This invention relates generally to an apparatus and method for use in wellbores and associated with the production of hydrocarbons. More particularly, this invention relates to a wellbore apparatus and method for providing flow control that may be utilized to enhance at least gravel packing and production operations for a well.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present invention. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present invention. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
The production of hydrocarbons, such as oil and gas, has been performed for numerous years. However, when producing hydrocarbons from subsurface or subsurface formations, it becomes more challenging because of the location of certain subsurface formations. For example, some subsurface formations are located in ultra-deep water, at depths that extend the reach of drilling operations, in high pressure/temperature reservoirs, in long intervals, at high production rate, and at remote locations. As such, the location of the subsurface formation may present problems that increase the individual well cost dramatically. That is, the cost of accessing the subsurface formation may result in fewer wells being completed because of the economics of the field. Accordingly, well reliability and longevity become design considerations to avoid undesired production loss and expensive intervention or workovers for these wells.
To enhance hydrocarbon production, a production system may utilize various devices, such as sand control devices and other tools, for specific tasks within a well. Typically, these devices are placed into a wellbore completed in either a cased-hole or open-hole completion. In a cased-hole completion, a casing string is placed in the wellbore and perforations are made through the casing string into subsurface formations to provide a flow path for formation fluids, such as hydrocarbons, into the wellbore. Alternatively, in an open-hole completion, a production string is positioned inside the wellbore without a casing string. The formation fluids flow through the annulus between the subsurface formation and the production string to enter the production string.
Regardless of the completion type, sand control devices are typically utilized within a well to manage the production of solid material, such as sand. The production of solid material may result in sand production at surface, downhole equipment damage, reduced well productivity and/or loss of the well. The sand control device, which may have slotted openings or may be wrapped by a screen, may also be utilized with a gravel pack in certain environments. Gravel packing a well involves placing gravel or other particulate matter around a sand control device. In an open-hole completion, a gravel pack is typically positioned between the wall of the wellbore and a sand screen that surrounds a perforated base pipe. Alternatively, in a cased-hole completion, a gravel pack is positioned between a casing string having perforations and a sand screen that surrounds a perforated base pipe. Regardless, the formation fluids flow from the subsurface formation into the production tubing string through the gravel pack and sand control device, while solids above a certain size are blocked.
As an enhancement to the gravel packing process, alternative technologies may also be utilized to form substantially complete gravel packs within the wellbore. For example, the alternate flow paths, such as internal or external shunt tubes, may be utilized to bypass sand bridges and distribute the gravel evenly through the intervals. For further details, alternate flow paths are described further in U.S. Pat. Nos. 4,945,991; 5,082,052; 5,113,935; 5,333,688 and 7,464,752; which are incorporated herein by reference.
In addition to preventing solids production, the flow of the formation fluids may also be controlled within a well. For instance, sand control devices may include technology to regulate flow downhole, such as inflow control technology or inflow control devices (ICDs). See, e.g., Reslink's RESFLOW™, Baker's EQUALIZER™, or Weatherford's FLOREG™. These devices are typically used in long, horizontal, open-hole completions to balance inflow into the completion across production intervals or zones. The balanced inflow enhances reservoir management and reduces the risk of early water or gas breakthrough from a high permeability reservoir streak or the heel of a well. Additionally, more hydrocarbons may be captured from the toe of the well through the application of the inflow control technology.
Because gravel packing operations generally involve passing large quantities of fluid, such as carrier fluid, through the sand screen and the ICD, gravel packing with typical ICDs is not feasible because the gravel packing and production operations use the same flow paths. In particular, localized and reduced inflow of the carrier fluid due to ICDs may cause early bridging, loose packs, voids, and/or increased pressure requirements during gravel pack pumping. Accordingly, the need exists for method and apparatus that provides inflow control without limiting the formation of a gravel pack.
Other related material may be found in at least U.S. Pat. No. 5,293,935; U.S. Pat. No. 5,435,393; U.S. Pat. No. 5,642,781; U.S. Pat. No. 5,803,179; U.S. Pat. No. 5,896,928; U.S. Pat. No. 6,112,815; U.S. Pat. No. 6,112,817; U.S. Pat. No. 6,237,683; U.S. Pat. No. 6,302,216; U.S. Pat. No. 6,308,783; U.S. Pat. No. 6,405,800; U.S. Pat. No. 6,464,261; U.S. Pat. No. 6,533,038; U.S. Pat. No. 6,622,794; U.S. Pat. No. 6,644,412; U.S. Pat. No. 6,715,558; U.S. Pat. No. 6,745,843; U.S. Pat. No. 6,749,024; U.S. Pat. No. 6,786,285; U.S. Pat. No. 6,817,416; U.S. Pat. No. 6,851,560; U.S. Pat. No. 6,857,475; U.S. Pat. No. 6,875,476; U.S. Pat. No. 6,860,330; U.S. Pat. No. 6,868,910; U.S. Pat. No. 6,883,613; U.S. Pat. No. 6,886,634; U.S. Pat. No. 6,892,816; U.S. Pat. No. 6,899,176; U.S. Pat. No. 6,978,840; U.S. Patent Application Publication No. 2003/0173075; U.S. Patent Application Publication No. 2004/0251020; U.S. Patent Application Publication No. 2004/0262011; U.S. Patent Application Publication No. 2005/0263287; U.S. Patent Application Publication No. 2006/0042795; and U.S. Patent Application Publication No. 2009/0294128.
In one embodiment, a system associated with production of hydrocarbons is described. The system includes a wellbore utilized to produce hydrocarbons from a subsurface reservoir; a production tubing string disposed within the wellbore; and at least one sand control device coupled to the production tubing string and disposed within the wellbore. At least one of the at least one sand control device includes a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings and at least one inflow control device that each provide a flow path to the interior of the second tubular member; and a sealing mechanism disposed between the first tubular member and the second tubular member, wherein the sealing mechanism is configured to provide pressure loss during gravel packing operations that is less than the pressure loss during at least a portion of production operations.
In a second embodiment, a method of producing hydrocarbons from a well is described. The method includes disposing at least one sand control device within a wellbore adjacent to a subsurface formation, wherein at least one of the at least one sand control device comprises a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings and at least one inflow control device that each provide a flow path to the interior of the second tubular member; and a sealing mechanism disposed between the first tubular member and the second tubular member, wherein the sealing mechanism is configured to provide pressure loss during gravel packing operations that is less than the pressure loss during at least a portion of production operations; gravel packing the at least one sand control device within the wellbore; and producing hydrocarbons from the at least one sand control device by passing hydrocarbons through the at least one sand control device.
In a third embodiment, another system associated with production of hydrocarbons is described. This system includes a production tubing string disposed within a wellbore utilized to access a subsurface formation; at least one sand control device coupled to the production tubing string and disposed within the wellbore. At least one of the at least one sand control device includes a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings and at least one inflow control device; and a sealing mechanism disposed between the first tubular member and the second tubular member. The sealing mechanism configured to provide a first flow path into the interior of the second tubular member during gravel packing operations through one of only the plurality of openings and the plurality of openings along with the at least one inflow control device and provide a second flow path into the interior of the second tubular member during a portion of production operations through only the at least one inflow control device.
In a fourth embodiment, another method associated with production of hydrocarbons is described. The method includes providing a sand control device having a first tubular member with a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings and at least one inflow control device; and a sealing mechanism disposed between the first tubular member and the second tubular member, wherein the sealing mechanism is configured to provide a first flow path to the interior of the second tubular member during gravel packing operations through one of only the plurality of openings and the plurality of openings along with the at least one inflow control device; and provide a second flow path to the interior of the second tubular member during at least a portion of production operations through only the at least one inflow control device; disposing the sand control device within a wellbore; engaging the sand control device to a crossover tool to form a gravel pack at least partially around the sand control device; disengaging the crossover tool from the sand control device; and coupling the sand control device to a production tubing string to produce hydrocarbons through the at least one inflow control device.
In a fifth embodiment, an apparatus for producing hydrocarbons is described. The apparatus includes a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings and at least one inflow control device; and a sealing element disposed between the first tubular member and the second tubular member and disposed between the plurality of openings and at least one inflow control device. The sealing element is configured to provide a first flow path into the interior of the second tubular member from the permeable section of the first tubular member through the plurality of openings and a second flow path into the interior of the second tubular member from the permeable section of the first tubular member through the at least one inflow control device during a first operation; and block fluid flow through the first flow path during a second operation.
In a sixth embodiment, a second apparatus for producing hydrocarbons is described. The apparatus includes a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings that provide a fluid flow path into the interior of the second tubular member; and a barrier element disposed between the first tubular member and the second tubular member. The barrier element being configured to isolate a first chamber from a second chamber formed between the first tubular member and second tubular member, wherein the first chamber includes the permeable section of the first tubular member and the second chamber includes the plurality of openings in the second tubular member; and at least one conduit disposed between the first tubular member and second tubular member, wherein the at least one conduit provides at least one fluid flow path between the first chamber and the second chamber through the barrier element.
In a seventh embodiment, a third apparatus for producing hydrocarbons is described. The apparatus includes a first tubular member having a permeable section and a non permeable section; a second tubular member disposed within the first tubular member, wherein the second tubular member has a plurality of openings and at least one inflow control device; and a sleeve disposed adjacent to the second tubular member and configured to move between a plurality of positions. The plurality of positions include a first position providing a first flow path into the interior of the second tubular member from the permeable section of the first tubular member through at least the plurality of openings; and a second position providing a second flow path into the interior of the second tubular member from the permeable section of the first tubular member through the at least one inflow control device, wherein fluid flow is prevented through the plurality of openings.
The foregoing and other advantages of the present invention may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments in which:
In the following detailed description section, the specific embodiments of the present invention are described in connection with preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present invention, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
The present invention includes one or more embodiments of sand control devices that may be utilized in a completion, production, or injection system to enhance well operations, which may include gravel packing operations and production operations, which are described below. Under the present invention, an apparatus, system and method are described for running and gravel packing a sand control device having an inflow control mechanism in a well completion, such as an open-hole or cased-hole completion. Then, the sand control device is utilized to produce formation fluids, such as hydrocarbons, from the well completion. The embodiments of the sand control device may include a sand control device with a sealing mechanism, such as a swellable material, sealing element or adjustable sleeve. Accordingly, the specific embodiments of the sand control device may include a sand control device with a sealing element, at least one conduit, and/or at least one sleeve to provide flexibility in the well operations. In this embodiment, the sealing mechanism is configured to provide pressure loss during certain operations, such as gravel packing operations, that is less than the pressure loss during other operations, such as production operations. The pressure loss is change in fluid pressure as the fluid flows outside the sand control device into the interior of the base pipe or primary tubular member. The pressure loss may include frictional pressure loss and form loss. The higher pressure loss results in increased inflow control, which provides flexibility in providing the desired fluid flow control for the different operations. As such, the present invention may be used in well completions to enhance gravel placement, hydrocarbon production and/or stimulation of a subsurface formation. Note that in a well completion, the sand control devices of the present invention may be used in combination with other sand control devices.
Turning now to the drawings, and referring initially to
The floating production facility 102 may be configured to monitor and produce hydrocarbons from the production intervals 108a-108n of the subsurface formation 107. The floating production facility 102 may be a floating vessel capable of managing the production of fluids, such as hydrocarbons, from subsea wells. These fluids may be stored on the floating production facility 102 and/or provided to tankers (not shown). To access the production intervals 108a-108n, the floating production facility 102 is coupled to a subsea tree 104 and control valve 110 via a control umbilical 112. The control umbilical 112 may include production tubing for providing hydrocarbons from the subsea tree 104 to the floating production facility 102, control tubing for hydraulic or electrical devices, and a control cable for communicating with other devices within the wellbore 114.
To access the production intervals 108a-108n, the wellbore 114 penetrates the sea floor 106 to a depth that interfaces with the production intervals 108a-108n at different depths within the wellbore 114. As may be appreciated, the production intervals 108a-108n, which may be referred to as production intervals 108, may include various layers or intervals of rock that may or may not include hydrocarbons and may be referred to as zones. The subsea tree 104, which is positioned over the wellbore 114 at the sea floor 106, provides an interface between devices within the wellbore 114 and the floating production facility 102. Accordingly, the subsea tree 104 may be coupled to a production tubing string 128 to provide fluid flow paths and a control cable (not shown) to provide communication paths, which may interface with the control umbilical 112 at the subsea tree 104.
Within the wellbore 114, the production system 100 may also include different equipment to provide access to the production intervals 108a-108n. For instance, a surface casing string 124 may be installed from the sea floor 106 to a location at a specific depth beneath the sea floor 106. Within the surface casing string 124, an intermediate or production casing string 126, which may extend down to a depth near the production interval 108a, may be utilized to provide support for walls of the wellbore 114. The surface and production casing strings 124 and 126 may be cemented into a fixed position within the wellbore 114 to further stabilize the wellbore 114. Within the surface and production casing strings 124 and 126, a production tubing string 128 may be utilized to provide a flow path through the wellbore 114 for hydrocarbons and other fluids. A subsurface safety valve 132 may be utilized to block the flow of fluids from portions of the production tubing string 128 in the event of rupture or break above the subsurface safety valve 132. Further, packers 134 and 136 may be utilized to isolate specific zones within the wellbore annulus from each other. The packers 134 and 136 may be configured to provide fluid communication paths between surface and the sand control devices 138a-138n, while preventing fluid flow in one or more other areas, such as a wellbore annulus.
In addition to the above equipment, other equipment, such as sand control devices 138a-138n and gravel packs 140a-140n, may be utilized to manage the flow of fluids from within the wellbore. In particular, the sand control devices 138a-138n may be utilized to manage the flow of fluids and/or particles into the production tubing string 128 with gravel packs 140a-140n. The sand control devices 138a-138n may include slotted liners, stand-alone screens (SAS); pre-packed screens; wire-wrapped screens, membrane screens, expandable screens and/or wire-mesh screens, while the gravel packs 140a-140n may include gravel or other suitable solid material. The sand control devices 138a-138n may also include inflow control mechanisms, such as inflow control devices (i.e. valves, conduits, nozzles, or any other suitable mechanisms), which may increase pressure loss along the fluid flow path. The gravel packs 140a-140n may be complete gravel packs that cover all of the respective sand control devices 138a-138n, or may be partially disposed around sand control devices 138a-138n. Regardless, the sand control devices 138a-138n may include different components that provide flow control for the intervals 108a-108n of the well. The process of installing and using these sand control devices is shown below in
The flow chart begins at block 202. At block 204, a well may be drilled. The well may be drilled to a specific depth location through various production intervals 108 of the subsurface formation 107. The drilling of the well may involve drilling operations and typical techniques utilized for the specific fields. Then, gravel packing operations may be performed in blocks 206 and 208. The gravel packing operations include installing one or more sand control devices having an inflow control mechanism into the well, as shown in block 206. The sand control devices may include various embodiments, such as sand control device having a inflow control mechanism with a sealing element (shown in
Once the gravel packing operations are complete, production operations may be performed in blocks 210-220. With the sand control device and gravel pack installed, the sand control device may be adjusted into a production configuration, as shown in block 210. This adjustment may include removing a washpipe, sending a signal via electrical cable or hydraulics to activate a sleeve, chemical activation or other suitable techniques to adjust the sand control device for production operations. In particular, it should be noted that the adjustment to the sand control device may be activated automatically by the presence of a stimulus, which is discussed further below. At block 212, hydrocarbons, such as oil and gas, may be produced from the well. The production of hydrocarbons may include disengaging the crossover tool from the sand control device and coupling the sand control device to a production tubing string to produce hydrocarbons through at least one of the inflow control devices. During production, the performance of the well may be monitored, as shown in block 214. The monitoring of the well may include general surveillance, such as monitoring the hydrocarbon production rate, water cut, gas to oil ratio, production profile from production logging, sand production and/or other similar techniques. Also, the monitoring may include detectors and sensors that determine the levels of sand production, down hole pressure, downhole temperature profiles and the like. At block 216, a determination is made whether to shutoff fluid flow into the sand control device. This determination may include comparing the production from a certain interval to a predetermined threshold, or indication from a monitor within the wellbore that excessive water production is from a certain interval, such as a toe interval. If the interval does not need to be shutoff, the well monitoring may continue in block 214.
However, if the interval is shutoff, a determination is made whether the production operations are to continue, as shown in block 218. If the production operations are to continue, a maintenance operation may be performed in block 220. The maintenance operation may include activating a mechanism within the inflow control device, such as a sleeve or valve, to prevent fluid flow into the sand control device; installing a straddle bridge across the specific interval; treating the interval with a treatment fluid and/or installing a plug within or upstream of the sand control device. Then, monitoring of the well continues in block 214. Regardless, if the well production is complete, then the process may end at block 222.
Beneficially, the use of the sand control device provides a mechanism for enhancing gravel packing operations and flexibility in the production operations, such as maintenance operations. The sand control device provides a mechanism for gravel packing a well with various perforations that may or may not be utilized in the production of hydrocarbons. Also, the sand control device may be shutoff to prevent formation fluids from entering the wellbore from a specific interval to manage specific portions of the wellbore. That is, the sand control devices provide flexibility in isolating and managing the flow from various intervals from unwanted gas or water production. These sand control devices also provide flexibility for installations to regulate flow between formations of varying pressure, productivity or permeability. For instance, the same type of sand control device may be used within a well with one interval being gravel packed and others are not gravel packed. That is, the sand control device may be utilized to gravel pack specific intervals, while other intervals are not gravel packed as part of the same process. Further, by providing balanced inflow, the sand control devices may limit annular flow to prevent hot-spots in the completion at a location of high inflow, which is typically at the heel of the completion or at an external isolation packer. Hot-spots are locations of high velocity flow where erosion is likely if sand particles or fines are in the flow stream.
For exemplary purposes, various sand control devices 138a-138n are herein described in various embodiments below. In these embodiments, a sealing mechanism may include a sealing element, a barrier element, and/or sleeve in the respective embodiments. Also, the inflow control mechanism may include a conduit or inflow control devices (i.e. small orifice or choke) in the respective embodiments. Accordingly, the specific features of each of the embodiments is discussed in the
Sand Control Device with Sealing Element
In
In some embodiments of the present invention within the first and second connection sections 324 and 328, coupling mechanisms may be utilized to form the secure and sealed connections. For instance, a first connection 330 may be positioned within the first connection section 324, and a second connection 332 may be positioned within the second connection section 328. These connections 330 and 332 may include various methods for forming connections with other devices. For example, the first connection 330 may have internal threads and the second connection 332 may have external threads that form a seal with other sand control devices or another pipe segment. It should also be noted that in other embodiments, the coupling mechanism for the sand control device 300 may include connecting mechanisms as described in U.S. Pat. No. 6,464,261; U.S. Pat. No. 6,814,144; U.S. Patent Application Pub. No. 2004/0140089; U.S. Patent Application Pub. No. 2005/0028977; U.S. Patent Application Pub. No. 2005/0061501; U.S. Patent Application Pub. No. 2005/0082060; and U.S. Patent Application Pub. No. 2009/0294128, for example.
In some embodiments of the present invention within the inflow section 322 and perforated section 326, flow control mechanisms may be utilized to regulate flow paths or pressure loss within the sand control device. As a specific example, the sand control device 300 may include one or more inflow control devices 308, one or more perforations or openings 310, and a sealing element 312. The inflow control devices 308 may be positioned at one end of the sand control device 300 and openings 310 along with the sealing element 312 at the other end of the sand control device 300. Inflow control devices 308 may be utilized to control the flow of formation fluids from the chamber into the base pipe 302 during gravel packing and/or production operations. The inflow control devices 308 may include nozzles, valves, tortuous paths, shaped objects or other suitable mechanisms known in the art to create a pressure drop or pressure loss. In particular, the inflow control devices 308 may choke flow through form pressure loss (e.g. a shaped object, nozzle) or frictional pressure loss (e.g. helical geometry/tubes).
Form pressure loss, which is based on the shape and alignment of an object relative to fluid flow, is caused by separation of fluid that is flowing over an object, which results in turbulent pockets at different pressure behind the object. The openings 310 may be utilized to provide additional flow paths for the fluids, such as carrier fluids, during gravel packing operations because the inflow control devices 308 may restrict the placement of gravel by hindering the flow of carrier fluid into the base pipe 302 during gravel packing operations. The number of openings in the base pipe 302 may be selected to provide adequate inflow during the gravel packing operations to achieve partial or substantially complete gravel pack. That is, the number and size of the openings in the base pipe 302 may be selected to provide sufficient fluid flow from the wellbore through the sand screen 304, which is utilized to deposit gravel in the wellbore and form the gravel pack. As known in the art, alternate path gravel packing techniques with proper fluid leak-off through the sand screen 304 has been demonstrated in the field to achieve a complete gravel pack.
In some embodiments of the present invention the sealing or expansion element 312 may surround the base pipe 302 and may be a hydraulically actuated inflatable element (i.e. an elastomer or thermoplastic material) or a swellable material (i.e. a swelling rubber element or swellable polymer). The swellable material may expand in the presence of a stimulus, such as water, conditioned drilling fluid, a completion fluid, a production fluid (i.e. hydrocarbons), other chemical, or any combination thereof. As an example, a swellable material may be placed in the sand control device 300, which expands in the presence of hydrocarbons to form a seal between the walls of the base pipe 302 and the non-permeable section of the sand screen 304 (See e.g. Easy Well Solutions' CONSTRICTOR™ or SwellFix's E-ZIP™ or P-ZIP™). Further, the sealing element 312 may be activated chemically, mechanically by the removal of a washpipe, and/or via a signal, electrical or hydraulic, to isolate the openings 310 from the fluid flow during some or all of the production operations. For alternative views of the sand control devices 300a and 300b, cross sectional views of the components is shown along the line AA in
Some embodiments of the operation of the sand control device 300 are further described with reference to
As a specific example, the sand control device 300 may be run in a water-based mud with a hydrocarbon-swellable material used for the sealing element 312. During screen running and gravel packing operations, the chamber between the base pipe 302 and the sand screen 304 is open for fluid flow through the inflow control devices 308 and/or openings 310. However, during production operations, such as post-well testing operations, the sealing element 312 comprising a hydrocarbon-swellable material expands to close off the chamber within the perforated section 326. As a result, the fluid flow is limited to the inflow control devices 308 once the sealing element 312 comprising a hydrocarbon-swellable material isolates the openings 310.
Alternatively, as another example, if the sand control device 300 is run in an oil-based mud, such as non-aqueous fluid (NAF), a hydrocarbon-swellable material may again be used for the sealing element 312. In this example, the process of expanding the sealing element 312 is evaluated to determine the time associated with isolating the openings to prevent fluid flow in the well. The material comprising the sealing element 312 may be formulated so that the sealing element 312 swells at a known rate in the NAF. Alternatively, a coating or covering of a semi-permeable material that may prevent early swelling of the sealing element 312 may be applied to the sealing element 312. In either case, the expansion process may be designed to proceed at a specified rate to enable certain operations to be performed within the wellbore. After the sealing element 312 swells, the formation fluid is able to enter the interior of the base pipe 302 only through the inflow control devices 308.
Beneficially, the sand control device 300 with a swellable material may be a passive system that may automatically adjust to manage the flow of fluids into the production tubing string 128. Further, this embodiment is not complex, which reduces manufacturing costs. In addition, the sand control device 300 also provides various operational enhancements. For instance, based on the expansion of the swelling material, full well tests may be performed on the intervals within the subsurface formation before flow is diverted to only the inflow control devices 308. In addition, production operations, such as remediation or treatment operations may be performed by using chemicals, such as acids, to dissolve or shrink the swellable material to increase flow from an individual interval within the well. Alternatively, an electrical or hydraulic signal may also be used to shrink the material. Another alternative embodiment of the sand control device 300 is further described in
However, in this alternative embodiment, the shunt tubes 402 have been included with the sand control device 400. The shunt tubes 402 may include packing tubes and/or transport tubes and may also be utilized with the sand screens 304 for gravel packing and other operations within the wellbore. The packing tubes may have one or more valves or nozzles (not shown) that provide a flow path for the gravel pack slurry, which includes a carrier fluid and gravel, to the annulus formed between the sand screen 304 and the walls of the wellbore. The valves may prevent fluids from an isolated interval from flowing through the at least one shunt tubes to another interval. These shunt tubes are known in the art as further described in U.S. Pat. Nos. 5,515,915, 5,890,533, 6,220,345 and 6,227,303.
Accordingly, in this embodiment, the sand control device 400 includes inflow control devices 308, openings 310, a sealing element 312 and shunt tubes 402. In this embodiment, the sealing element 312 may include multiple individual sections or portions, such as a plurality of sealing element 312 sections, positioned between adjacent shunt tubes 402 or a single sealing element 312 with openings for the shunt tubes 402. The plurality of sealing element sections 312, which may include hydraulically actuated inflatable elements or swellable materials, may block fluid flow to the openings 310 within the sand control device 400. For an alternative perspective of the sand control devices 400a and 400b, cross sectional views of some of the various components are shown along the line FF in
Some embodiments of the operation of the sand control device 400 are further described with reference to
However, in this embodiment, the shunt tubes 602 are external to the sand screen 304. Similar to the shunt tubes 402 noted above, the shunt tubes 602 may include packing tubes, transport tubes, valves and other components utilized for gravel packing an interval within the wellbore. These shunt tubes, which may include any number of geometries, are known in the art and further described in U.S. Pat. Nos. 4,945,991 and 5,113,935.
In some embodiments of the present invention, the sand control device 600 includes inflow control devices 308, openings 310, a sealing element 312, and shunt tubes 602, which operate similar to the discussion above. In particular, the sealing element 312, which may be a single element or plurality of sealing sections, may operate in a similar manner to the discussion of
As another example,
In some embodiments of the present invention, the sand control device 700 includes various sections, such as a main body section 702, an inflow section 704, a perforated section 706, a first connection section 708 and a second connection section 710, which are made of steel or metal alloys, as noted above. The main body section 702 and connection sections 708 and 710 may be configured similar to the sections 320, 324 and 328, which are discussed above. However, in this embodiment, while the inflow section 704 and perforated section 706 may be configured to have similar lengths to 322 and 326, as discussed of
In some embodiments of the present invention, the sand control device 700 is run to a specific location within the wellbore. In
Sand Control Device with Conduit
In an exemplary embodiment 800, the sand control device 800 includes a main body section 810, a perforation section 812, a first connection section 814 and a second connection section 816, which may be made from steel or metal alloys. Similar to the sections 320, 324 and 326 of
In an exemplary embodiment, the sand control device 800 includes a conduit 802 and barrier element 804 that are used to manage the flow of fluids during the gravel packing and production operations. The conduit 802 may include one or more tubes (similar to a shunt tube 402 of
In some methods of operation of the present invention, the sand control device 800 is run to a specific location within the wellbore. During gravel packing and production operations, fluid flows along the flow path 806, which enters through the sand screen 304 into the first chamber, flows through the conduit 802 to the second chamber, and enters the base pipe 302 through the perforations 310. For gravel packing operations, the carrier fluid flows through the conduit 802 in a manner that allows the gravel pack to be formed around the sand control device 800. Accordingly, the carrier fluid utilized for the gravel packing operations may be designed to have reduced friction loss properties relative to water or hydrocarbons. For example, the carrier fluid may include fluids used for alternate path gravel packing operations, as noted above. By selecting carrier fluids with low friction loss properties, the carrier fluid and gravel may be flowed through the well to form the gravel pack that is substantially complete. However, hydrocarbon and water production, which inherently have higher frictional pressure drop, are more restricted resulting in an inflow control effect.
As a specific example, the pressure loss for conduits may be calculated and utilized to select the pipes, which enhance operations over inflow control devices, such as nozzles. Specifically, if the pressure losses during production operations are calculated to utilize two 4 millimeter (mm) nozzles, then two conduits having a length of 30 ft and a diameter of 10 mm may be utilized during production operations. The pressure loss or choking, for both the nozzles and conduits, is about 150 psi at 550 barrels of oil per day (bopd) per screen joint. However, the nozzles and conduits may function differently during gravel packing operations. For instance, the carrier fluid may be an XC gel that flows at ½ barrel per minute (bpm) for each sand control device. The resulting pressure loss of the nozzles, which may be about 500 pounds per square inch (psi), is about 5 times the pressure loss of two conduits, which may be about 100 psi.
Beneficially, the conduit 802 and chamber formed by the barrier element 804 are utilized to choke the flow of hydrocarbons and water with frictional pressure losses, as opposed to pressure losses from inflow control devices or nozzles. While both techniques operate in a similar manner for production operations, the conduit 802 provides a mechanism for gravel packing operations to be performed efficiently, while the inflow control devices only tend to choke back the carrier fluid and hinder gravel pack formation.
Another alternative embodiment of the sand control device 800 is further described in
In
As another example,
In
Sand Control Device with Sliding Sleeve
In one exemplary embodiment, the sand control device 1100 includes a main body section 1110, a perforation section 1112, a first connection section 1114 and a second connection section 1116, which are made of steel or metal alloys. Similar to the sections 320, 324 and 326 of
In some embodiments, the sand control device 1100 may further include an inflow control device 308, openings 310, and a sleeve 1102 that are used to manage the flow of fluids during running, gravel packing and production operations. The sleeve 1102 may include a body of steel or metal alloy having a sealing element secured to the body. While the sleeve 1102 is shown positioned externally around the base pipe 302, the sleeve 1102 may also be disposed internal to the base pipe 302 in other embodiments.
In some embodiments of the operation of the present invention, the sleeve 1102 is configured to move between different positions, such as a running position as shown in
Beneficially, the sleeve 1102 having multiple positions may be utilized to manage the flow of fluids from the wellbore in an efficient manner. The sleeve 1102 provides additional flexibility for production operations and may reduce potential workovers by isolating the interval or portion of the interval adjacent to the sand control device 1100. However, note that the rotation of the sleeve may also include helical or other radial movement or rotation in other configurations.
As noted, the problems with the water/gas production may include productivity loss, equipment damage, and/or increased treating, handling and disposal costs. These problems are further compounded for wells having a number of different completion intervals, such as intervals 108a-108n, and where the formation strength may vary from interval to interval. As such, water or gas breakthrough in any one of the intervals may threaten the remaining reserves within the well. Accordingly, to provide the zonal isolation or manage the flow of fluids within the wellbore 114, packers may be utilized with the sand control devices 138a-138n, which may include one or more of the embodiments 300, 400, 500, 600, 700 and 1100, as discussed below in
As an example, to manage the flow of hydrocarbons, the sand control devices 138a-138n may include one or more of the embodiments 300, 400, 500, 600, 700 and 1100. If the sand control device 138 includes a water-swellable material as the sealing element 312 or has a sleeve 1102, the openings 310 may be utilized for gravel packing and production operations to maximize the production flow until water is produced from the interval. Once water is produced, the sealing element 312 may expand or the sleeve may be adjusted to the production position to seal the openings 310 from the formation fluid. As a result, the inflow control devices 308 are the only path from the interval to the interior of the base pipe 302. Beneficially, this embodiment may limit the impact of water production from one of the intervals of the formation.
To provide zonal isolation within the wellbore 114, the packers 1202a-1202n may be utilized with the sand control devices 138a-138n, which may include at least the embodiment 1100. In this example, the sand control device 138 may include a sleeve 1102 configured to provide or block access to the inflow control device 308 and openings 310. The openings 310 may be utilized for gravel packing, while the inflow control device 308 may be utilized for production operations. Once water is produced, the sleeve 1102 may be moved to the running position to seal the openings 310 and inflow control device 308 from the water. As a result, at least one sand control device 138 and two adjacent packers 1202a-1202n may be utilized to seal an interval within the wellbore 114. Alternatively, a water-swellable packer can be used for the same function when combined with any of the embodiments.
As alternative embodiments, different geometric patterns or any numbers of tubes, such as shunt tubes 402 and 602 and conduit 802, may be utilized for different applications. These tubes may be configured to provide redundancy flow paths or baffling (staggering) within the sand control devices 138. For example, while the sand control device 400 is shown with nine internal shunt tubes 402, sand control devices may include any number of shunt tubes, such as a one, two, three, four, five, six, seven, eight or more depending on the specific application. Also, while the sand control device 600 is shown with four external shunt tubes 602, sand control devices may include any number of shunt tubes, such as a one, two, three, four or more depending again on the specific application. Further, while the sand control device 800 is shown with one conduit 802, sand control devices may include any number of conduits, such as a one, two, three, four or more depending again on the specific application. In addition, it should again be noted that the tubes may include a variety of shapes and may be selected based upon on space limitations, pressure loss, and burst/collapse capacity. For instance, the tubes may be circular, rectangular, trapezoidal, polygons, or other shapes for different applications.
Similarly, the tubular members, such as base pipe 302 and sand screen 304, may include different geometric patterns, as discussed with the tubes, for different applications. For instance, the tubular member may include shapes, such as circular, rectangular, trapezoidal, polygons, or other shapes for different application. Also, while these tubular members are shown in a concentric configuration, eccentric configurations may also be utilized depending on the specific applications.
Further, these embodiments may be utilized with gravel placement procedures (i.e. gravel packing operations), which are discussed in U.S. Patent Application Pub. No. 2009/0294128. For instance, a wellbore may be drilled with a drilling fluid to access a subsurface formation. The drilling fluid may be conditioned, by shakers and other equipment to remove material above a certain size. Then, one or more sand control devices may be positioned within or run into a wellbore adjacent to a subsurface formation in the conditioned drilling mud. The sand control devices may be any of the embodiments of the present invention disclosed herein, and/or other configurations already known or unknown, or some combination thereof. The sand control device may include inflow control mechanism to provide pressure loss during gravel packing operations that are less than the pressure loss during some of the production operations. A crossover tool may be coupled to or engaged with the sand control device and a packer may be set above the sand control device to isolate the wellbore above the sand control device. Once set, the conditioned drilling fluid adjacent to the sand control device may be displaced with a carrier fluid. Then, the carrier fluid with gravel may be circulated through the cross over tool to form a gravel pack around the sand control device within the wellbore. Then, the crossover tool may be disengaged from the sand control device and a production tubing string may be coupled to the sand control device. Then, an adjustment may be made to the sand control device to limit the fluid flow during production operations, in the different approaches discussed above. Then, hydrocarbons may be produced through the gravel pack and sand control device.
It should be noted that the term “above,” when used to describe the position of a device in a well should be construed broadly and not limited to mean “closer to the surface.” As is known, some wells may be horizontal or even have a slight upward angle such that a device that is closer to the surface may be farther “down” the production string if the path of the well is taken. Here, “above” or “below,” when used in the context of a production string arrangement refers to the path of the production string, not the straight line distance to the earth's surface.
While the present invention may be susceptible to various modifications and alternative forms, the exemplary embodiments discussed above have been shown only by way of example. However, it should again be understood that the invention is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present invention includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
This application is a divisional of U.S. application Ser. No. 12/279,176, filed 12 Aug. 2008 now U.S. Pat. No. 7,984,760, which is the National Stage of International Application No. PCT/US07/04770, filed 23 Feb. 2007, which claims the benefit of U.S. Provisional Application No. 60/788,795, filed 3 Apr. 2006.
Number | Name | Date | Kind |
---|---|---|---|
4888120 | Mueller et al. | Dec 1989 | A |
4945991 | Jones | Aug 1990 | A |
5082052 | Jones et al. | Jan 1992 | A |
5113935 | Jones et al. | May 1992 | A |
5293935 | Arterbury et al. | Mar 1994 | A |
5333688 | Jones et al. | Aug 1994 | A |
5435393 | Brekke et al. | Jul 1995 | A |
5476143 | Sparlin et al. | Dec 1995 | A |
5515915 | Jones et al. | May 1996 | A |
5642781 | Richard | Jul 1997 | A |
5664628 | Koehler et al. | Sep 1997 | A |
5803179 | Echols et al. | Sep 1998 | A |
5881809 | Gillespie et al. | Mar 1999 | A |
5890533 | Jones | Apr 1999 | A |
5896928 | Coon | Apr 1999 | A |
5909774 | Griffith et al. | Jun 1999 | A |
6112815 | Boe et al. | Sep 2000 | A |
6112817 | Voll et al. | Sep 2000 | A |
6220345 | Jones et al. | Apr 2001 | B1 |
6227303 | Jones | May 2001 | B1 |
6237683 | Pringle et al. | May 2001 | B1 |
6302216 | Patel | Oct 2001 | B1 |
6308783 | Pringle et al. | Oct 2001 | B2 |
6311772 | Myhre et al. | Nov 2001 | B1 |
6382319 | Hill, Jr. et al. | May 2002 | B1 |
6405800 | Walker et al. | Jun 2002 | B1 |
6446729 | Bixenman et al. | Sep 2002 | B1 |
6464261 | Dybevik et al. | Oct 2002 | B1 |
6494265 | Wilson et al. | Dec 2002 | B2 |
6505682 | Brockman | Jan 2003 | B2 |
6513599 | Bixenman et al. | Feb 2003 | B1 |
6533038 | Venning et al. | Mar 2003 | B2 |
6557634 | Hailey, Jr. et al. | May 2003 | B2 |
6581689 | Hailey, Jr. | Jun 2003 | B2 |
6601646 | Streich et al. | Aug 2003 | B2 |
6622794 | Zisk, Jr. | Sep 2003 | B2 |
6644412 | Bode et al. | Nov 2003 | B2 |
6675245 | Schmidt | Jan 2004 | B1 |
6679324 | Den Boer et al. | Jan 2004 | B2 |
6715558 | Williamson | Apr 2004 | B2 |
6745843 | Johnson et al. | Jun 2004 | B2 |
6749024 | Bixenman | Jun 2004 | B2 |
6752206 | Watson et al. | Jun 2004 | B2 |
6786285 | Oddie et al. | Sep 2004 | B2 |
6789623 | Hill, Jr. et al. | Sep 2004 | B2 |
6814144 | Jones | Nov 2004 | B2 |
6817410 | Wetzel et al. | Nov 2004 | B2 |
6817416 | Wilson et al. | Nov 2004 | B2 |
6830104 | Nguyen et al. | Dec 2004 | B2 |
6848510 | Bixenman et al. | Feb 2005 | B2 |
6851560 | Reig et al. | Feb 2005 | B2 |
6857475 | Johnson | Feb 2005 | B2 |
6860330 | Jackson | Mar 2005 | B2 |
6868910 | Corre et al. | Mar 2005 | B2 |
6875476 | Hawtin et al. | Apr 2005 | B2 |
6883613 | Bode et al. | Apr 2005 | B2 |
6886634 | Richards | May 2005 | B2 |
6892816 | Pringle et al. | May 2005 | B2 |
6899176 | Hailey, Jr. et al. | May 2005 | B2 |
6935432 | Nguyen | Aug 2005 | B2 |
6978840 | Henderson | Dec 2005 | B2 |
6983796 | Bayne et al. | Jan 2006 | B2 |
6997263 | Campbell et al. | Feb 2006 | B2 |
7055598 | Ross et al. | Jun 2006 | B2 |
7096945 | Richards et al. | Aug 2006 | B2 |
7100691 | Nguyen et al. | Sep 2006 | B2 |
7185706 | Freyer | Mar 2007 | B2 |
7234518 | Smith | Jun 2007 | B2 |
7252142 | Brezinski et al. | Aug 2007 | B2 |
7264061 | Dybevik et al. | Sep 2007 | B2 |
7367395 | Vidrine et al. | May 2008 | B2 |
7407007 | Tibbles | Aug 2008 | B2 |
7413022 | Broome et al. | Aug 2008 | B2 |
7426962 | Moen et al. | Sep 2008 | B2 |
7431085 | Coronado et al. | Oct 2008 | B2 |
7431098 | Ohmer et al. | Oct 2008 | B2 |
7441605 | Coronado et al. | Oct 2008 | B2 |
7464752 | Dale et al. | Dec 2008 | B2 |
7469743 | Richards | Dec 2008 | B2 |
7475725 | Yeh et al. | Jan 2009 | B2 |
7591321 | Whitsitt et al. | Sep 2009 | B2 |
7644758 | Coronado et al. | Jan 2010 | B2 |
7708068 | Hailey, Jr. | May 2010 | B2 |
7735559 | Malone | Jun 2010 | B2 |
7845407 | Bunnell et al. | Dec 2010 | B2 |
7870898 | Yeh et al. | Jan 2011 | B2 |
7891420 | Dale et al. | Feb 2011 | B2 |
20020104650 | Dusterhoft et al. | Aug 2002 | A1 |
20030070809 | Schultz et al. | Apr 2003 | A1 |
20030089495 | Bixenman | May 2003 | A1 |
20030173075 | Morvant et al. | Sep 2003 | A1 |
20040007829 | Ross | Jan 2004 | A1 |
20040020832 | Richards et al. | Feb 2004 | A1 |
20040035591 | Echols | Feb 2004 | A1 |
20040108107 | Wittrisch | Jun 2004 | A1 |
20040134656 | Richards | Jul 2004 | A1 |
20040140089 | Gunneroed | Jul 2004 | A1 |
20040144544 | Freyer | Jul 2004 | A1 |
20040251020 | Smith | Dec 2004 | A1 |
20040262011 | Huckabee et al. | Dec 2004 | A1 |
20050028977 | Ward | Feb 2005 | A1 |
20050061501 | Ward et al. | Mar 2005 | A1 |
20050082060 | Ward et al. | Apr 2005 | A1 |
20050263287 | Achee, Jr. et al. | Dec 2005 | A1 |
20060042795 | Richards | Mar 2006 | A1 |
20060060352 | Vidrine et al. | Mar 2006 | A1 |
20060113089 | Henriksen et al. | Jun 2006 | A1 |
20060118296 | Dybevik et al. | Jun 2006 | A1 |
20060157257 | Ross et al. | Jul 2006 | A1 |
20070056750 | John et al. | Mar 2007 | A1 |
20070114020 | Brekke | May 2007 | A1 |
20080041580 | Freyer et al. | Feb 2008 | A1 |
20090151925 | Richards et al. | Jun 2009 | A1 |
20090159279 | Assal | Jun 2009 | A1 |
20090159298 | Assal | Jun 2009 | A1 |
20090283279 | Patel et al. | Nov 2009 | A1 |
20090294128 | Dale et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
146981 | Jul 1985 | EP |
Number | Date | Country | |
---|---|---|---|
20110162840 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
60788795 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12279176 | US | |
Child | 13049512 | US |