1. Field of the Invention
The present invention is directed to monitoring and controlling wellbore operations, and, in one particular aspect, to monitoring and controlling wellbore drilling operations in real time.
2. Description of Related Art
The prior art discloses a wide variety of systems and methods for monitoring wellbore operations and for sensing and measuring parameters related to such operations, both downhole and at the surface. The prior art also discloses a wide variety of sensors, measurement apparatuses, devices, and equipment for sensing, measuring, recording, displaying, calculating, processing, and transmitting measured values for operational parameters, including, but not limited to, weight on bit (WOB), rate of penetration (ROP), rotary speed, bit speed, top drive speed, downhole motor speed, and torque on a drillstring or on a bit.
Many systems and methods have been proposed and implemented for using such sensed and measured operational parameters to enhance, facilitate, and, in some cases, optimize operational performance and the performance of apparatuses, devices and equipment involved in such operations; including, but not limited to, drilling operations. In 1965 R. Teale proposed a model for analyzing and predicting drilling performance based on a calculation of “mechanical specific energy” in an article entitled “The Concept Of Specific Energy In Rock Drilling” [Int'l J. Rock Mech. Mining Sci. (1965) 2, 57-73]. Teale's mathematical definition (“Teale definition”) of mechanical specific energy, Es, is:
In which WOB is weight on bit, N is rpm's of a rig's rotary, T is the torque at the bit, ROP is rate of penetration, and A is wellbore (or bit) cross-sectional area.
In a 1992 research study, (see paper entitled “Quantifying Common Drilling Problems With Mechanical Specific Energy And A Bit-Specific Coefficient of Sliding Friction”, SPE 24584, 373-388), R.C. Pessier et al developed an energy balance model for drilling under hydrostatic pressure using a comparison between full-scale simulator tests and field data. As key indices of drilling performance, they employed mechanical efficiency, Teale's mechanical specific energy parameter, and a bit-specific coefficient of sliding friction for bit selection and analysis. “Mechanical specific energy” was defined as work done per unit volume of rock drilled and it was assumed that the minimum specific energy required to drill is approximately equal to the compressive strength of the rock being drilled. The mechanical efficiency of drilling was then estimated by comparing actual specific energy required to drill an interval with the minimum expected specific energy needed to drill that interval. Pessier et al analyzed values of various parameters (actual specific energy, minimum specific energy, energy efficiency, and bit-specific coefficient of sliding friction) with respect to ROP under different situations (e.g., different bits, different WOB's, different RPM's, different hydraulics, and under atmospheric and hydrostatic pressure). It was concluded that mechanical specific energy, mechanical efficiency, and bit-specific coefficient of sliding friction provided good indicators of drilling performance and could enhance the interpretation of data for: the detection and correction of major drilling problems; analysis and optimization of drilling practices; bit selection; failure analysis; evaluation of new drilling technologies and tools; real-time monitoring and controlling of the drilling process; analysis of MWD (measurement while drilling) data; and further system developments.
In a 2002 paper, Waughman et al reported on a system and method for optimizing the bit replacement decision [“Real-Time Specific Energy Monitoring Reveals Drilling Inefficiency and Enhances the Understanding of When to Pull Worn PDC Bits,” IADC/SPE 74520, 2002, 1-14]. The system involved measuring the mechanical energy input at the drill rig floor, calculating the drilling specific energy, checking current formation type via real-time downhole gamma ray readings, comparing the specific energy with the benchmark new bit specific energy, and then using these values to assess the bit's “dull” state. Success of the system was reported for synthetic based mud systems Where bit balling does not mask bit dull condition. The process worked in water-based drilling fluids that had replaced earlier synthetic muds because both balled-new bits and dull bits exhibit similar levels of inefficiency.
In general, many prior art systems and methods use undifferentiated mechanical specific energy, i.e., calculations of mechanical specific energy based on sensed and measured values without taking into account the location of the sensors and measurement apparatuses that produce them. No discrimination is made for data obtained from downhole as opposed to surface locations. No differentiation is made between data obtained from locations at the bit as opposed to in the drillstring or at the surface. For example, torque and rotational speed (rpm's) can be measured at various locations—e.g. downhole or at the surface, and the measurement, from whichever location, is then used. The use of such undifferentiated measurements or parameters such as torque, rotational speed, etc. can lead to ambiguous and/or inconsistent determinations of mechanical specific energy.
There is a need, recognized by the present inventors, for efficient and effective systems and methods for monitoring and controlling wellbore operations, and, in one aspect, in which such operations are drilling operations.
There is a need, recognized by the present inventors, for such systems and methods which employ localized and accurate determined values for mechanical specific energy.
The present invention discloses, in certain aspects, methods for wellbore operations with a wellbore system, the methods including: acquiring with sensor systems data corresponding to a plurality of parameters, the data indicative of values for each parameter of the plurality of parameters, each parameter corresponding to part of the wellbore system; based on said data, calculating a mechanical specific energy value for each of a plurality of mechanical specific energies each related to a mechanical specific energy for a part of the wellbore system; and monitoring the value of each of the mechanical specific energies, in one aspect, in real time.
The present invention, in at least certain embodiments, discloses systems and methods for using calculations of mechanical specific energy to enhance, improve, and/or optimize wellbore operations, e.g. drilling, milling, reaming, underreaming, casing drilling, milling-drilling and coiled tubing operations, including: optimizing the bit (or mill) replacement process; analyzing downhole problems related to energy loss; locating a cause of energy loss; eliminating correctly operating systems as a cause of energy loss; and providing real-time confirmation that chosen solutions do not negatively impact components of a drilling system, e.g. bits (or mills), bottomhole assemblies (“BHA”), downhole (mud) motors, and drillstrings. In certain embodiments, the present invention discloses systems and methods for determining localized differentiated mechanical specific energy parameters: surface mechanical specific energy; drillstring mechanical specific energy; and bit (or mill or other apparatus) mechanical specific energy. A variety of equations are available for determining mechanical specific energy, including Teale's definition and the following:
Where:
MSE=Mechanical Specific Energy, Kpsi
Effb=Bit efficiency
WOB=Weight on bit, lbs
D=Bit diameter, inches
Nb=Bit rotational speed, rpm
T=Drillstring rotational torque, ft-lb
ROP=Rate-of-penetration, ft/hr
and:
Where:
MSE=Mechanical Specific Energy
Kadj=Adjustment factor
Effb=Bit efficiency
D=Bit diameter, inches
Nb=Bit rotational speed, rpm
Trel=Relative measure of drillstring rotational torque, units as per device
ROP=Rate-of-penetration, ft/hr
The two terms within the parentheses in Equation II are referred to here as “WOB term” (left one with WOB) and “torque term” (right one with T). In general, the magnitude of the torque term is usually much larger than the WOB term.
Surface mechanical specific energy can be calculated using surface inputs, e.g. surface-measured torque, WOB, and/or ROP. Bit mechanical specific energy can be calculated using downhole measured inputs, e.g. downhole measured torque and/or other downhole measured parameters or, in one aspect, using surface measured inputs, e.g. WOB, ROP, bit RPM (surface measured); i.e., where downhole measured values are not available and/or where they do not impact calculated mechanical specific energy values. “Downhole measured” means “actually measured” downhole (e.g. measured torque of a downhole motor) or it means derived from other downhole measured values (e.g. torque derived from mud motor parameters) and/or may mean “derived from” surface measured data, e.g. torque as determined with measurements from a measured pressure differential across a downhole motor.
Bit mechanical specific energy is calculated using available downhole data and, in certain aspects, is the same as downhole mechanical specific energy. In one aspect, bit mechanical specific energy uses a minimum of required downhole inputs, e.g. enough key values to quantify the mechanical specific energy, e.g. only downhole measured torque, only downhole measured WOB or only downhole measured bit RPM.
In certain aspects, the use of localized differentiated mechanical specific energy values: enhances the diagnostic potential and efficiency of the diagnosis of bit vs. drillstring mechanics; indicates more clearly than certain prior art systems the sources of data, i.e. where energy loss is occurring, e.g. loss occurring at the bit, (or mill or other apparatus) between the bit and the surface, or at any point, in a drillstring or for any tool or apparatus in a drillstring or other string; provides more understandable interpretation and presentation of data on site at a rig; and provides for the use of data from both downhole and from the surface to generate more accurate calculations.
In one embodiment a determination of drillstring (or other string) mechanical specific energy is made by calculating the difference between surface mechanical specific energy and bit mechanical specific energy.
In addition to specific objects stated herein for at least certain preferred embodiments of the invention (but not necessarily for all embodiments of the present invention), other objects and purposes will be readily apparent to one of skill in this art who has the benefit of this invention's teachings and disclosures. It is, therefore, an object of at least certain preferred embodiments of the present invention to provide new, unique, useful, and nonobvious systems and methods of their use—all of which are not anticipated by, rendered obvious by, suggested by, or even implied by any of the prior art, either alone or in any possible legal combination.
Certain embodiments of this invention are not limited to any particular individual feature disclosed here, but include combinations of them distinguished from the prior art in their structures and functions. Additional aspects of the invention are described below and may be included in the subject matter of the claims to this invention. Those skilled in the art who have the benefit of this invention, its teachings, and suggestions will appreciate that the conceptions of this disclosure may be used as a creative basis for designing other structures, methods and systems for carrying out and practicing the present invention. The claims of this invention are to be read to include any legally equivalent devices or methods.
The present invention recognizes and addresses the previously-mentioned problems and long-felt needs and provides a solution to those problems and a satisfactory meeting of those needs. To one skilled in this art who has the benefits of this invention's realizations, teachings, disclosures, and suggestions, other purposes and advantages will be appreciated from the following description of preferred embodiments, given for the purpose of disclosure, when taken in conjunction with the accompanying drawings. The detail in these descriptions is not intended to thwart this patent's object to claim this invention no matter how others may later disguise it by variations in form or additions of further improvements.
The Abstract that is part hereof is to enable the United States Patent and Trademark Office and the public generally, and scientists, engineers, researchers, and practitioners in the art who are not familiar with patent terms or legal terms of phraseology to determine quickly from a cursory inspection or review the nature and general area of the disclosure of this invention. The Abstract is neither intended to define the invention, which is done by the claims, nor is it intended to be limiting of the scope of the invention in any way.
A more particular description of embodiments of the invention briefly summarized above may be had by references to the embodiments that are shown in the drawings which form a part of this specification. These drawings illustrate certain preferred embodiments and are not to be used to improperly limit the scope of the invention that may have other equally effective or legally equivalent embodiments.
In one particular embodiment of a system and method according to the present invention, as shown in
In one scenario a driller DR views a display (screen and/or strip chart) DS which indicates in real time the value of and change (if any) in drillstring mechanical specific energy, bit mechanical specific energy, and surface mechanical specific energy. The system may provide and the display may also display results post-event, not in real time. In one aspect the system CS is programmed to produce an alarm (audio and/or visual) when a certain level of mechanical specific energy is approached or exceeded. In a particular scenario, bit mechanical specific energy is acceptable, but severe drillstring vibrations are causing high energy losses in the BHA and in the drillstring. The driller DR in viewing the display DS (e.g. as in
The system as shown, e.g., in
A drillstring 20 extending down from a rig 12 into a wellbore 36 in an earth formation 24 has a bit 22 on a bottom hole assembly 16 at the wellbore bottom. Drilling fluid 26 flows from a tank or pit 28 pumped by a pump system 38 through a piping system 40 down the drillstring 20 and returning up an annulus 25 flowing in a line 42 back to the tank 28.
A control system 50 includes a computer CP with a display 60, a printer 62 and a printout 64. Input devices 58 receive data signals from the sensors 51-57 which are in communication with the computer via wire, cable and/or wireless communication. For example, sensors may provide signals indicative of the following: WOB, at the surface from a sensor or a drill line anchor or downhole from a sensor 51 of an MWD unit; torque, at the surface from a sensor 52 of the rotary drive 74 or from a sensor 55 of the top drive 72, or downhole from the sensor 51; ROP, at the surface from a sensor 53 on an encoder ED of a drawworks DR (shown schematically) or from the sensor 51; and bit rotational speed at the surface from a sensor 55 in the top drive or from a sensor 54 in the rotary drive or downhole from the sensor 51; or from a sensor 57 in the motor 70. The computer CP calculates three differentiated mechanical specific energies, drillstring mechanical specific energy, bit mechanical specific energy, and surface mechanical specific energy, and then decides whether to provide alarms and/or to execute control programs to control various aspects of the drilling process.
The drilling operation control outputs from the computer CP are provided to various controllers and control systems C1-C6 which control drill line payout (brake control and/or drawworks motors control); a rotary table (control bit speed); a top drive (control bit speed) mud pumps (pump rate control) downhole drilling systems, and/or rotary steerable systems. In one particular method of use of the system 100, a new bit 22 is tripped into the wellbore and the drillstring 20 is run down to the wellbore bottom. The driller enters into the computer CP target ROP, bit rotational speed, drilling fluid pump rate, and WOB. The control system 50 then prepares to collect data related to all the drilling parameters to be measured and monitored and calculates and displays the three mechanical specific energies. The system 50 proceeds to determine a background mechanical specific energy level with drilling at “safest” conditions and determines that the entire allowable operating range for WOB, RPM, torque and ROP is within safe limits. In one aspect WOB and bit RPM are directly controlled by the driller. Torque and ROP are resultants of this control, but can also be controlled, for example, by adjusting WOB and/or rotational speed to alter the resultant torque and ROP's. The driller then starts drilling with the target ROP, WOB, RPM, and pump rate. The system 50 informs the driller that the drilling process in progress is acceptable. In one particular scenario, the system 50 then detects an increase in bit mechanical specific energy, informs the driller that an abnormal event is occurring, and begins a diagnostic process. The system 50 moves all control parameters to a safe (or safest) value (e.g. to values at which bit balling will not occur), e.g. minimum WOB, maximum RPM, and maximum drilling fluid pump rate. The system 50 controls equipment directly or sends set points to individual devices' controllers. In this case, the bit mechanical specific energy then returns to an acceptable or baseline value and the system 50 concludes that bit balling had been occurring when the drilling operation was at the original target values the driller had been using. The system 50 then informs personnel, e.g. the driller and/or the company man, that bit balling has been detected and the system 50 offers two possible course of action: 1. replace the bit; 2. let the system 50 attempt to find a maximum ROP at which balling will not occur. In the event option 2. is chosen, the rig personnel can decide if the calculated ROP is acceptable for further drilling. In the event option 2. is chosen, the control system resumes drilling at the determined safe values of the drilling parameters (e.g. those at which bit balling is least likely to occur) and then manipulates ROP, RPM, WOB and pump rate to achieve maximum ROP while seeing that bit mechanical specific energy is maintained at or below “no balling” values.
Where A104 is the area of the new hole 104 and A102 is the area of the original hole 102. The values for mechanical specific energies determined in drilling the original hole are used for comparison during the hole-opening. Abnormally high values may indicate that the underreamer 108 (and possibly the drill bit 104) is drilling a larger-than-expected area of rock (for example, hole totally caved in) or that the under-reamer has mechanical problems, worn bit, etc.
In methods according to the present invention in which a hole opener with cutters is run with a bit and both drill simultaneously (e.g. if no hole was previously drilled), the effective “bit diameter” for mechanical specific energy calculations is the diameter of the hole opener's cutters. Alternatively according to the present invention an underreamer can be run in a hole separate from or without a bit.
Reaming is a method of “drilling again” an already-drilled hole section; e.g., as shown in
Casing drilling, see e.g.
Systems and methods according to the present invention may be used with casing drilling systems and methods disclosed in U.S. Pat. Nos. 5,197,553; 5,271,472; 5,472,057; 6,443,247; 6,640,903; 6,705,413; 6,722,451; 6,725,919; 6,739,392; 6,758,278; and in references cited in these patents—all incorporated fully herein for all purposes.
In certain coiled tubing drilling operations using methods according to the present invention, see, e.g.
Milling is the process of milling away an object in a wellbore or milling out a section of a casing (or tubular) wall and can include drilling a formation, e.g. drilling enough of an adjacent formation so that a conventional drilling assembly can be used to continue drilling into the formation.
Milling up undesirable material from a wellbore is often done after other extraction methods have been exhausted. “Junk” in drilling operations can include items dropped in the hole, e.g. hand tools, and rock bit cones that have fallen off a drill bit. Examples of junk in workover operations are packers and bridge plugs.
Managed pressure drilling (MPD) includes drilling with downhole pressure control provided by dynamic control of the annulus pressure in a wellbore. Underbalanced drilling (UBD) is a subset of managed pressure drilling whereby the downhole pressure is managed so that it is below the formation pressure of a formation through which the wellbore extends and formation fluids are allowed to flow to the surface.
In some circumstances Equation II (see above) or Teale's definition are not used for calculating mechanical specific energy; e.g. there are many rigs where the drillstring rotational torque is not available in ft-lbs. An example of this is the commercially available M/D Totco Rotary Torque System, an hydraulic system for mechanical rigs. This system measures deflection in the chain driving the rotary table and outputs this deflection as an hydraulic pressure in psi. If the torque is not available in ft-lbs, then a value of mechanical specific energy in Kpsi cannot be computed. However, being able to compute an equivalent value that is proportional to what would be the value of mechanical specific energy still has value in a relative sense, as many applications of mechanical specific energy use a trend in value and/or do not require an absolute value.
In certain methods according to the present invention where torque is not available in ft-lbs, Equation III (see above) is used. While units are shown above for Equation III, their use is not required for successful results with this method, as it still produces usable results with no units or even erroneous units (for example, conversion errors), as long as the values are proportional to the correct values. This is a robust solution for many typical rig conditions. The elimination of the constants from Equation II (480 and 1000) is similarly arbitrary. Methods using Equation III arbitrarily modify the Kadj factor until the resulting mechanical specific energy “makes sense” (i.e. is in the ballpark) or is reasonable or is an expected value for a given drilling situation, and then keep that factor for future use of mechanical specific energy on that same rig with that same device for rotating the drillstring (i.e. the rotary table or the top drive). For such cases where torque in ft-lbs is not available: 1. mechanical specific energy values will be proportional to the magnitude of the torque term; 2. since the torque term is usually the dominant force, the values will be as applicable as the true values for all relative applications; 3. since the relative applications of mechanical specific energy are the most common (as opposed to absolute), Equation III methods provide values almost equal to mechanical specific energy for these applications; and 4. the chance of Equation III method's values providing misleading information to the user for relative applications of mechanical specific energy is very small; e.g. it is limited to those rare cases where the WOB term would be dominant over the torque term. For the cases where torque in ft-lbs is available, and Equation III methods are used, due to the robustness of Equation III calculations, situations where the data inputs may not be correctly calibrated or where the data inputs are in incorrect units can still produce usable results. If the resulting inputs are incorrect (per desired units) for any reason, but are proportional to the correct values, then the Equation III value will be superior to a (miscalculated) Equation II value; and 2. for cases where computations are at a premium (for example, in an embedded controller), Equation III calculations provide most of the value of mechanical specific energy for less computational effort. However, Equation III calculations do not have a meaningful absolute value (i.e. in Kpsi units) which can be globally compared with any other rig's or well's value (it can be compared over multiple wells drilled by the same rig); and the impact of the WOB term is neglected in the mechanical specific energy value. This is usually a small contribution. While Equation III will work with any (positive) value of Kadj, judicious selection of Kadj will expand the general use value of these methods of determining mechanical specific energy.
The present invention, therefore in at least certain but not all preferred embodiments provides: a method for a wellbore operation with a wellbore system, the method including: acquiring with sensor systems data corresponding to a plurality of parameters, said data indicative of values for each parameter of said plurality of parameters, each parameter corresponding to part of the wellbore system; based on said data, calculating a mechanical specific energy value for each of a plurality of mechanical specific energies each related to a mechanical specific energy for a part of the wellbore system; and monitoring the value of each of the mechanical specific energies. Such a method may include one or some, in any possible combination, of the following: wherein the wellbore operation is any of drilling, milling, reaming, hole-opening, casing drilling, drilling with a downhole motor, coiled tubing operations, junk milling, milling-drilling, and managed pressure drilling; wherein the plurality of parameters includes any of WOB, ROP, bit rotational speed, torque at a bit, torque at surface, rotary rotational speed, and bit cross-sectional area; providing calculated mechanical specific energy values to alarm apparatus; providing an alarm with the alarm apparatus based on the values of the mechanical specific energies; providing calculated mechanical specific energy values to a control system for controlling the operation, and controlling the operation based on said calculated mechanical specific energy values; monitoring the values of calculated mechanical specific energy values and analyzing said values for indicating a problem with the wellbore operation; determining at least one solution j(or a plurality of possible solutions) to the problem based on the values of the calculated mechanical specific energy; providing confirmation that the at least one solution (or a solution chosen from a plurality of possible solutions) does not impede the wellbore operation; monitoring the values of calculated mechanical specific energy values and analyzing said values for indicating a problem with the wellbore operation, and based on said values determining which part of the wellbore system has the problem; wherein the wellbore operation is a drilling operation and drilling is accomplished with a drill system which is any of a rotary drive system, a top drive system, and a downhole motor system; analyzing said values of calculated mechanical specific energies to determine whether there is a change (e.g. an increase and/or decrease) in energy consumption by the wellbore operation; wherein the plurality of mechanical specific energies includes surface, drillstring, and bit mechanical specific energy; wherein surface mechanical specific energy is calculated using surface measured inputs and bit mechanical specific energy is calculated using downhole measured inputs actually measured downhole; wherein the values for mechanical specific energies are calculated using surface measured inputs; wherein drillstring mechanical specific energy is calculated using a difference between surface mechanical specific energy and bit mechanical specific energy; wherein the wellbore operation is an operation with a rotating bit (or reamer or mill) and values for the mechanical specific energies are calculated according to the equation for Teale's definition of mechanical specific energy; wherein the wellbore operation is an operation with a rotating bit and values for the mechanical specific energies are calculated according to Equation II; wherein the wellbore operation is an operation with a rotating bit (or reamer or mill) and values for the mechanical specific energies are calculated according to Equation III; providing in real time a display of calculated values of the plurality of mechanical specific energies; wherein a control system controls the wellbore operation, the method including controlling the wellbore operation with the control system; wherein the control system includes a computer readable medium having instructions for any of: providing an alarm if a pre-set value for a mechanical specific energy is exceeded; controlling system apparatuses used in the wellbore operation; conducting a diagnostic test of any of said system apparatuses; storing calculated values; and/or controlling the wellbore operation to execute a higher level strategy; wherein the wellbore operation is a hole-opening operation and mechanical specific energies are calculated using a volume of drilled-out material; wherein the mechanical specific energies are calculated with Equation IV; wherein the wellbore operation is a reaming operation for reaming an already-produced wellbore producing a reamed wellbore, and values for mechanical specific energies calculated for the already-produced wellbore are compared to values for mechanical specific energies calculated for the reaming operation; wherein the wellbore operation is a milling operation and values of calculated mechanical specific energies are monitored and processed to indicate any of: a change in mechanical specific energy as an item is first encountered by a mill; a change or trend in mechanical specific energy behavior as increasing amounts of material are milled; a drop in mechanical specific energy as a mill exits an item being milled; and/or a value of mechanical specific energy that indicates a mill is encountering formation outside an item being milled; and/or wherein the wellbore operation is managed pressure drilling and values of calculated mechanical specific energies are monitored and processed to indicate any of: a pressure differential in a wellbore; less energy required during drilling; and/or confirmation that drilling is progressing as desired.
The present invention, therefore, in at least certain but not all preferred embodiments provides a computer-readable media having computer executable instructions for a wellbore operation with a wellbore system, the computer-executable instructions performing the following steps: receiving from sensor systems data corresponding to a plurality of parameters, said data indicative of values for each parameter of said plurality of parameters, each parameter corresponding to part of the wellbore system, calculating, based on said data, a mechanical specific energy value for each of a plurality of mechanical specific energies each related to a mechanical specific energy for a part of the wellbore system, and transmitting to receiving apparatus signals indicative of the value of each of the calculated mechanical specific energies; and, in certain aspects, the computer-readable media wherein the receiving apparatus is a display system; and, in one aspect, a computing unit with such computer-readable media, the computing unit configured to read and perform the computer-executable instructions.
All patents referred to herein by number are incorporated fully herein for all purposes. In conclusion, therefore, it is seen that the present invention and the embodiments disclosed herein and those covered by the appended claims are well adapted to carry out the objectives and obtain the ends set forth. Certain changes can be made in the subject matter without departing from the spirit and the scope of this invention. It is realized that changes are possible within the scope of this invention and it is further intended that each element or step recited in any of the following claims is to be understood as referring to all equivalent elements or steps. The following claims are intended to cover the invention as broadly as legally possible in whatever form it may be utilized. The invention claimed herein is new and novel in accordance with 35 U.S.C. § 102 and satisfies the conditions for patentability in § 102. The invention claimed herein is not obvious in accordance with 35 U.S.C. § 103 and satisfies the conditions for patentability in § 103. This specification and the claims that follow are in accordance with all of the requirements of 35 U.S.C. § 112. The inventors may rely on the Doctrine of Equivalents to determine and assess the scope of their invention and of the claims that follow as they may pertain to apparatus not materially departing from, but outside of, the literal scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4354233 | Zhukovsky et al. | Oct 1982 | A |
4616321 | Chan et al. | Oct 1986 | A |
4854397 | Warren et al. | Aug 1989 | A |
5216917 | Detournay | Jun 1993 | A |
5465798 | Edlund et al. | Nov 1995 | A |
6109368 | Goldman et al. | Aug 2000 | A |
6374926 | Goldman et al. | Apr 2002 | B1 |
6892812 | Niedermayr et al. | May 2005 | B2 |
20040243309 | Alft et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
2 352 046 | Dec 2000 | GB |
Number | Date | Country | |
---|---|---|---|
20060162962 A1 | Jul 2006 | US |