741 | Strock, et al. | Jan 1960 | A |
3015362 | Moosman | Jan 1962 | A |
3015500 | Barnett | Jan 1962 | A |
3018547 | Marskell | Jan 1962 | A |
3039530 | Condra | Jun 1962 | A |
3067819 | Gore | Dec 1962 | A |
3068563 | Reverman | Dec 1962 | A |
3104703 | Rike et al. | Sep 1963 | A |
3111991 | O'Neal | Nov 1963 | A |
3167122 | Lang | Jan 1965 | A |
3175618 | Lang | Mar 1965 | A |
3179168 | Vincent | Apr 1965 | A |
3188816 | Koch | Jun 1965 | A |
3191677 | Kinley | Jun 1965 | A |
3191680 | Vincent | Jun 1965 | A |
3203451 | Vincent | Aug 1965 | A |
3203483 | Vincent | Aug 1965 | A |
3209546 | Lawton | Oct 1965 | A |
3210102 | Joslin | Oct 1965 | A |
3233315 | Levake | Feb 1966 | A |
3245471 | Howard | Apr 1966 | A |
3270817 | Papaila | Sep 1966 | A |
3297092 | Jennings | Jan 1967 | A |
3326293 | Skipper | Jun 1967 | A |
3343252 | Reesor | Sep 1967 | A |
3353599 | Swift | Nov 1967 | A |
3354955 | Berry | Nov 1967 | A |
3358760 | Blagg | Dec 1967 | A |
3358769 | Berry | Dec 1967 | A |
3364993 | Skipper | Jan 1968 | A |
3371717 | Chenoweth | Mar 1968 | A |
3412565 | Lindsey et. al. | Nov 1968 | A |
3419080 | Lebourg | Dec 1968 | A |
3424244 | Kinley | Jan 1969 | A |
3427707 | Nowosadko | Feb 1969 | A |
3477506 | Malone | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3498376 | Sizer et al. | Mar 1970 | A |
3504515 | Reardon | Apr 1970 | A |
3520049 | Lysenko, et al. | Jul 1970 | A |
3528498 | Carothers | Sep 1970 | A |
3568773 | Chancellor | Mar 1971 | A |
3578081 | Bodine | May 1971 | A |
3579805 | Kast | May 1971 | A |
3605887 | Lambie | Sep 1971 | A |
3631926 | Young | Jan 1972 | A |
3665591 | Kowal | May 1972 | A |
3667547 | Ahlstone | Jun 1972 | A |
3669190 | Sizer et al. | Jun 1972 | A |
3682256 | Stuart | Aug 1972 | A |
3687196 | Mullins | Aug 1972 | A |
3691624 | Kinley | Sep 1972 | A |
3693717 | Wuenschel | Sep 1972 | A |
3704730 | Witzig | Dec 1972 | A |
3709306 | Curington | Jan 1973 | A |
3711123 | Arnold | Jan 1973 | A |
3712376 | Owen et al. | Jan 1973 | A |
3746068 | Deckert et al. | Jul 1973 | A |
3746091 | Owen et al. | Jul 1973 | A |
3746092 | Land | Jul 1973 | A |
3764168 | Kisling, III et al. | Oct 1973 | A |
3776307 | Young | Dec 1973 | A |
3779025 | Godley, et al. | Dec 1973 | A |
3780562 | Kinley | Dec 1973 | A |
3781966 | Lieberman | Jan 1974 | A |
3785193 | Kinley et al. | Jan 1974 | A |
3797259 | Kammerer, Jr. | Mar 1974 | A |
3812912 | Wuenschel | May 1974 | A |
3818734 | Bateman | Jun 1974 | A |
3834742 | McPhillips | Sep 1974 | A |
3866954 | Slator et al. | Feb 1975 | A |
3885298 | Pogonowski | May 1975 | A |
3887006 | Pitts | Jun 1975 | A |
3893718 | Powell | Jul 1975 | A |
3898163 | Mott | Aug 1975 | A |
3915478 | Al et al. | Oct 1975 | A |
3935910 | Gaudy et al. | Feb 1976 | A |
3942824 | Sable | Mar 1976 | A |
3945444 | Knudson | Mar 1976 | A |
3948321 | Owen et al. | Apr 1976 | A |
3970336 | O'Sickey et al. | Jul 1976 | A |
3977473 | Page, Jr. | Aug 1976 | A |
3989280 | Schwarz | Nov 1976 | A |
3997193 | Tsuda et al. | Dec 1976 | A |
4011652 | Black | Mar 1977 | A |
4019579 | Thuse | Apr 1977 | A |
4026583 | Gottlieb | May 1977 | A |
4053247 | Marsh | Oct 1977 | A |
4069573 | Rogers, Jr. et al. | Jan 1978 | A |
4076287 | Bill et al. | Feb 1978 | A |
4096913 | Kenneday et al. | Jun 1978 | A |
4098334 | Crowe | Jul 1978 | A |
4125937 | Brown et al. | Nov 1978 | A |
4152821 | Scott | May 1979 | A |
4168747 | Youmans | Sep 1979 | A |
4190108 | Webber | Feb 1980 | A |
4205422 | Hardwick | Jun 1980 | A |
4253687 | Maples | Mar 1981 | A |
4274665 | Marsh, Jr. | Jun 1981 | A |
RE30802 | Rogers, Jr. | Nov 1981 | E |
4304428 | Grigorian et al. | Dec 1981 | A |
4328983 | Gibson | May 1982 | A |
4359889 | Kelly | Nov 1982 | A |
4363358 | Ellis | Dec 1982 | A |
4366971 | Lula | Jan 1983 | A |
4368571 | Cooper, Jr. | Jan 1983 | A |
4379471 | Kuenzel | Apr 1983 | A |
4380347 | Sable | Apr 1983 | A |
4384625 | Roper et al. | May 1983 | A |
4388752 | Vinciguerra et al. | Jun 1983 | A |
4391325 | Baker et al. | Jul 1983 | A |
4393931 | Muse et al. | Jul 1983 | A |
4396061 | Tamplen et al. | Aug 1983 | A |
4402372 | Cherrington | Sep 1983 | A |
4407681 | Ina et al. | Oct 1983 | A |
4411435 | McStravick | Oct 1983 | A |
4413395 | Garnier | Nov 1983 | A |
4413682 | Callihan et al. | Nov 1983 | A |
4420866 | Mueller | Dec 1983 | A |
4421169 | Dearth et al. | Dec 1983 | A |
4422317 | Mueller | Dec 1983 | A |
4422507 | Reimert | Dec 1983 | A |
4423889 | Weise | Jan 1984 | A |
4423986 | Skogberg | Jan 1984 | A |
4429741 | Hyland | Feb 1984 | A |
4440233 | Baugh et al. | Apr 1984 | A |
4444250 | Keithahn et al. | Apr 1984 | A |
4462471 | Hipp | Jul 1984 | A |
4467630 | Kelly | Aug 1984 | A |
4468309 | White | Aug 1984 | A |
4469356 | Duret et al. | Sep 1984 | A |
4473245 | Raulins et al. | Sep 1984 | A |
4483399 | Colgate | Nov 1984 | A |
4485847 | Wentzell | Dec 1984 | A |
4491001 | Yoshida | Jan 1985 | A |
4501327 | Retz | Feb 1985 | A |
4505017 | Schukei | Mar 1985 | A |
4505987 | Yamada et al. | Mar 1985 | A |
4507019 | Thompson | Mar 1985 | A |
4508129 | Brown | Apr 1985 | A |
4511289 | Herron | Apr 1985 | A |
4519456 | Cochran | May 1985 | A |
4526232 | Hughson et al. | Jul 1985 | A |
4526839 | Herman et al. | Jul 1985 | A |
4541655 | Hunter | Sep 1985 | A |
4550782 | Lawson | Nov 1985 | A |
4553776 | Dodd | Nov 1985 | A |
4573248 | Hackett | Mar 1986 | A |
4576386 | Benson et al. | Mar 1986 | A |
4581817 | Kelly | Apr 1986 | A |
4590227 | Nakamura et al. | May 1986 | A |
4590995 | Evans | May 1986 | A |
4592577 | Ayres et al. | Jun 1986 | A |
4595063 | Jennings et al. | Jun 1986 | A |
4601343 | Lindsey, et al. | Jul 1986 | A |
4605063 | Ross | Aug 1986 | A |
4611662 | Harrington | Sep 1986 | A |
4614233 | Menard | Sep 1986 | A |
4629218 | Dubois | Dec 1986 | A |
4630849 | Fukui et al. | Dec 1986 | A |
4632944 | Thompson | Dec 1986 | A |
4634317 | Skogberg et al. | Jan 1987 | A |
4635333 | Finch | Jan 1987 | A |
4637436 | Stewart, Jr. et al. | Jan 1987 | A |
4646787 | Rush et al. | Mar 1987 | A |
4649492 | Sinha et al. | Mar 1987 | A |
4651836 | Richards | Mar 1987 | A |
4656779 | Fedeli | Apr 1987 | A |
4660863 | Bailey et al. | Apr 1987 | A |
4662446 | Brisco et al. | May 1987 | A |
4669541 | Bissonnette | Jun 1987 | A |
4674572 | Gallus | Jun 1987 | A |
4682797 | Hildner | Jul 1987 | A |
4685191 | Mueller et al. | Aug 1987 | A |
4685834 | Jordan | Aug 1987 | A |
4693498 | Baugh et al. | Sep 1987 | A |
4711474 | Patrick | Dec 1987 | A |
4714117 | Dech | Dec 1987 | A |
4730851 | Watts | Mar 1988 | A |
4735444 | Skipper | Apr 1988 | A |
4739654 | Pilkington et al. | Apr 1988 | A |
4739916 | Ayres et al. | Apr 1988 | A |
4758025 | Frick | Jul 1988 | A |
4776394 | Lynde et al. | Oct 1988 | A |
4778088 | Miller | Oct 1988 | A |
4793382 | Szalvay | Dec 1988 | A |
4796668 | Depret | Jan 1989 | A |
4817710 | Edwards et al. | Apr 1989 | A |
4817712 | Bodine | Apr 1989 | A |
4817716 | Taylor et al. | Apr 1989 | A |
4826347 | Baril et al. | May 1989 | A |
4827594 | Cartry et al. | May 1989 | A |
4828033 | Frison | May 1989 | A |
4830109 | Wedel | May 1989 | A |
4832382 | Kapgan | May 1989 | A |
4836579 | Wester et al. | Jun 1989 | A |
4842082 | Springer | Jun 1989 | A |
4848459 | Blackwell, et al. | Jul 1989 | A |
4856592 | Van Bilderbeek et al. | Aug 1989 | A |
4865127 | Koster | Sep 1989 | A |
4871199 | Ridenour, et al. | Oct 1989 | A |
4872253 | Carstensen | Oct 1989 | A |
4887646 | Groves | Dec 1989 | A |
4892337 | Gunderson | Jan 1990 | A |
4893658 | Kimura et al. | Jan 1990 | A |
4904136 | Matsumoto | Feb 1990 | A |
4907828 | Change | Mar 1990 | A |
4911237 | Melenyzer | Mar 1990 | A |
4913758 | Koster | Apr 1990 | A |
4915177 | Claycomb | Apr 1990 | A |
4915426 | Skipper | Apr 1990 | A |
4934312 | Koster et al. | Jun 1990 | A |
4938291 | Lynde et al. | Jul 1990 | A |
4941512 | McParland | Jul 1990 | A |
4941532 | Hurt et al. | Jul 1990 | A |
4942925 | Themig | Jul 1990 | A |
4942926 | Lessi | Jul 1990 | A |
4958691 | Hipp | Sep 1990 | A |
4968184 | Reid | Nov 1990 | A |
4971152 | Koster et al. | Nov 1990 | A |
4976322 | Abdrakhmanov et al. | Dec 1990 | A |
4981250 | Persson | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5014779 | Meling et al. | May 1991 | A |
5015017 | Geary | May 1991 | A |
5026074 | Hoes et al. | Jun 1991 | A |
5031699 | Artynov et al. | Jul 1991 | A |
5040283 | Pelgrom | Aug 1991 | A |
5044676 | Burton et al. | Sep 1991 | A |
5052483 | Hudson | Oct 1991 | A |
5059043 | Kuhne | Oct 1991 | A |
5064004 | Lundell | Nov 1991 | A |
5079837 | Vanselow | Jan 1992 | A |
5083608 | Abdrakhmanov et al. | Jan 1992 | A |
5093015 | Oldiges | Mar 1992 | A |
5095991 | Milberger | Mar 1992 | A |
5107221 | N'Guyen et al. | Apr 1992 | A |
5119661 | Abdrakhmanov et al. | Jun 1992 | A |
5134891 | Canevet | Aug 1992 | A |
5150755 | Cassel et al. | Sep 1992 | A |
5156043 | Ose | Oct 1992 | A |
5156213 | George et al. | Oct 1992 | A |
5156223 | Hipp | Oct 1992 | A |
5174376 | Singeetham | Dec 1992 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5197553 | Leturno | Mar 1993 | A |
5209600 | Koster | May 1993 | A |
5226492 | Solaeche P. et al. | Jul 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5275242 | Payne | Jan 1994 | A |
5282508 | Ellingsen et al. | Feb 1994 | A |
5286393 | Oldiges et al. | Feb 1994 | A |
5309621 | ODonnell, et al. | May 1994 | A |
5314014 | Tucker | May 1994 | A |
5314209 | Kuhne | May 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5318131 | Baker | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5326137 | Lorenz et al. | Jul 1994 | A |
5330850 | Suzuki et al. | Jul 1994 | A |
5332038 | Tapp et al. | Jul 1994 | A |
5332049 | Tew | Jul 1994 | A |
5333692 | Baugh et al. | Aug 1994 | A |
5335736 | Windsor | Aug 1994 | A |
5337808 | Graham | Aug 1994 | A |
5337823 | Nobileau | Aug 1994 | A |
5337827 | Hromas et al. | Aug 1994 | A |
5339894 | Stotler | Aug 1994 | A |
5343949 | Ross et al. | Sep 1994 | A |
5346007 | Dillon et al. | Sep 1994 | A |
5348087 | Williamson, Jr. | Sep 1994 | A |
5348093 | Wood et al. | Sep 1994 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5348668 | Oldiges et al. | Sep 1994 | A |
5351752 | Wood et al. | Oct 1994 | A |
5360239 | Klementich | Nov 1994 | A |
5360292 | Allen et al. | Nov 1994 | A |
5361843 | Shy et al. | Nov 1994 | A |
5366010 | Zwart | Nov 1994 | A |
5366012 | Lohbeck | Nov 1994 | A |
5368075 | Bäro et al. | Nov 1994 | A |
5370425 | Dougherty et al. | Dec 1994 | A |
5375661 | Daneshy et al. | Dec 1994 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5390735 | Williamson, Jr. | Feb 1995 | A |
5390742 | Dines et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5400827 | Baro et al. | Mar 1995 | A |
5405171 | Allen et al. | Apr 1995 | A |
5413180 | Ross et al. | May 1995 | A |
5425559 | Nobileau | Jun 1995 | A |
5426130 | Thurber et al. | Jun 1995 | A |
5431831 | Vincent | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439320 | Abrams | Aug 1995 | A |
5447201 | Mohn | Sep 1995 | A |
5454419 | Vloedman | Oct 1995 | A |
5456319 | Schmidt et al. | Oct 1995 | A |
5458194 | Brooks | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5467822 | Zwart | Nov 1995 | A |
5472055 | Simson et al. | Dec 1995 | A |
5474334 | Eppink | Dec 1995 | A |
5492173 | Kilgore et al. | Feb 1996 | A |
5494106 | Gueguen et al. | Feb 1996 | A |
5507343 | Carlton et al. | Apr 1996 | A |
5511620 | Baugh et al. | Apr 1996 | A |
5524937 | Sides et al. | Jun 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5536422 | Oldiges et al. | Jul 1996 | A |
5540281 | Round | Jul 1996 | A |
5554244 | Ruggles et al. | Sep 1996 | A |
5566772 | Coone et al. | Oct 1996 | A |
5576485 | Serata | Nov 1996 | A |
5584512 | Carstensen | Dec 1996 | A |
5606792 | Schafer | Mar 1997 | A |
5611399 | Richard et al. | Mar 1997 | A |
5613557 | Blount et al. | Mar 1997 | A |
5617918 | Cooksey et al. | Apr 1997 | A |
5662180 | Coffman et al. | Sep 1997 | A |
5664327 | Swars | Sep 1997 | A |
5667011 | Gill et al. | Sep 1997 | A |
5667252 | Schafer et al. | Sep 1997 | A |
5678609 | Washburn | Oct 1997 | A |
5685369 | Ellis et al. | Nov 1997 | A |
5689871 | Carstensen | Nov 1997 | A |
5695008 | Bertet et al. | Dec 1997 | A |
5695009 | Hipp | Dec 1997 | A |
5697449 | Hennig et al. | Dec 1997 | A |
5718288 | Bertet et al. | Feb 1998 | A |
5743335 | Bussear | Apr 1998 | A |
5749419 | Coronado et al. | May 1998 | A |
5749585 | Lembcke | May 1998 | A |
5775422 | Wong et al. | Jul 1998 | A |
5785120 | Smalley et al. | Jul 1998 | A |
5787933 | Russ et al. | Aug 1998 | A |
5791419 | Valisalo | Aug 1998 | A |
5794702 | Nobileau | Aug 1998 | A |
5797454 | Hipp | Aug 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5829524 | Flanders et al. | Nov 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5845945 | Carstensen | Dec 1998 | A |
5849188 | Voll et al. | Dec 1998 | A |
5857524 | Harris | Jan 1999 | A |
5862866 | Springer | Jan 1999 | A |
5875851 | Vick, Jr. et al. | Mar 1999 | A |
5885941 | Sateva et al. | Mar 1999 | A |
5895079 | Carstensen et al. | Apr 1999 | A |
5901789 | Donnelly et al. | May 1999 | A |
5918677 | Head | Jul 1999 | A |
5924745 | Campbell | Jul 1999 | A |
5931511 | DeLange et al. | Aug 1999 | A |
5944100 | Hipp | Aug 1999 | A |
5944107 | Ohmer | Aug 1999 | A |
5944108 | Baugh et al. | Aug 1999 | A |
5951207 | Chen | Sep 1999 | A |
5957195 | Bailey et al. | Sep 1999 | A |
5971443 | Noel et al. | Oct 1999 | A |
5975587 | Wood et al. | Nov 1999 | A |
5979560 | Nobileau | Nov 1999 | A |
5984369 | Crook et al. | Nov 1999 | A |
5984568 | Lohbeck | Nov 1999 | A |
6012521 | Zunkel et al. | Jan 2000 | A |
6012522 | Donnelly et al. | Jan 2000 | A |
6012523 | Campbell et al. | Jan 2000 | A |
6012874 | Groneck et al. | Jan 2000 | A |
6015012 | Reddick | Jan 2000 | A |
6017168 | Fraser et al. | Jan 2000 | A |
6021850 | Wood et al. | Feb 2000 | A |
6029748 | Forsyth et al. | Feb 2000 | A |
6035954 | Hipp | Mar 2000 | A |
6044906 | Saltel | Apr 2000 | A |
6047505 | Willow | Apr 2000 | A |
6047774 | Allen | Apr 2000 | A |
6050341 | Metcalf | Apr 2000 | A |
6050346 | Hipp | Apr 2000 | A |
6056059 | Ohmer | May 2000 | A |
6056324 | Reimert et al. | May 2000 | A |
6062324 | Hipp | May 2000 | A |
6065500 | Metcalfe | May 2000 | A |
6070671 | Cumming et al. | Jun 2000 | A |
6073692 | Wood et al. | Jun 2000 | A |
6074133 | Kelsey | Jun 2000 | A |
6078031 | Bliault et al. | Jun 2000 | A |
6079495 | Ohmer | Jun 2000 | A |
6085838 | Vercaemer et al. | Jul 2000 | A |
6089320 | LaGrange | Jul 2000 | A |
6098717 | Bailey et al. | Aug 2000 | A |
6102119 | Raines | Aug 2000 | A |
6109355 | Reid | Aug 2000 | A |
6112818 | Campbell | Sep 2000 | A |
6131265 | Bird | Oct 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6138761 | Freeman et al. | Oct 2000 | A |
6142230 | Smalley et al. | Nov 2000 | A |
6158963 | Hollis | Dec 2000 | A |
6167970 | Stout | Jan 2001 | B1 |
6182775 | Hipp | Feb 2001 | B1 |
6196336 | Fincher et al. | Mar 2001 | B1 |
6226855 | Maine | May 2001 | B1 |
6231086 | Tierling | May 2001 | B1 |
6250385 | Montaron | Jun 2001 | B1 |
6263966 | Haut et al. | Jul 2001 | B1 |
6263968 | Freeman et al. | Jul 2001 | B1 |
6263972 | Richard et al. | Jul 2001 | B1 |
6267181 | Rhein Knudson et al. | Jul 2001 | B1 |
6275556 | Kinney et al. | Aug 2001 | B1 |
6283211 | Vloedman | Sep 2001 | B1 |
6315043 | Farrant et al. | Nov 2001 | B1 |
6318457 | Den Boer et al. | Nov 2001 | B1 |
6318465 | Coon et al. | Nov 2001 | B1 |
6322109 | Campbell et al. | Nov 2001 | B1 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6328113 | Cook | Dec 2001 | B1 |
6343495 | Cheppe et al. | Feb 2002 | B1 |
6343657 | Baugh et al. | Feb 2002 | B1 |
6345431 | Greig | Feb 2002 | B1 |
6352112 | Mills | Mar 2002 | B1 |
6354373 | Vercaemer et al. | Mar 2002 | B1 |
6390720 | LeBegue et al. | May 2002 | B1 |
6405761 | Shimizu et al. | Jun 2002 | B1 |
6406063 | Pfeiffer | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
6419026 | MacKenzie et al. | Jul 2002 | B1 |
6419033 | Hahn et al. | Jul 2002 | B1 |
6419147 | Daniel | Jul 2002 | B1 |
6425444 | Metcalfe et al. | Jul 2002 | B1 |
6431277 | Cox et al. | Aug 2002 | B1 |
6446724 | Baugh et al. | Sep 2002 | B1 |
6450261 | Baugh | Sep 2002 | B1 |
6454013 | Metcalfe | Sep 2002 | B1 |
6457532 | Simpson | Oct 2002 | B1 |
6457533 | Metcalfe | Oct 2002 | B1 |
6457749 | Heijnen | Oct 2002 | B1 |
6460615 | Heijnen | Oct 2002 | B1 |
6464008 | Roddy et al. | Oct 2002 | B1 |
6464014 | Bernat | Oct 2002 | B1 |
6470966 | Cook et al. | Oct 2002 | B1 |
6470996 | Kyle et al. | Oct 2002 | B1 |
6478092 | Voll et al. | Nov 2002 | B1 |
6491108 | Slup et al. | Dec 2002 | B1 |
6497289 | Cook et al. | Dec 2002 | B1 |
6516887 | Nguyen et al. | Feb 2003 | B1 |
6517126 | Peterson et al. | Feb 2003 | B1 |
6527049 | Metcalfe et al. | Mar 2003 | B1 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6543552 | Metcalfe et al. | Apr 2003 | B1 |
6550539 | Maguire et al. | Apr 2003 | B1 |
6550821 | DeLange et al. | Apr 2003 | B1 |
6557640 | Cook et al. | May 2003 | B1 |
6561227 | Cook et al. | May 2003 | B1 |
6561279 | MacKenzie et al. | May 2003 | B1 |
6564875 | Bullock | May 2003 | B1 |
6568471 | Cook et al. | May 2003 | B1 |
6568488 | Wentworth et al. | May 2003 | B1 |
6575240 | Cook et al. | Jun 2003 | B1 |
6578630 | Simpson et al. | Jun 2003 | B1 |
6585053 | Coon | Jul 2003 | B1 |
6591905 | Coon | Jul 2003 | B1 |
6598677 | Baugh et al. | Jul 2003 | B1 |
6598678 | Simpson | Jul 2003 | B1 |
6604763 | Cook et al. | Aug 2003 | B1 |
6607220 | Sivley | Aug 2003 | B1 |
6619696 | Baugh et al. | Sep 2003 | B1 |
6629567 | Lauritzen et al. | Oct 2003 | B1 |
6631759 | Cook et al. | Oct 2003 | B1 |
6631760 | Cook et al. | Oct 2003 | B1 |
6631765 | Baugh et al. | Oct 2003 | B1 |
6631769 | Cook et al. | Oct 2003 | B1 |
6634431 | Cook et al. | Oct 2003 | B1 |
6640895 | Murray | Nov 2003 | B1 |
6640903 | Cook et al. | Nov 2003 | B1 |
6648075 | Badrak et al. | Nov 2003 | B1 |
6668937 | Murray | Dec 2003 | B1 |
6672759 | Feger | Jan 2004 | B1 |
6679328 | Davis et al. | Jan 2004 | B1 |
6681862 | Freeman | Jan 2004 | B1 |
6684947 | Cook et al. | Feb 2004 | B1 |
6688397 | McClurkin et al. | Feb 2004 | B1 |
6695012 | Ring et al. | Feb 2004 | B1 |
6695065 | Simpson et al. | Feb 2004 | B1 |
6698517 | Simpson | Mar 2004 | B1 |
6705395 | Cook et al. | Mar 2004 | B1 |
6712154 | Cook et al. | Mar 2004 | B1 |
6719064 | Price-Smith et al. | Apr 2004 | B1 |
6722427 | Gano et al. | Apr 2004 | B1 |
6722437 | Vercaemer et al. | Apr 2004 | B1 |
6725919 | Cook et al. | Apr 2004 | B1 |
6725934 | Coronado et al. | Apr 2004 | B1 |
6725939 | Richard | Apr 2004 | B1 |
6732806 | Mauldin et al. | May 2004 | B1 |
6739392 | Cook et al. | May 2004 | B1 |
6745845 | Cook et al. | Jun 2004 | B1 |
6758278 | Cook et al. | Jul 2004 | B1 |
6796380 | Xu | Sep 2004 | B1 |
6814147 | Baugh | Nov 2004 | B1 |
6820690 | Vercaemer et al. | Nov 2004 | B1 |
6823937 | Cook et al. | Nov 2004 | B1 |
6832649 | Bode et al. | Dec 2004 | B1 |
6834725 | Whanger et al. | Dec 2004 | B1 |
6857473 | Cook et al. | Feb 2005 | B1 |
20010002626 | Frank et al. | Jun 2001 | A1 |
20010020532 | Baugh et al. | Sep 2001 | A1 |
20010045284 | Simpson et al. | Nov 2001 | A1 |
20010047870 | Cook et al. | Dec 2001 | A1 |
20020011339 | Murray | Jan 2002 | A1 |
20020020524 | Gano | Feb 2002 | A1 |
20020020531 | Ohmer | Feb 2002 | A1 |
20020033261 | Metcalfe | Mar 2002 | A1 |
20020062956 | Murray et al. | May 2002 | A1 |
20020066576 | Cook et al. | Jun 2002 | A1 |
20020066578 | Broome | Jun 2002 | A1 |
20020070023 | Turner et al. | Jun 2002 | A1 |
20020070031 | Voll et al. | Jun 2002 | A1 |
20020079101 | Baugh et al. | Jun 2002 | A1 |
20020084070 | Voll et al. | Jul 2002 | A1 |
20020092654 | Coronado et al. | Jul 2002 | A1 |
20020108756 | Harrall et al. | Aug 2002 | A1 |
20020139540 | Lauritzen | Oct 2002 | A1 |
20020144822 | Hackworth et al. | Oct 2002 | A1 |
20020148612 | Cook et al. | Oct 2002 | A1 |
20020185274 | Simpson et al. | Dec 2002 | A1 |
20020189816 | Cook et al. | Dec 2002 | A1 |
20020195252 | Maguire et al. | Dec 2002 | A1 |
20020195256 | Metcalfe et al. | Dec 2002 | A1 |
20030024708 | Ring et al. | Feb 2003 | A1 |
20030024711 | Simpson et al. | Feb 2003 | A1 |
20030034177 | Chitwood et al. | Feb 2003 | A1 |
20030047323 | Jackson et al. | Mar 2003 | A1 |
20030056991 | Hahn et al. | Mar 2003 | A1 |
20030066655 | Cook et al. | Apr 2003 | A1 |
20030067166 | Maguire | Apr 2003 | A1 |
20030075338 | Sivley | Apr 2003 | A1 |
20030094277 | Cook et al. | May 2003 | A1 |
20030094278 | Cook et al. | May 2003 | A1 |
20030094279 | Ring et al. | May 2003 | A1 |
20030098154 | Cook et al. | May 2003 | A1 |
20030098162 | Cook | May 2003 | A1 |
20030107217 | Daigle et al. | Jun 2003 | A1 |
20030116325 | Cook et al. | Jun 2003 | A1 |
20030121550 | Cook et al. | Jul 2003 | A1 |
20030121669 | Cook et al. | Jul 2003 | A1 |
20030173090 | Cook et al. | Sep 2003 | A1 |
20030192705 | Cook et al. | Oct 2003 | A1 |
20030222455 | Cook et al. | Dec 2003 | A1 |
20040011534 | Simonds et al. | Jan 2004 | A1 |
20040045616 | Cook et al. | Mar 2004 | A1 |
20040045718 | Brisco et al. | Mar 2004 | A1 |
20040060706 | Stephenson | Apr 2004 | A1 |
20040065466 | Tran et al. | Apr 2004 | A1 |
20040069499 | Cook et al. | Apr 2004 | A1 |
20040112589 | Cook et al. | Jun 2004 | A1 |
20040112606 | Lewis et al. | Jun 2004 | A1 |
20040118574 | Cook et al. | Jun 2004 | A1 |
20040123983 | Cook et al. | Jul 2004 | A1 |
20040123988 | Cook et al. | Jul 2004 | A1 |
20040188099 | Cook et al. | Sep 2004 | A1 |
20040216873 | Frost et al. | Nov 2004 | A1 |
20040231855 | Cook et al. | Nov 2004 | A1 |
20040238181 | Cook et al. | Dec 2004 | A1 |
20040244968 | Cook et al. | Dec 2004 | A1 |
20050028988 | Cook et al. | Feb 2005 | A1 |
20050039928 | Cook et al. | Feb 2005 | A1 |
20050045324 | Cook et al. | Mar 2005 | A1 |
20050045341 | Cook et al. | Mar 2005 | A1 |
20050056433 | Watson et al. | Mar 2005 | A1 |
20050056434 | Ring et al. | Mar 2005 | A1 |
20050077051 | Cook et al. | Apr 2005 | A1 |
20050081358 | Cook et al. | Apr 2005 | A1 |
20050087337 | Brisco et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
767364 | Feb 2004 | AU |
770008 | Jul 2004 | AU |
770359 | Jul 2004 | AU |
771884 | Aug 2004 | AU |
736288 | Jun 1966 | CA |
771462 | Nov 1967 | CA |
1171310 | Jul 1984 | CA |
174521 | Apr 1953 | DE |
2458188 | Jun 1975 | DE |
203767 | Nov 1983 | DE |
233607 | Mar 1986 | DE |
278517 | May 1990 | DE |
0084940 | Aug 1983 | EP |
0272511 | Dec 1987 | EP |
0294264 | May 1988 | EP |
0 553566 | Dec 1992 | EP |
0633391 | Jan 1995 | EP |
0713953 | Nov 1995 | EP |
0823534 | Feb 1998 | EP |
0881354 | Dec 1998 | EP |
0881359 | Dec 1998 | EP |
0899420 | Mar 1999 | EP |
0937861 | Aug 1999 | EP |
0952305 | Oct 1999 | EP |
0952306 | Oct 1999 | EP |
1152120 | Nov 2001 | EP |
1152120 | Nov 2001 | EP |
1325596 | Apr 1963 | FR |
2717855 | Sep 1995 | FR |
2741907 | Jun 1997 | FR |
2771133 | May 1999 | FR |
2780751 | Jan 2000 | FR |
2841626 | Jan 2004 | FR |
851096 | Oct 1960 | GB |
961750 | Jun 1964 | GB |
1000383 | Oct 1965 | GB |
1062610 | Mar 1967 | GB |
1111536 | May 1968 | GB |
557823 | Dec 1973 | GB |
1448304 | Sep 1976 | GB |
1460864 | Jan 1977 | GB |
1542847 | Mar 1979 | GB |
1563740 | Mar 1980 | GB |
2058877 | Apr 1981 | GB |
2108228 | May 1983 | GB |
2115860 | Sep 1983 | GB |
2125876 | Mar 1984 | GB |
2211537 | Jul 1989 | GB |
2216926 | Oct 1989 | GB |
2243191 | Oct 1991 | GB |
2256910 | Dec 1992 | GB |
2257184 | Jun 1993 | GB |
2305682 | Apr 1997 | GB |
2325949 | May 1998 | GB |
2322655 | Sep 1998 | GB |
2326896 | Jan 1999 | GB |
2329916 | Apr 1999 | GB |
2329918 | Apr 1999 | GB |
2336383 | Oct 1999 | GB |
2355738 | Apr 2000 | GB |
2343691 | May 2000 | GB |
2344606 | Jun 2000 | GB |
2368865 | Jul 2000 | GB |
2346165 | Aug 2000 | GB |
2346632 | Aug 2000 | GB |
2347445 | Sep 2000 | GB |
2347446 | Sep 2000 | GB |
2347950 | Sep 2000 | GB |
2347952 | Sep 2000 | GB |
2348223 | Sep 2000 | GB |
2348657 | Oct 2000 | GB |
2357099 | Dec 2000 | GB |
2356651 | May 2001 | GB |
2350137 | Aug 2001 | GB |
2361724 | Oct 2001 | GB |
2359837 | Apr 2002 | GB |
2370301 | Jun 2002 | GB |
2371064 | Jul 2002 | GB |
2371574 | Jul 2002 | GB |
2373524 | Sep 2002 | GB |
2367842 | Oct 2002 | GB |
2374622 | Oct 2002 | GB |
2375560 | Nov 2002 | GB |
2380213 | Apr 2003 | GB |
2380503 | Apr 2003 | GB |
2381019 | Apr 2003 | GB |
2343691 | May 2003 | GB |
2344606 | Aug 2003 | GB |
2380213 | Aug 2003 | GB |
2380214 | Aug 2003 | GB |
2380215 | Aug 2003 | GB |
2348223 | Sep 2003 | GB |
2347952 | Oct 2003 | GB |
2348657 | Oct 2003 | GB |
2384800 | Oct 2003 | GB |
2384801 | Oct 2003 | GB |
2384802 | Oct 2003 | GB |
2384803 | Oct 2003 | GB |
2384804 | Oct 2003 | GB |
2384805 | Oct 2003 | GB |
2384806 | Oct 2003 | GB |
2384807 | Oct 2003 | GB |
2384808 | Oct 2003 | GB |
2385353 | Oct 2003 | GB |
2385354 | Oct 2003 | GB |
2385355 | Oct 2003 | GB |
2385356 | Oct 2003 | GB |
2385357 | Oct 2003 | GB |
2385358 | Oct 2003 | GB |
2385359 | Oct 2003 | GB |
2385360 | Oct 2003 | GB |
2385361 | Oct 2003 | GB |
2385362 | Oct 2003 | GB |
2385363 | Oct 2003 | GB |
2385619 | Oct 2003 | GB |
2385620 | Oct 2003 | GB |
2385621 | Oct 2003 | GB |
2385622 | Oct 2003 | GB |
2385623 | Oct 2003 | GB |
2387405 | Oct 2003 | GB |
2388134 | Nov 2003 | GB |
2388860 | Nov 2003 | GB |
2355738 | Dec 2003 | GB |
2388391 | Dec 2003 | GB |
2388392 | Dec 2003 | GB |
2388393 | Dec 2003 | GB |
2388394 | Dec 2003 | GB |
2388395 | Dec 2003 | GB |
2356651 | Feb 2004 | GB |
2368865 | Feb 2004 | GB |
2388860 | Feb 2004 | GB |
2388861 | Feb 2004 | GB |
2388862 | Feb 2004 | GB |
2390628 | Mar 2004 | GB |
2391033 | Mar 2004 | GB |
2392686 | Mar 2004 | GB |
2373524 | Apr 2004 | GB |
2390387 | Apr 2004 | GB |
2392686 | Apr 2004 | GB |
2392691 | Apr 2004 | GB |
2391575 | May 2004 | GB |
2392932 | Jun 2004 | GB |
2396635 | Jun 2004 | GB |
2396640 | Jun 2004 | GB |
2396641 | Jun 2004 | GB |
2396642 | Jun 2004 | GB |
2396643 | Jun 2004 | GB |
2396644 | Jun 2004 | GB |
2373468 | Jul 2004 | GB |
2397261 | Jul 2004 | GB |
2397262 | Jul 2004 | GB |
2397263 | Jul 2004 | GB |
2397264 | Jul 2004 | GB |
2397265 | Jul 2004 | GB |
2398317 | Aug 2004 | GB |
2398318 | Aug 2004 | GB |
2398319 | Aug 2004 | GB |
2398320 | Aug 2004 | GB |
2398321 | Aug 2004 | GB |
2398322 | Aug 2004 | GB |
2398323 | Aug 2004 | GB |
2382367 | Sep 2004 | GB |
2396643 | Sep 2004 | GB |
2397261 | Sep 2004 | GB |
2397262 | Sep 2004 | GB |
2397263 | Sep 2004 | GB |
2397264 | Sep 2004 | GB |
2397265 | Sep 2004 | GB |
2399120 | Sep 2004 | GB |
2399579 | Sep 2004 | GB |
2399580 | Sep 2004 | GB |
2399848 | Sep 2004 | GB |
2399849 | Sep 2004 | GB |
2399850 | Sep 2004 | GB |
2384502 | Oct 2004 | GB |
2396644 | Oct 2004 | GB |
2400624 | Oct 2004 | GB |
2396640 | Nov 2004 | GB |
2396642 | Nov 2004 | GB |
2401136 | Nov 2004 | GB |
2401137 | Nov 2004 | GB |
2401138 | Nov 2004 | GB |
2401630 | Nov 2004 | GB |
2401631 | Nov 2004 | GB |
2401632 | Nov 2004 | GB |
2401633 | Nov 2004 | GB |
2401634 | Nov 2004 | GB |
2401635 | Nov 2004 | GB |
2401636 | Nov 2004 | GB |
2401637 | Nov 2004 | GB |
2401638 | Nov 2004 | GB |
2401136 | Dec 2004 | GB |
2401137 | Dec 2004 | GB |
2401138 | Dec 2004 | GB |
2400624 | Feb 2005 | GB |
2404676 | Feb 2005 | GB |
2384807 | Mar 2005 | GB |
2388134 | Mar 2005 | GB |
2398320 | Mar 2005 | GB |
2398323 | Mar 2005 | GB |
2399848 | Mar 2005 | GB |
2399849 | Mar 2005 | GB |
2405893 | Mar 2005 | GB |
2406117 | Mar 2005 | GB |
2406118 | Mar 2005 | GB |
2406119 | Mar 2005 | GB |
2406120 | Mar 2005 | GB |
2406125 | Mar 2005 | GB |
2406126 | Mar 2005 | GB |
208458 | Oct 1985 | JP |
6475715 | Mar 1989 | JP |
102875 | Apr 1995 | JP |
11-169975 | Jun 1999 | JP |
94068 | Apr 2000 | JP |
107870 | Apr 2000 | JP |
162192 | Jun 2000 | JP |
2001-47161 | Feb 2001 | JP |
9001081 | Dec 1991 | NL |
113267 | May 1998 | RO |
1786241 | Jan 1993 | RU |
1804543 | Mar 1993 | RU |
1810482 | Apr 1993 | RU |
1818459 | May 1993 | RU |
2016345 | Jul 1994 | RU |
2039214 | Jul 1995 | RU |
2056201 | Mar 1996 | RU |
2064357 | Jul 1996 | RU |
2068940 | Nov 1996 | RU |
2068943 | Nov 1996 | RU |
2079633 | May 1997 | RU |
2083798 | Jul 1997 | RU |
2091655 | Sep 1997 | RU |
2095179 | Nov 1997 | RU |
2105128 | Feb 1998 | RU |
2108445 | Apr 1998 | RU |
2144128 | Jan 2000 | RU |
350833 | Sep 1972 | SU |
511468 | Sep 1976 | SU |
607950 | May 1978 | SU |
612004 | May 1978 | SU |
620582 | Jul 1978 | SU |
641070 | Jan 1979 | SU |
909114 | May 1979 | SU |
832049 | May 1981 | SU |
853089 | Aug 1981 | SU |
874952 | Oct 1981 | SU |
894169 | Jan 1982 | SU |
899850 | Jan 1982 | SU |
907220 | Feb 1982 | SU |
953172 | Aug 1982 | SU |
959878 | Sep 1982 | SU |
976019 | Nov 1982 | SU |
976020 | Nov 1982 | SU |
989038 | Jan 1983 | SU |
1002514 | Mar 1983 | SU |
1041671 | Sep 1983 | SU |
1051222 | Oct 1983 | SU |
1086118 | Apr 1984 | SU |
1077803 | Jul 1984 | SU |
1158400 | May 1985 | SU |
1212575 | Feb 1986 | SU |
1250637 | Aug 1986 | SU |
1324772 | Jul 1987 | SU |
1411434 | Jul 1988 | SU |
1430498 | Oct 1988 | SU |
1432190 | Oct 1988 | SU |
1601330 | Oct 1990 | SU |
1627663 | Feb 1991 | SU |
1659621 | Jun 1991 | SU |
1663179 | Jul 1991 | SU |
1663180 | Jul 1991 | SU |
1677225 | Sep 1991 | SU |
1677248 | Sep 1991 | SU |
1686123 | Oct 1991 | SU |
1686124 | Oct 1991 | SU |
1686125 | Oct 1991 | SU |
1698413 | Dec 1991 | SU |
1710694 | Feb 1992 | SU |
1730429 | Apr 1992 | SU |
1745873 | Jul 1992 | SU |
1747673 | Jul 1992 | SU |
1749267 | Jul 1992 | SU |
1295799 | Feb 1995 | SU |
8100132 | Jan 1981 | WO |
9005598 | Mar 1990 | WO |
9201859 | Feb 1992 | WO |
9208875 | May 1992 | WO |
9325799 | Dec 1993 | WO |
9325800 | Dec 1993 | WO |
9421887 | Sep 1994 | WO |
9425655 | Nov 1994 | WO |
9503476 | Feb 1995 | WO |
9601937 | Jan 1996 | WO |
9621083 | Jul 1996 | WO |
9626350 | Aug 1996 | WO |
9637681 | Nov 1996 | WO |
9706346 | Feb 1997 | WO |
9711306 | Mar 1997 | WO |
9717524 | May 1997 | WO |
9717526 | May 1997 | WO |
9717527 | May 1997 | WO |
9720130 | Jun 1997 | WO |
9721901 | Jun 1997 | WO |
WO9735084 | Sep 1997 | WO |
9800626 | Jan 1998 | WO |
9807957 | Feb 1998 | WO |
9809053 | Mar 1998 | WO |
9822690 | May 1998 | WO |
9826152 | Jun 1998 | WO |
9842947 | Oct 1998 | WO |
9849423 | Nov 1998 | WO |
9902818 | Jan 1999 | WO |
9904135 | Jan 1999 | WO |
9906670 | Feb 1999 | WO |
9908827 | Feb 1999 | WO |
9908828 | Feb 1999 | WO |
9918328 | Apr 1999 | WO |
9923354 | May 1999 | WO |
9925524 | May 1999 | WO |
9925951 | May 1999 | WO |
9935368 | Jul 1999 | WO |
9943923 | Sep 1999 | WO |
0001926 | Jan 2000 | WO |
0004271 | Jan 2000 | WO |
0008301 | Feb 2000 | WO |
0026500 | May 2000 | WO |
0026501 | May 2000 | WO |
0026502 | May 2000 | WO |
0031375 | Jun 2000 | WO |
0037767 | Jun 2000 | WO |
0037768 | Jun 2000 | WO |
0037771 | Jun 2000 | WO |
0037772 | Jun 2000 | WO |
WO0337766 | Jun 2000 | WO |
0039432 | Jul 2000 | WO |
0046484 | Aug 2000 | WO |
0050727 | Aug 2000 | WO |
0050732 | Aug 2000 | WO |
0050733 | Aug 2000 | WO |
0077431 | Dec 2000 | WO |
WO0104520 | Jan 2001 | WO |
WO0104535 | Jan 2001 | WO |
WO0118354 | Mar 2001 | WO |
WO0133037 | May 2001 | WO |
WO0160545 | Aug 2001 | WO |
WO0183943 | Nov 2001 | WO |
WO0198623 | Dec 2001 | WO |
WO0201102 | Jan 2002 | WO |
WO0210550 | Feb 2002 | WO |
WO0210551 | Feb 2002 | WO |
WO 0220941 | Mar 2002 | WO |
WO0225059 | Mar 2002 | WO |
WO02095181 | May 2002 | WO |
WO02053867 | Jul 2002 | WO |
WO02053867 | Jul 2002 | WO |
WO02066783 | Aug 2002 | WO |
WO02068792 | Sep 2002 | WO |
WO02075107 | Sep 2002 | WO |
WO02077411 | Oct 2002 | WO |
WO02081863 | Oct 2002 | WO |
WO02081864 | Oct 2002 | WO |
WO02086285 | Oct 2002 | WO |
WO02086286 | Oct 2002 | WO |
WO02090713 | Nov 2002 | WO |
WO02103150 | Dec 2002 | WO |
WO03004819 | Jan 2003 | WO |
WO03004819 | Jan 2003 | WO |
WO03004820 | Jan 2003 | WO |
WO03008756 | Jan 2003 | WO |
WO03004820 | Jan 2003 | WO |
WO03012255 | Feb 2003 | WO |
WO03016669 | Feb 2003 | WO |
WO03016669 | Feb 2003 | WO |
WO03023178 | Mar 2003 | WO |
WO03023178 | Mar 2003 | WO |
WO03023179 | Mar 2003 | WO |
WO03023179 | Mar 2003 | WO |
WO03029607 | Apr 2003 | WO |
WO03029608 | Apr 2003 | WO |
WO03042486 | May 2003 | WO |
WO03042486 | May 2003 | WO |
WO03042487 | May 2003 | WO |
WO03042487 | May 2003 | WO |
WO03042489 | May 2003 | WO |
WO03048520 | Jun 2003 | WO |
WO03048521 | Jun 2003 | WO |
WO03055616 | Jul 2003 | WO |
WO03058022 | Jul 2003 | WO |
WO03058022 | Jul 2003 | WO |
WO03059549 | Jul 2003 | WO |
WO03064813 | Aug 2003 | WO |
WO03071086 | Aug 2003 | WO |
WO03071086 | Aug 2003 | WO |
WO03078785 | Sep 2003 | WO |
WO03078785 | Sep 2003 | WO |
WO03086675 | Oct 2003 | WO |
WO03089161 | Oct 2003 | WO |
WO03089161 | Oct 2003 | WO |
WO03093623 | Nov 2003 | WO |
WO03093623 | Nov 2003 | WO |
WO03102365 | Dec 2003 | WO |
WO03104601 | Dec 2003 | WO |
WO03104601 | Dec 2003 | WO |
WO03106130 | Dec 2003 | WO |
WO04003337 | Jan 2004 | WO |
WO04009950 | Jan 2004 | WO |
WO04010039 | Jan 2004 | WO |
WO04010039 | Jan 2004 | WO |
WO04011776 | Feb 2004 | WO |
WO04011776 | Feb 2004 | WO |
WO04018823 | Mar 2004 | WO |
WO04018824 | Mar 2004 | WO |
WO04018824 | Mar 2004 | WO |
WO04020895 | Mar 2004 | WO |
WO04020895 | Mar 2004 | WO |
WO04023014 | Mar 2004 | WO |
WOO4023014 | Mar 2004 | WO |
WO04026017 | Apr 2004 | WO |
WO04026017 | Apr 2004 | WO |
WO04026073 | Apr 2004 | WO |
WO04026073 | Apr 2004 | WO |
WO04026500 | Apr 2004 | WO |
WO04026500 | Apr 2004 | WO |
WO04027200 | Apr 2004 | WO |
WO04027200 | Apr 2004 | WO |
WO04027204 | Apr 2004 | WO |
WO04027204 | Apr 2004 | WO |
WO04027205 | Apr 2004 | WO |
WO04027205 | Apr 2004 | WO |
WO04027392 | Apr 2004 | WO |
WO04027786 | Apr 2004 | WO |
WO04027786 | Apr 2004 | WO |
WO04053434 | Jun 2004 | WO |
WO04053434 | Jun 2004 | WO |
WO04057715 | Jul 2004 | WO |
WO04057715 | Jul 2004 | WO |
WO04067961 | Aug 2004 | WO |
WO04067961 | Aug 2004 | WO |
WO04074622 | Sep 2004 | WO |
WO04074622 | Sep 2004 | WO |
WO04076798 | Sep 2004 | WO |
WO04076798 | Sep 2004 | WO |
WO04081346 | Sep 2004 | WO |
WO04083591 | Sep 2004 | WO |
WO04083591 | Sep 2004 | WO |
WO04083592 | Sep 2004 | WO |
WO04083593 | Sep 2004 | WO |
WO04083594 | Sep 2004 | WO |
WO04085790 | Oct 2004 | WO |
WO04089608 | Oct 2004 | WO |
WO04092527 | Oct 2004 | WO |
WO04092528 | Oct 2004 | WO |
WO04092530 | Oct 2004 | WO |
WO04092530 | Oct 2004 | WO |
WO04094766 | Nov 2004 | WO |
WO05017303 | Feb 2005 | WO |
WO05021921 | Mar 2005 | WO |
WO05021922 | Mar 2005 | WO |
WO05024170 | Mar 2005 | WO |
WO05024171 | Mar 2005 | WO |
WO05028803 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
60162671 | Nov 1999 | US |