The present disclosure is directed generally to wellbore flow-control assemblies for hydrocarbon wells, and more particularly to hydrocarbon wells and components and/or methods thereof that include the wellbore flow-control assemblies.
Well drilling operations may utilize a variety of steps during the formation of, completion of, and/or production from a well, such as a hydrocarbon well. Often, these steps are performed sequentially, with dedicated and/or specialized equipment and/or crews being utilized to perform each of the steps. While such a methodology may be effective, it may be costly and/or time-consuming to implement due to equipment costs, labor costs, and/or time required to remove one piece of equipment from the well and deploy another piece of equipment within the well.
As an illustrative example, and subsequent to formation of a wellbore within a subterranean formation, it may be desirable to circulate drilling fluids, such as drilling mud, from the wellbore, to circulate a completion and/or breaker fluid into the subterranean formation, and/or to pump a wiper plug or other sealing device to a terminal depth of the wellbore. These operations typically involve supplying a fluid stream through a fluid conduit and from a surface region to, or proximal to, a terminal depth of the wellbore and may require a substantially fluid-tight seal within the fluid conduit from the top of the wellbore to the terminal depth of the wellbore.
Traditionally, a casing string, or liner, may be located within the wellbore. However, this casing string often includes a plurality of holes, perforations, passages, and/or other fluid conduits along a length thereof. These fluid conduits may be configured to provide for outflow of a stimulant fluid from the casing string into the subterranean formation and/or inflow of a reservoir fluid from the subterranean formation into the casing string. Thus, any fluid that is supplied to the casing string may leak through these fluid conduits to the subterranean formation, thereby decreasing a flow rate at the terminal end of the wellbore. Therefore, an inner string that does not include holes along a length thereof may be run into the casing string to facilitate providing the fluid to the terminal depth of the wellbore. However, insertion and/or subsequent removal of this inner string may significantly increase the cost and/or time required to complete the well drilling operation.
As another illustrative example, it also may be desirable to perform one or more stimulation operations to stimulate the subterranean formation and increase a potential for production of the reservoir fluid therefrom. These stimulation operations may include providing a stimulant fluid to specific, or target, regions of the subterranean formation and may utilize stimulation ports within the casing string to provide the stimulant fluid from the casing conduit to the target region of the subterranean formation.
However, and subsequent to the stimulation operations, it also may be desirable to control a flow rate of the reservoir fluid into the casing conduit during production of the reservoir fluid from the casing conduit. Typically, a desired flow rate of the reservoir fluid into the casing conduit during production from the subterranean formation is significantly lower than a desired flow rate of the stimulant fluid during stimulation of the subterranean formation. Thus, it may be desirable to decrease and/or restrict a flow rate of the reservoir fluid from the subterranean formation into the casing conduit through the stimulation ports. However, such control may be difficult, costly, and/or time-consuming to implement. Thus, there exists a need for improved systems and methods for completing a well and/or producing a reservoir fluid therefrom.
Wellbore flow-control assemblies for hydrocarbon wells, systems that include the wellbore flow-control assemblies, and/or methods that utilize the wellbore flow-control assemblies. The wellbore flow-control assemblies define a flow-controlled fluid conduit that selectively conveys a fluid flow, which may include a fluid outflow and/or a fluid inflow, between a subterranean formation and a casing conduit. The wellbore flow-control assemblies include a sacrificial flow-control device that defines a first portion of the flow-controlled fluid conduit and a directional flow-control device that defines a second portion of the flow-controlled fluid conduit. The sacrificial flow-control device resists the fluid flow prior to a flow-initiation event and permits the fluid flow subsequent to the flow-initiation event. The directional flow-control device permits one of the fluid outflow and the fluid inflow and resists the other of the fluid outflow and the fluid inflow.
In some embodiments, the wellbore flow-control assemblies define a production flow path that extends between the casing conduit and the subterranean formation. In some embodiments, the flow-controlled fluid conduit defines a portion, or all, of the production flow path. In some embodiments, the production flow path selectively conveys the fluid inflow from the subterranean formation to the casing conduit and resists the fluid outflow from the casing conduit to the subterranean formation.
In some embodiments, the wellbore flow-control assemblies define a stimulation flow path that extends between the casing conduit and the subterranean formation. In some embodiments, the flow-controlled fluid conduit defines a portion, or all, of the stimulation flow path. In some embodiments, the stimulation flow path conveys the fluid outflow and resists the fluid inflow.
In some embodiments, the wellbore flow-control assemblies define both the stimulation flow path and the production flow path. When the wellbore flow-control assemblies define both the stimulation flow path and the production flow path, the flow-controlled fluid conduit may define the, or the entire, stimulation flow path and a portion of the production flow path. In some embodiments, the wellbore flow-control assemblies further include a bypass conduit that forms a portion of the production flow path and bypasses a portion of the flow-controlled fluid conduit, such as the directional flow-control device.
In some embodiments, the wellbore flow-control assemblies may form a portion of a casing string that extends within a wellbore and defines the casing conduit. In some embodiments, the casing string may include a plurality of wellbore flow-control assemblies. In some embodiments, the systems and methods may include circulating a drilling fluid from the wellbore prior to the flow-initiation event, stimulating the subterranean formation subsequent to the flow-initiation event, and/or producing a reservoir fluid from the subterranean formation subsequent to the flow-initiation event.
In general, structures and/or features that are, or are likely to be, included in a given embodiment are indicated in solid lines in
As illustrated in dashed lines in
Wellbore flow-control assemblies 100 selectively provide fluid communication between casing conduit 44 and subterranean formation 68 therethrough. Wellbore flow-control assemblies 100 according to the present disclosure include and/or define a flow-controlled fluid conduit 110 that is separate, distinct, and/or different from casing conduit 44 and selectively conveys a fluid flow between subterranean formation 68 and casing conduit 44. Depending upon the particular embodiment, the fluid flow may include a fluid outflow from the casing conduit into the subterranean formation and/or a fluid inflow from the subterranean formation into the casing conduit.
Wellbore flow-control assemblies 100 further include a sacrificial flow-control device 140 that defines a first portion of the flow-controlled fluid conduit. The sacrificial flow-control device is adapted, configured, designed, and/or constructed to resist, block, and/or occlude the fluid flow through the flow-controlled fluid conduit prior to occurrence of a flow-initiation event (i.e., may be in a blocking configuration) and to permit, provide for, and/or allow the fluid flow through the flow-controlled fluid conduit subsequent to the flow-initiation event (i.e., may be in a flow configuration).
Illustrative, non-exclusive examples of sacrificial flow-control devices 140 according to the present disclosure include structures that are adapted, configured, and/or constructed to transition from the blocking configuration to the flow configuration a single time, structures that are configured to be at least partially destroyed upon transitioning from the blocking configuration to the flow configuration, and/or structures that include a sacrificial body that is configured to be separated, detached, and/or removed from a remainder of the sacrificial flow-control device upon transitioning from the blocking configuration to the flow configuration (such as subsequent to the flow-initiation event). Additional illustrative, non-exclusive examples of sacrificial flow-control devices 140 according to the present disclosure include burst disks, rupture disks, and/or shear disks.
In addition, wellbore flow-control assemblies 100 further include a directional flow-control device 120 that defines a second portion of the flow-controlled fluid conduit. The directional flow-control device is adapted, configured, designed, and/or constructed to permit one of the fluid outflow and the fluid inflow and to resist the other of the fluid outflow and the fluid inflow. Illustrative, non-exclusive examples of directional flow-control devices 120 according to the present disclosure include a ball and seat, a check valve, and/or a flapper.
Wellbore flow-control assemblies 100 may be included in, operatively attached to, and/or utilized with any suitable portion of well 20 and/or any suitable component thereof. As an illustrative, non-exclusive example, casing string 40 may include a plurality of casing segments 50, and one or more casing subs 52, which also may be referred to herein as stimulation subs 52 and/or production subs 52, and wellbore flow-control assemblies 100 may be operatively attached to and/or form a portion of casing segments 50 and/or casing subs 52.
As discussed in more detail herein, wellbore flow-control assemblies 100 according to the present disclosure may be utilized during any suitable operation and/or process that may be performed on and/or in well 20 and/or any suitable component thereof. As an illustrative, non-exclusive example, and subsequent to formation of wellbore 30 and insertion of casing string 40 therein, it may be desirable to circulate, remove, flush, and/or otherwise pump a first fluid from the wellbore, to replace the first fluid with a second fluid, to provide the second fluid to the subterranean formation, and/or to pump one or more structures into the wellbore. As illustrative, non-exclusive examples, this may include circulating a drilling fluid 80, such as a drilling mud, which may include sediment and/or particulate materials, from the wellbore, circulating a completion and/or breaker fluid into the subterranean formation, and/or to pumping a wiper plug to a terminal depth of the wellbore.
When sacrificial flow-control devices 140 are in the blocking configuration, casing strings 40 that include wellbore flow-control assemblies 100 according to the present disclosure and/or casing conduit 44 thereof may define a fluid-tight, or at least substantially fluid-tight, fluid conduit that extends between surface region 60 and a terminal end 54 of the casing string. As such, all, or at least a majority, of a fluid that may be provided to the casing conduit at and/or near surface region 60 (such as via a wellhead 22) may flow within casing conduit 44 to terminal end 54 before entering the subterranean formation. This may permit performing the above-described operations and/or processes efficiently and/or performing the above-described operations and/or processes without the need for installation of an inner string within casing conduit 44, which may decrease the time and/or costs associated therewith.
As an illustrative, non-exclusive example, the circulating may be accomplished by providing a circulating fluid from surface region 60 and/or wellhead 22 to one of casing conduit 44 and an annular space 32, which extends between casing string 40 and wellbore 30, flowing the circulating fluid to terminal end 54 of the casing conduit, and returning the circulating fluid to the surface region and/or the wellhead through the other of casing conduit 44 and annular space 32. As discussed, the drilling fluid may be circulated from wellbore 30 prior to occurrence of the flow-initiation event. Thus, a substantial portion, a majority, or all of the circulating fluid may be transferred between casing conduit 44 and annular space 32 at terminal end 54 and little and/or none of the circulating fluid may flow through wellbore flow-control assembly 100. It is within the scope of the present disclosure that, instead of circulating drilling fluid 80 from wellbore 30, the above-described procedure may be utilized to circulate a completion fluid and/or a breaker fluid into subterranean formation 68 via casing conduit 44 and/or to pump fluid isolation device 90 into casing conduit 44.
As another illustrative, non-exclusive example, it may be desirable to stimulate subterranean formation 68 by flowing a stimulant fluid through wellbore flow-control assembly 100 and into the subterranean formation. Under these conditions, flow-controlled fluid conduit 110 may define a stimulation flow path 162 that may convey the fluid outflow, and directional flow-control device 120 may be configured to permit the fluid outflow and resist the fluid inflow. In order to permit the stimulant fluid flow, sacrificial flow-control devices 140 that are associated with one or more wellbore flow-control assemblies 100 may be transitioned from the blocking configuration to the flow configuration, and stimulant fluid may be provided through flow-controlled fluid conduit(s) 110 of the transitioned wellbore flow-control assemblies 100 and into subterranean formation 68 to stimulate the subterranean formation.
It is within the scope of the present disclosure that all, or substantially all, sacrificial flow-control devices 140 that are associated with all, or substantially all, wellbore flow-control assemblies 100 present within well 20 may be transitioned from the blocking configuration to the flow configuration prior to stimulation of the subterranean formation. However, it is also within the scope of the present disclosure that, as indicated in dash-dot lines in
As an illustrative, non-exclusive example, and as discussed in more detail herein, sacrificial flow-control devices 140 that are associated with wellbore flow-control assemblies 100 that are present in first region 72 may be transitioned to the flow configuration independently from sacrificial flow-control devices 140 that are associated with second region 74 and/or third region 76. Subsequently, the stimulant fluid may be provided to the first region to stimulate the first region of the subterranean formation. After stimulation of first region 72, second region 74 and/or third region 76 may be stimulated in a similar manner. This process may be repeated any suitable number of times to stimulate any suitable number of regions 70 of the subterranean formation, such as at least 2, at least 4, at least 6, at least 8, at least 10, at least 15, at least 20, at least 25, at least 30, at least 40, or at least 50 regions of the subterranean formation.
As discussed in more detail herein, and subsequent to stimulation of a given region 70 of subterranean formation 68, a sealing device 94, such as a ball sealer 96, may be utilized to limit, or even prevent, fluid flow through wellbore flow-control assemblies 100 that are associated with the given region 70 prior to stimulation of a subsequent region 70 of the subterranean formation. This may focus and/or limit stimulant fluid flow to specific, or target, regions 70 of subterranean formation 68, thereby improving an overall efficiency of the stimulation operation.
As yet another illustrative, non-exclusive example, it also may be desirable to produce a reservoir fluid 78 from subterranean formation 68 by flowing the reservoir fluid from the subterranean formation, through wellbore flow-control assemblies 100, and into casing conduit 44 as the fluid inflow. Under these conditions, at least a portion of flow-controlled fluid conduit 110 may define a portion of a production flow path 166 and may convey the fluid inflow. As an illustrative, non-exclusive example, and when wellbore flow-control assembly 100 is utilized to stimulate subterranean formation 68 along stimulation flow path 162 prior to production of reservoir fluid 78, production flow path 166 may be defined by sacrificial flow-control device 140 but not by directional flow-control device 120. As another illustrative, non-exclusive example, and when the subterranean formation is not stimulated through wellbore flow-control assemblies 100, production flow path 166 may include both sacrificial flow-control device 140 and directional flow-control device 120, with directional flow-control device 120 being configured to provide for the fluid inflow while restricting the fluid outflow. Under these conditions, directional flow-control device 120 and/or wellbore flow-control assembly 100 also may be referred to herein as an inflow-control device.
As illustrated in solid lines in
As also illustrated in dashed lines in
As an illustrative, non-exclusive example, flow-controlled fluid conduit 110 may define a stimulation flow path 162 that conveys fluid outflow 164 from casing conduit 44 to subterranean formation 68. Stimulation flow path 162 further may include a stimulation orifice 170, which may be associated with any suitable portion of flow-controlled fluid conduit 110, such as directional flow-control device 120, sacrificial flow-control device 140, internal opening 114, 115, and/or external opening 116, and may control a flow rate and/or a velocity of a stimulant fluid flow therethrough.
As shown in solid lines in
As used herein, the phrase “characteristic dimension” may refer to any suitable average, representative, and/or effective dimension. Thus, the characteristic dimension may, additionally or alternatively, be referred to herein as a diameter, an effective diameter, a characteristic diameter, an extent, a maximum extent, and/or a minimum extent.
As an illustrative, non-exclusive example, and when stimulation orifice 170 is a circular stimulation orifice, the stimulation orifice characteristic dimension may be defined by the diameter of the circular stimulation orifice. As another illustrative, non-exclusive example, and when stimulation orifice 170 is not a circular stimulation orifice, the stimulation orifice characteristic dimension may be defined by a maximum extent of the stimulation orifice, a minimum extent of the stimulation orifice, and/or by a diameter of a circle that defines a cross-sectional area that is the same as that of the stimulation orifice (i.e., an effective diameter of the stimulation orifice).
As another illustrative, non-exclusive example, flow-controlled fluid conduit 110 may define at least a portion of a production flow path 166 that conveys fluid inflow 168 from subterranean formation 68 and into casing conduit 44. Production flow path 166 may include and/or be defined, at least in part, by a production orifice 174 that is configured and/or sized to control a flow rate and/or velocity of the fluid inflow. The production orifice may be located in any suitable portion of flow-controlled fluid conduit 110, such as directional flow-control device 120, sacrificial flow-control device 140, flow restrictor 184, internal opening 114, 115, and/or external opening 116.
Production orifice 174 may include and/or define any suitable production orifice characteristic dimension, such as a diameter of the production orifice. As illustrative, non-exclusive examples, the production orifice characteristic dimension may be at least 1 millimeter (mm), at least 1.5 mm, at least 2 mm, at least 2.5 mm, at least 3 mm, or at least 3.5 mm. As additional illustrative, non-exclusive examples, production orifice characteristic dimensions may be less than 6 mm, less than 5.5 mm, less than 5 mm, less than 4.5 mm, less than 4 mm, less than 2.5 mm, or less than 3 mm.
It is within the scope of the present disclosure that production flow path 166 may include the entire flow-controlled fluid conduit 110 and that directional flow-control device 120 may be configured to permit fluid inflow 168 and resist fluid outflow 164. Under these conditions, directional flow-control device 120 may include and/or may be referred to as an inflow control device 176, such as a check valve, which may include and/or define production orifice 174.
It is also within the scope of the present disclosure that production flow path 166 may include a portion of, or less than the entire, flow-controlled fluid conduit 110. As an illustrative, non-exclusive example, production flow path 166 may not include directional flow-control device 120. When the production flow path does not include the entire flow-controlled fluid conduit 110, the production flow path may bypass a portion of the flow-controlled fluid conduit, such as directional flow-control device 120, using one or more bypass conduits 112.
It is within the scope of the present disclosure that wellbore flow-control assembly 100 may define both stimulation flow path 162 and production flow path 166. When wellbore flow-control assembly 100 defines both the stimulation flow path and the production flow path, the stimulation flow path may be at least partially coextensive with, but different from, the production flow path. Thus, a portion of flow-controlled fluid conduit 110, such as sacrificial flow-control device 140, may define at least a portion of both stimulation flow path 162 and production flow path 166 even though the stimulation flow path and the production flow path are not both defined entirely by the flow-controlled fluid conduit and/or are not entirely coextensive.
As an illustrative, non-exclusive example, the stimulation flow path may include a first portion of the flow-controlled fluid conduit, the production flow path may include a second portion of the flow-controlled fluid conduit, and the first portion of the flow-controlled fluid conduit may be at least partially overlapping with but different from the second portion of the flow-controlled fluid conduit. As another illustrative, non-exclusive example, the first portion of the flow-controlled fluid conduit may include directional flow-control device 120, and the second portion of the flow-controlled fluid conduit may not include directional flow-control device 120, such as through the use of one or more bypass conduits 112, as discussed in more detail herein. As yet another illustrative, non-exclusive example, the second portion of the flow-controlled fluid conduit may include bypass conduits 112 and flow restrictor 184, and the first portion of the flow-controlled fluid conduit may not include bypass conduits 112 and/or flow restrictor 184.
As illustrated in
As an illustrative, non-exclusive example, the production flow path may enter wellbore flow-control assembly 100 at external opening 116 and may include sacrificial flow-control device 140. However, bypass conduit 112 may bypass directional flow-control device 120, thereby providing for fluid inflow 168 along production flow path 166 even when directional flow-control device 120 is configured to resist the fluid inflow.
Internal openings 114, 115 further may include and/or be defined by a portion of directional flow-control device 120 and/or sacrificial flow-control device 140. When internal openings 114, 115 are defined by a portion of sacrificial flow-control device 140, it is within the scope of the present disclosure that the internal openings may not be present (or otherwise available for fluid flow therethrough) when the sacrificial flow-control device is in the blocking configuration but may be defined by the sacrificial flow-control device after the sacrificial flow-control device transitions to the flow configuration (such as subsequent to the flow-initiation event).
When wellbore flow-control assembly 100 includes a plurality of internal openings, such as internal openings 114 and 115, the internal openings may be associated with and/or define a portion of different flow paths within the wellbore flow-control assembly. As an illustrative, non-exclusive example, a first internal opening, such as internal opening 114, may be associated with a first flow path, such as stimulation flow path 162, and also may be referred to herein as an internal stimulation opening 114. In addition, a second internal opening, such as internal opening 115, may be associated with a second flow path, such as production flow path 166, and also may be referred to herein as an internal production opening 115.
Similar to internal openings 114, 115, external opening 116 also may include and/or be defined by a portion of directional flow-control device 120 and/or sacrificial flow-control device 140. When external opening 116 is defined by a portion of sacrificial flow-control device 140, it is within the scope of the present disclosure that the external opening may not be present (or otherwise available for fluid flow therethrough) when the sacrificial flow-control device is in the blocking configuration but may be defined by the sacrificial flow-control device after the sacrificial flow-control device transitions to the flow configuration (such as subsequent to the flow-initiation event).
As used herein, the phrase “flow-initiation event” may include any suitable event, condition, and/or phenomenon that may occur and/or be generated within hydrocarbon well 20, and/or any suitable component thereof, and that may transition one or more sacrificial flow-control devices 140 from the blocking configuration to the flow configuration. As an illustrative, non-exclusive example, the flow-initiation event may include, or be associated with, generating a pressure differential between the casing conduit and the subterranean formation that is greater than a threshold pressure differential (i.e., a condition in which a pressure within casing conduit 44 and in the vicinity of sacrificial flow-control device 140 is greater than a pressure within subterranean formation 68 and in the vicinity of the sacrificial flow-control device by at least a threshold magnitude). This threshold pressure differential also may be referred to herein as a threshold positive pressure differential.
As another illustrative, non-exclusive example, the flow-initiation event may be followed by a release event. As discussed in more detail herein, the release event may include decreasing the pressure differential between the casing conduit and the subterranean formation such that it is less than a threshold negative pressure differential (i.e., a condition in which the pressure within casing conduit 44 and in the vicinity of the sacrificial flow-control device is less than the pressure within subterranean formation 68 and in the vicinity of the sacrificial flow-control device by at least a threshold magnitude).
As discussed in more detail herein with reference to
It is within the scope of the present disclosure that, as discussed in more detail herein with reference to
The wellbore flow-control assemblies of
As indicated in dashed lines in
The wellbore flow-control assemblies of
Prior to the flow-initiation event, sacrificial body 144 may be operatively attached to, form a portion of, and/or form a fluid seal with wellbore flow-control assembly 100, as illustrated in
Retaining collar 148 may be sized to retain sacrificial body 144 within wellbore flow-control assembly 100 subsequent to the flow-initiation event, as illustrated in
Under these conditions, the flow-initiation event may separate sacrificial body 144 from a remainder of the wellbore flow-control assembly and may provide a motive force to press the sacrificial body against retaining collar 148, as illustrated in
Internal opening 114 may include any suitable structure, illustrative, non-exclusive examples of which are discussed in more detail herein. In addition, and as illustrated in
When internal opening 114 defines ball seat 152, the ball seat may be a machined ball seat 152 that is formed prior to insertion of wellbore flow-control assembly 100 into hydrocarbon well 20. Thus, a uniformity of a size, shape, and/or orientation of a sealing region that is defined between ball seat 152 and ball sealer 96 may be significantly greater than a uniformity of a more traditional sealing region that may be formed between a ball sealer and a perforation that may be formed in the casing string with a perforation gun. This increased uniformity may improve an integrity of a seal that is formed between the ball sealer and the ball seat relative to the traditional sealing region, thereby increasing an overall efficiency of the sealing therebetween.
As also illustrated in
The directional flow-control device of
Alternatively, the directional flow-control device of
In
As illustrated in dashed lines in
In
Subsequent to removal of sacrificial body 144 from the wellbore flow-control assembly, a stimulant fluid flow may be provided from wellbore conduit 44 and to subterranean formation 68 along stimulation flow path 108 that includes stimulation orifice 170, as illustrated in
Thus, and when a pressure within the subterranean formation is greater than a pressure within the wellbore conduit (i.e., under conditions in which production of the reservoir fluid may occur), ball 124 and seat 126 may seal stimulation orifice 170, thereby blocking, resisting, and/or occluding fluid inflow therethrough, as illustrated in
While the above discussion describes stimulation of the subterranean formation along stimulation flow path 108 (as illustrated in
In
As illustrated in
In
In
In
In
In addition, and as illustrated, the flow of reservoir fluid along the production flow path and/or a pressure differential between subterranean formation 68 and casing conduit 44 provides a motive force that urges ball 124 into seat 126, thereby sealing (or at least substantially sealing) internal stimulation opening 161 of wellbore flow-control assemblies 100 and limiting, blocking, preventing, and/or occluding flow of the reservoir fluid therethrough. This sealing provides for the above-described differences between production flow path 104 and stimulation flow path 108, thereby permitting independent control of production and stimulation flow rates and/or velocities, as discussed herein.
Blocking the fluid flow through the wellbore flow-control assembly at 205 may include limiting, restricting, and/or occluding the fluid flow through the wellbore flow-control assembly. It is within the scope of the present disclosure that the blocking may include blocking the fluid flow with a sacrificial flow-control device that forms a portion of the wellbore flow-control assembly. Illustrative, non-exclusive examples of sacrificial flow-control devices are discussed in more detail herein. As discussed, the blocking may include temporarily blocking the fluid flow, such as prior to the generating at 220 and/or the transitioning at 225, and may permit the circulating at 210 to be performed more efficiently than might otherwise be accomplished if the fluid flow through the wellbore flow-control assembly were not blocked.
As discussed in more detail herein, and subsequent to formation of the wellbore, the wellbore may contain a drilling fluid, and it may be desirable to remove the drilling fluid from the wellbore prior to stimulation of the subterranean formation and/or production of the reservoir fluid from the subterranean formation. Circulating the drilling fluid from the wellbore at 210 may include the use of any suitable system, method, and/or mechanism to convey and/or otherwise urge the drilling fluid from the wellbore and may be performed at any suitable time, such as prior to the generating at 220 and/or prior to the transitioning at 225.
As an illustrative, non-exclusive example, the circulating at 210 may include providing the circulating fluid from the surface region to a terminal end of the casing string through one of the casing conduit and an annular space that is defined between the casing string and the subterranean formation and/or receiving the circulating fluid from the other of the casing conduit and the annular space. It is within the scope of the present disclosure that a significant portion, or even all, of the circulating fluid may be transferred between the casing conduit and the annular space at the terminal end of the casing string. As illustrative, non-exclusive examples, at least a majority, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% of the circulating fluid may be transferred between the casing conduit and the annular space at the terminal end of the drilling string. Additionally or alternatively, the circulating also may include circulating the drilling fluid from the wellbore without flowing the drilling fluid and/or the circulating fluid through the wellbore flow-control assembly and/or circulating the drilling fluid from the wellbore without flowing the circulating fluid through a radial opening in the casing string, such as a radial opening that might extend between the casing conduit and the annular space.
To fluidly isolate a portion of the casing conduit from the subterranean formation at 215, any suitable structure, such as a sealing material, a plug, and/or ball sealers may be used to block, limit, and/or occlude fluid communication between the casing conduit and the subterranean formation. As an illustrative, non-exclusive example, the fluidly isolating may provide for and/or permit pressurization of the casing conduit, which, as discussed in more detail herein, may provide for, permit, and/or otherwise facilitate the generating at 220 and/or the transitioning at 225. As another illustrative, non-exclusive example, and subsequent to the circulating at 210, a plug may be set within the casing conduit to fluidly isolate a downhole portion of the casing conduit, which is in fluid communication with the subterranean formation, from an uphole portion of the casing conduit.
As yet another illustrative, non-exclusive example, and when the transitioning at 225 includes selectively transitioning one or more selected wellbore flow-control assemblies, as discussed in more detail herein, the fluidly isolating may include fluidly isolating a first zone of the casing conduit that includes the one or more selected wellbore flow-control assemblies from fluid communication with a second zone of the casing conduit that includes one or more remaining wellbore flow-control assemblies that have not been transitioned prior to transitioning a portion of the one or more remaining wellbore flow-control assemblies. As another illustrative, non-exclusive example, and when the transitioning at 225 includes the selectively transitioning, the fluidly isolating may include sealing the one or more selected wellbore flow-control assemblies with a sealing device, such as a ball sealer, without blocking, limiting, and/or occluding fluid flow within the casing conduit prior to transitioning a portion of the one or more remaining wellbore flow-control assemblies to the flow configuration.
Generating the flow-initiation event at 220 may include generating any suitable event that may result in, produce, cause, and/or bring about the transitioning at 225. As an illustrative, non-exclusive example, the generating may include pressurizing the casing conduit such that a pressure differential between the casing conduit and the subterranean formation, which may be defined as a difference between a pressure within the casing conduit and a pressure within the subterranean formation and/or a difference between a pressure on a casing conduit side of the wellbore flow-control assembly and a pressure on a subterranean formation side of the wellbore flow-control assembly, is at least a threshold positive pressure differential (i.e., the pressure within the casing conduit is greater than the pressure within the subterranean formation by at least the threshold positive pressure differential). Additionally or alternatively, the transitioning also may include depressurizing the casing conduit such that the pressure differential is less than a threshold negative pressure differential (i.e., the pressure within the casing conduit is less than the pressure within the subterranean formation by at least the threshold negative pressure differential).
It is within the scope of the present disclosure that a hydrocarbon well that includes the wellbore may include a plurality of wellbore flow-control assemblies. It is further within the scope of the present disclosure that each of the wellbore flow-control assemblies that is present within the wellbore may be designed, constructed, and/or configured to transition from the blocking configuration to the flow configuration responsive to the same, or at least substantially the same, flow-initiation event. However, it is also within the scope of the present disclosure that at least a first portion of wellbore flow-control assemblies may be designed, constructed, and/or configured to transition from the blocking configuration to the flow configuration responsive to a first flow-initiation event, that at least a second portion of the wellbore flow-control assemblies may be designed, constructed, and/or configured to transition from the blocking configuration to the flow configuration responsive to a second flow-initiation event, and that the first flow-initiation event may be different from, or have a different magnitude than, the second flow-initiation event. As an illustrative, non-exclusive example, the first portion of the wellbore flow-control assemblies may be configured to transition to the flow configuration at a first pressure differential, and the second portion of the wellbore flow-control assemblies may be configured to transition to the flow configuration at a second pressure differential that is different from, or greater than, the first pressure differential.
Transitioning the wellbore flow-control assembly at 225 may include transitioning the wellbore flow-control assembly from the blocking configuration, in which the fluid flow therethrough and between the casing conduit and the subterranean formation is blocked, occluded, and/or restricted, to the flow configuration, in which the fluid flow therethrough and between the casing conduit and the subterranean formation is permitted. As discussed in more detail herein, the wellbore flow-control assembly may include a sacrificial flow-control device that may resist the fluid flow prior to the transitioning and which may permit the fluid flow subsequent to the transitioning, and the transitioning may include altering, or altering a state of, the sacrificial flow-control device, to permit the fluid flow therethrough.
It is within the scope of the present disclosure that the transitioning may be based, at least in part, on any suitable criteria. As an illustrative, non-exclusive example, the transitioning may be responsive, or directly responsive, to the generating at 220, directly responsive to the pressure within the casing conduit, and/or directly responsive to the pressure differential. This may include transitioning without mechanically actuating the wellbore flow-control assembly and/or without transmitting a control signal, such as a wireless control signal, a radio control signal, and/or an electronic control signal, to the wellbore flow-control assembly.
Conveying the fluid flow through the wellbore flow-control assembly at 230 may include conveying the fluid flow through any suitable portion of the wellbore flow-control assembly subsequent to the transitioning at 225. As an illustrative, non-exclusive example, and as discussed in more detail herein, the wellbore flow-control assembly may include and/or define a flow-controlled fluid conduit that is configured to selectively convey the fluid flow, and the conveying may include conveying the fluid flow through the flow-controlled fluid conduit.
As also discussed in more detail herein, the sacrificial flow-control device may define a first portion of the flow-controlled fluid conduit, may resist the fluid flow through the flow-controlled fluid conduit prior to the transitioning at 225, and may permit the fluid flow through the flow-controlled fluid conduit subsequent to the transitioning at 225. When the sacrificial flow-control device defines the first portion of the flow-controlled fluid conduit, the conveying may include conveying the fluid flow through the first portion of the flow-controlled fluid conduit (i.e., through the sacrificial flow control device).
Additionally or alternatively, and as discussed, a directional flow-control device may define a second portion of the flow-controlled fluid conduit, may permit one of a fluid outflow and a fluid inflow through the flow-controlled fluid conduit, and may resist the other of the fluid outflow and the fluid inflow. When the directional flow-control device defines the second portion of the flow-controlled fluid conduit, the conveying may include conveying the fluid flow through the second portion of the flow-controlled fluid conduit (i.e., through the directional flow-control device).
Stimulating the subterranean formation at 235 may include providing, conveying, and/or flowing a stimulant fluid, such as a fracturing fluid, a proppant, and/or an acid, from the casing conduit and into the subterranean formation through the wellbore flow-control assembly. As an illustrative, non-exclusive example, and as discussed in more detail herein, the wellbore flow-control assembly may define a stimulation flow path that permits the fluid outflow from the casing conduit into the subterranean formation, and the stimulating may include providing the stimulant fluid through, or via, the stimulation flow path.
It is within the scope of the present disclosure that the stimulation flow path may include, or be defined by, any suitable portion, or component, of the wellbore flow-control assembly, such as a portion of the flow-controlled fluid conduit, the entire flow-controlled fluid conduit, a stimulation orifice, the directional flow-control device, the sacrificial flow-control device, and/or a stimulation port, with illustrative, non-exclusive examples of each of these components being discussed in more detail herein. It is further within the scope of the present disclosure that the stimulating may include providing, flowing, or conveying the stimulant fluid through any, or all, of these components of the wellbore flow-control assembly. In addition, and when the stimulating includes conveying the stimulant fluid through the directional flow-control device, methods 200 further may include resisting the fluid inflow with, or through, the directional flow-control device prior to, during, and/or after the stimulating.
Producing the reservoir fluid at 240 may include receiving, conveying, and/or flowing the reservoir fluid from the subterranean formation and into the casing conduit through the wellbore flow-control assembly. As an illustrative, non-exclusive example, and as discussed in more detail herein, the wellbore flow-control assembly may define a production flow path that permits the fluid inflow from the subterranean formation into the casing conduit, and the producing may include receiving the reservoir fluid through, or via, the production flow path and into the casing conduit.
When methods 200 include the fluidly isolating at 215 and the producing at 240, it is within the scope of the present disclosure that the producing may include removing any suitable fluid isolation device and/or sealing device from the casing conduit to permit the producing via the production flow path. As an illustrative, non-exclusive example, this may include removing a fluid isolation device, such as a plug, from the casing conduit. As another illustrative, non-exclusive example, this also may include removing one or more ball sealers from the casing conduit and/or displacing the one or more ball sealers from one or more internal production openings that are associated with the wellbore flow-control assemblies.
It is within the scope of the present disclosure that the production flow path may include, or be defined by, any suitable portion, or component, of the wellbore flow-control assembly, such as a portion of the flow-controlled fluid conduit, the entire flow-controlled fluid conduit, a production orifice, the directional flow-control device, the sacrificial flow-control device, and/or an inflow-control device, with illustrative, non-exclusive examples of each of these components being discussed in more detail herein. It is further within the scope of the present disclosure that the producing may include receiving, conveying, and/or flowing the reservoir fluid through any, or all, of these components of the wellbore flow-control assembly.
When the producing includes conveying the reservoir fluid through the directional flow-control device (and/or when the production flow path includes the directional flow-control device), the method further may include permitting the fluid inflow with the directional flow-control device and/or resisting the fluid outflow with the directional flow-control device. Under these conditions, the directional flow-control device also may be referred to herein as an inflow control device that may include and/or define the production orifice. Alternatively, and when the producing does not include conveying the reservoir fluid through the directional flow-control device (and/or when the production flow path does not include the directional flow-control device), the method further may include resisting the fluid inflow with the directional flow-control device.
It is within the scope of the present disclosure that methods 200 may include only one of the stimulating at 235 and the producing at 240. However, it is also within the scope of the present disclosure that methods 200 may include both the stimulating at 235 and the producing at 240. Generally, and when methods 200 include both the stimulating and the producing, the producing may be performed after, or subsequent to, the stimulating, though additionally or alternatively producing prior to the stimulating is also within the scope of the present disclosure.
As discussed in more detail herein, it is within the scope of the present disclosure that an individual wellbore flow-control assembly may be configured for one, but not both, of the stimulating at 235 and the producing at 240 (such as by including and/or defining one, but not both, of the stimulation flow path and the production flow path). Under these conditions, and when methods 200 include both the stimulating at 235 and the producing at 240, the stimulating and the producing may be performed by separate, distinct, and/or spaced-apart wellbore flow-control assemblies according to the present disclosure. This may include wellbore flow-control assemblies that are spaced apart around a circumference of a casing sub, as discussed in more detail herein.
Alternatively, and as also discussed in more detail herein, the individual wellbore flow-control assembly may be configured for both of the stimulating at 235 and the producing at 240 (such as by including and/or defining both the stimulation flow path and the production flow path). Under these conditions, the stimulation flow path may include the directional flow-control device and may be different from the production flow path. In addition, methods 200 further may include restricting the fluid inflow via the stimulation flow path during the producing (such as through the use of the directional flow-control device). Thus, the producing may include receiving the reservoir fluid into the casing conduit without flowing the reservoir fluid through the directional flow-control device, such as through the use of a bypass conduit that is internal to the wellbore flow-control assembly, bypasses the directional flow-control device, and forms a portion of the production flow path, as discussed in more detail herein.
When methods 200 include both the stimulating at 235 and the producing at 240, it is within the scope of the present disclosure that the wellbore flow-control assembly may be designed and/or configured to transition from the stimulating to the producing directly responsive to the pressure within the casing conduit and/or to the pressure differential. This may include transitioning from the stimulating to the producing without mechanically actuating the wellbore flow-control assembly (such as to close the stimulation port(s) therein), without delivering a wire line, coil tubing, or radio tag to the wellbore flow-control assembly from the surface region, and/or without transmitting a control signal, such as a wireless control signal, a radio control signal, and/or an electronic control signal, to the wellbore flow-control assembly.
Repeating the method at 245 may include repeating any suitable portion of the method based, at least in part, on any suitable criteria. As an illustrative, non-exclusive example, and as discussed in more detail herein, the casing string may include a plurality of wellbore flow-control assemblies that are arranged in a plurality of zones, and methods 200 may include fluidly isolating a first zone of the casing conduit that includes a first portion of the plurality of wellbore flow-control assemblies from fluid communication with the subterranean formation at 215, transitioning the first portion of the plurality of wellbore flow-control assemblies from the blocking configuration to the flow configuration at 225 (such as through generating a first flow-initiation event), and/or stimulating one or more first regions of the subterranean formation through the first portion of the plurality of wellbore flow-control assemblies at 235.
As an illustrative, non-exclusive example, the first portion of the plurality of wellbore flow-control assemblies may include at least 1%, at least 2%, at least 3%, at least 5%, at least 10%, at least 15%, or at least 20% of the plurality of wellbore flow-control assemblies. Additionally or alternatively, the first portion of the plurality of wellbore flow-control assemblies includes less than 50%, less than 40%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% of the plurality of wellbore flow-control assemblies.
Subsequently, the repeating at 245 may include fluidly isolating a second zone of the casing conduit that is associated with a second portion of the plurality of wellbore flow-control assemblies from fluid communication with the subterranean formation at 215, transitioning the second portion of the plurality of wellbore flow-control assemblies from the blocking configuration to the flow configuration at 225 (such as by generating a second flow-initiation event), and/or stimulating one or more second regions of the subterranean formation through the second portion of the plurality of wellbore flow-control assemblies at 235.
This may be repeated any suitable number of times to transition any suitable number of portions of the plurality of wellbore flow-control assemblies and stimulate any suitable number of regions of the subterranean formation. In addition, methods 200 further may include maintaining wellbore flow-control assemblies that are associated with specific zones of the casing conduit in the blocking configuration until generation of respective flow-initiation events for respective wellbore flow-control assemblies. In addition, and subsequent to the stimulating, the repeating also may include producing the reservoir fluid from the subterranean formation through at least the first portion of the plurality of wellbore flow-control assemblies (i.e., from the first region of the subterranean formation) and the second portion of the plurality of wellbore flow-control assemblies (i.e., from the second region of the subterranean formation) at 240.
Blocking the fluid flow through the wellbore flow-control assembly at 305 may include blocking the fluid flow prior to a flow-initiating event, and the methods further may include performing and/or generating the flow-initiation event (such as prior to the stimulating at 320 and/or the producing at 330) and/or permitting the fluid flow subsequent to the flow-initiation event. As an illustrative, non-exclusive example, and as discussed in more detail herein, the wellbore flow-control assembly may include a sacrificial flow-control device, which may block the fluid flow prior to the flow-initiation event and permit the fluid flow subsequent to the flow-initiation event.
Circulating the drilling fluid from the wellbore at 310 may be substantially similar to the circulating at 210, which is discussed in more detail herein with reference to methods 200, and may include providing any suitable circulating fluid to any suitable portion of the hydrocarbon well to circulate any suitable fluid therefrom and/or to provide any suitable fluid to the subterranean formation. It is within the scope of the present disclosure that the circulating may include circulating during the blocking at 305. Thus, the circulating may include flowing the circulating fluid along a length of the casing conduit, transferring the circulating fluid between the casing conduit and an annular space that is defined between the casing string and the subterranean formation at a terminal end of the casing string, and/or transferring the circulating fluid between the casing conduit and the annular space without flowing the circulating fluid through the wellbore flow-control assembly.
Transitioning from the blocking to the stimulating at 315 may include generating a flow-initiation event. As discussed in more detail herein, this may include increasing a pressure within the casing conduit to be greater than a pressure within the subterranean formation by at least a threshold positive pressure differential. Additionally or alternatively, the transitioning at 315 also may include generating a release event. As discussed in more detail herein, this may include decreasing the pressure within the casing conduit to be less than the pressure within the subterranean formation by at least a threshold negative pressure differential.
Stimulating the subterranean formation at 320 may be substantially similar to the stimulating at 235, which is discussed in more detail herein with reference to methods 200, and may include flowing any suitable stimulation fluid through the wellbore flow-control assembly and from the casing conduit into the subterranean formation. As discussed in more detail herein, the wellbore flow-control assembly may include and/or define a stimulation orifice, and the stimulating may include flowing the stimulant fluid through the stimulation orifice to control the stimulant flow rate and/or a velocity of the stimulant fluid as it enters the subterranean formation. As also discussed in more detail herein, the stimulating also may include flowing the stimulant fluid through the, or the entire, flow-controlled fluid conduit. It is within the scope of the present disclosure that, during the stimulating, the method further may include maintaining the pressure within the casing conduit at or above a stimulating pressure that is greater than the pressure within the subterranean formation, which may provide a motive force for the stimulant fluid flow from the casing conduit, through the wellbore flow-control assembly, and into the subterranean formation.
Transitioning between the stimulating and the producing at 325 may include decreasing the pressure within the casing conduit to be less than the pressure within the subterranean formation and/or maintaining the pressure within the casing conduit at and/or below a producing pressure that is less than the pressure within the subterranean formation. Additionally or alternatively, transitioning between the stimulating and the producing at 325 may include increasing the pressure within the casing conduit to be greater than the pressure within the subterranean formation and/or maintaining the pressure within the casing conduit above the stimulating pressure.
Producing the reservoir fluid from the subterranean formation at 330 may be substantially similar to the producing at 240, which is discussed in more detail herein with reference to methods 200, and may include receiving the reservoir fluid from the subterranean formation and into the casing conduit by flowing the reservoir fluid through the wellbore flow-control assembly and/or at least a portion of the flow-controlled fluid conduit thereof. As discussed in more detail herein, the wellbore flow-control assembly may include and/or define a production orifice, and the producing may include flowing the reservoir fluid through the production orifice to control the production flow rate and/or a velocity of the reservoir fluid as it enters the casing conduit. In addition, and as also discussed, the producing may include producing the reservoir fluid without flowing the reservoir fluid through the stimulation orifice.
Additionally or alternatively, the producing also may include producing the reservoir fluid without flowing the reservoir fluid through a directional flow-control device that defines a portion of the flow-controlled fluid conduit. It is within the scope of the present disclosure that, during the producing, subsequent to the transitioning at 315, and/or subsequent to the stimulating at 320, the methods further may include maintaining the pressure within the casing conduit below the producing pressure, which may provide a motive force for flow of the reservoir fluid from the subterranean formation, through the wellbore flow-control assembly, and into the casing conduit.
Repeating the method at 335 may include repeating any suitable portion of the method and may be substantially similar to the repeating at 245, which is discussed in more detail herein with reference to methods 200. As an illustrative, non-exclusive example, and as discussed, a hydrocarbon well that extends within the subterranean formation may include a plurality of wellbore flow-control assemblies that are present in a plurality of zones of the casing conduit and associated with a plurality of regions of the subterranean formation. Under these conditions, methods 300 may include transitioning a first portion of the plurality of wellbore flow-control assemblies from the blocking configuration to the flow configuration at 315 and stimulating a first region of the subterranean formation via the first portion of the plurality of wellbore flow-control assemblies at 320. Later, a second, or subsequent, portion of the plurality of wellbore flow-control assemblies may be transitioned from the blocking configuration to the flow configuration at 315 and a second, or subsequent, region of the subterranean formation may be stimulated via the second, or subsequent, portion of the plurality of wellbore flow-control assemblies at 320. After stimulation of a selected number (or all) of the plurality of regions of the subterranean formation, methods 300 may then include producing the reservoir fluid from the subterranean formation at 330.
In the present disclosure, several of the illustrative, non-exclusive examples have been discussed and/or presented in the context of flow diagrams, or flow charts, in which the methods are shown and described as a series of blocks, or steps. Unless specifically set forth in the accompanying description, it is within the scope of the present disclosure that the order of the blocks may vary from the illustrated order in the flow diagram, including with two or more of the blocks (or steps) occurring in a different order and/or concurrently. It is also within the scope of the present disclosure that the blocks, or steps, may be implemented as logic, which also may be described as implementing the blocks, or steps, as logics. In some applications, the blocks, or steps, may represent expressions and/or actions to be performed by functionally equivalent circuits or other logic devices. The illustrated blocks may, but are not required to, represent executable instructions that cause a computer, processor, and/or other logic device to respond, to perform an action, to change states, to generate an output or display, and/or to make decisions.
As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.
As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entity in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.
In the event that any patents, patent applications, or other references are incorporated by reference herein and define a term in a manner or are otherwise inconsistent with either the non-incorporated portion of the present disclosure or with any of the other incorporated references, the non-incorporated portion of the present disclosure shall control, and the term or incorporated disclosure therein shall only control with respect to the reference in which the term is defined and/or the incorporated disclosure was originally present.
As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that is recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.
The systems and methods disclosed herein are applicable to the oil and gas industry.
It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower, or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
This application is the National Stage of International Application No. PCT/US2013/059740, filed Sep. 13, 2013, which claims the benefit of U.S. Provisional Application No. 61/726,963, filed Nov. 15, 2012, the disclosure of which is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/059740 | 9/13/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/077949 | 5/22/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020007949 | Tolman et al. | Jan 2002 | A1 |
20080000639 | Clark et al. | Jan 2008 | A1 |
20090014168 | Tips et al. | Jan 2009 | A1 |
20090084556 | Richards et al. | Apr 2009 | A1 |
20090151925 | Richards et al. | Jun 2009 | A1 |
20110297393 | Patel | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2013090289 | Jun 2013 | WO |
Entry |
---|
Baumgarten et al. (2009), “Multi-Stage Acid Stimulation Improves Production Values in Carbonate Formations in Western Canada,” SPE 126058, 2009 SPE Saudi Arabia Section Technical Symposium and Exh., 11 pgs. |
Number | Date | Country | |
---|---|---|---|
20150315872 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61726963 | Nov 2012 | US |