It is well known in the oil and gas drilling industry to run a scraper assembly down a wellbore so as to clean the inner surface of the wellbore casing wall. This operation is typically undertaken when there is a need to grip the inner surface of the wellbore casing with a wellbore tool, such as a plug, inflatable packer, or the like. Naturally, the effectiveness of the wellbore tool gripping the casing is improved if the portion of wellbore casing being gripped is substantially clean and free of loose fragments.
Current technologies that are used to clean the inner surface of the wellbore casing wall include rigid tubing based scraper assemblies and wireline based scraper assemblies. Rigid tubing based scraper assemblies require a rigid work string, as well as an oil derrick for deploying the same. Accordingly, such rigid tubing based scraper assemblies are time consuming and expensive.
Wireline based scraper assemblies, on the other hand, do not require an oil derrick, and thus are less time consuming and expensive. Unfortunately, the wireline based scraper assemblies are found on the very bottom of the wireline, which means that no other wellbore tools can be placed there below. Accordingly, multiple trips are needed to first scrape and clean a target location, and then subsequently set the wellbore tool. Additionally, it is not guaranteed that the operator will be able to find the cleaned location of the wellbore casing, and thus be able to set the wellbore tool in the correct location. Moreover, it is quite possible that new debris may be introduced between the multiple trips. Given the foregoing, what is needed in the art is a wireline based wellbore scraper assembly that does not experience the drawbacks of exiting systems.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the drawings and descriptions that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawn figures are not necessarily to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form, and some details of certain elements may not be shown in the interest of clarity and conciseness. The present disclosure may be implemented in embodiments of different forms. Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results.
Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described.
Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “uphole,” “upstream,” or other like terms shall be construed as generally toward the surface of the formation; likewise, use of the terms “down,” “lower,” “downward,” “downhole,” or other like terms shall be construed as generally toward the bottom, terminal end of a well, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical axis. Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water such as ocean or fresh water.
Referring initially to
A tubing string 128 extends from wellhead 132 to a location below formation 104 and provides a conduit for production fluids to travel to the surface. A pair of packers 134, 136 provides a fluid seal between tubing string 128 and casing 118 and directs the flow of production fluids from formations 104, 106 to the interior of tubing string 128 through, for example, a slotted liner. Disposed within tubing string 128 is a wireline 138 used to convey a wireline based scraper system 140 designed and manufactured according to one embodiment of the disclosure. The term wireline, as used herein, is intended to exclude rigid conveyance mechanisms, such as one or more sections of rigid pipe, and is intended to include all known or future developed non-rigid conveyance mechanisms. For example, the term wireline includes, without limitation, traditional wireline, slickline, braided cable, electric line and other related non-rigid conveyances. Accordingly, the present disclosure should not be limited to any specific type of non-rigid conveyance, but should exclude all types of rigid conveyances.
The wireline based scraper system 140, in the embodiment shown, includes a jar mechanism 142, a hydraulic power pack 144, a wellbore scraper assembly 146 according to the disclosure, a catch basket 148 according to the disclosure, and a wellbore tool 150. In accordance with the disclosure, the wellbore scraper assembly 146 includes a plurality of hydraulically deployable scraper features (not shown) that move from a first retracted state to a second radially extended state, for example using fluid provided from the hydraulic power pack 144 suspended from the wireline 138 and a hydraulic deployment system associated therewith. The catch basket 148, in one embodiment, additionally includes hydraulically deployable collection arms (not shown) coupled proximate a downhole end of the wellbore scraper assembly.
A wireline based scraper system according to the present disclosure, in contrast to existing wireline based systems, can clean the wellbore casing and set a wellbore tool in the same run, which is a major time savings for the customer. Additionally, with relay tool strings, an operator of the device can get real time feedback of the downhole tension to know whether or not the scrapper is actually cleaning debris or is freely moving in the hole. Moreover, since the wireline based scraper system uses arms in certain embodiments, the run in hole diameter of the wireline based scraper system can be lowered so that the run in hole diameter is minimized. This is useful in setting higher expansion plugs.
Even though
Referring now to
The wireline based scraper system 200 illustrated in
In accordance with the disclosure, a wellbore tool 230 may be positioned proximate a lower end of the wireline based scraper system 200. The wellbore tool 230 may comprise a variety of different tools and remain within the scope of the disclosure. In fact, any tool capable of being controlled and/or deployed using the hydraulic power pack 210 is within the scope of the disclosure. For example, without limitation, the wellbore tool 230 could be a plug, an inflatable packer, or another similar device and remain within the scope of the disclosure. In this configuration, the wireline based scraper system 200 may be used to clean a wellbore casing and set a wellbore tool 230 within the wellbore casing in a single trip. Moreover, after setting the wellbore tool 230, the wireline based scraper system 200 (e.g., including the wellbore scraper assembly 220) could detach from the wellbore tool 230, such that the wellbore tool 230 may be left to remain in the wellbore casing.
In certain embodiments, the wireline based scraper system 200 may additionally optionally include a jar mechanism 240. The jar mechanism 240 may be used to assist the wireline based scraper system 200 to traverse down a wellbore casing when gravity is insufficient to do the same. Those skilled in the art understand the myriad different types of jar mechanisms 240 that might be used to assist in the deployment of the wireline based scraper system 200. Accordingly, the present disclosure should not be limited to any specific type of jar mechanism 240. In the illustrated embodiment, the jar mechanism 240 is positioned proximate an upper end of the wireline based scraper system 200. Other locations, however, might also be used.
The wireline based scraper system 200 may additionally optionally include an integrated catch basket 250. The catch basket 250, in accordance with the embodiment of
Turning to
In the illustrated embodiment, a hydraulic drive system 335 is coupled downhole of the pressure compensation reservoir section 330. The hydraulic drive system 335, in this embodiment, includes an electric motor 340 and a hydraulic fluid pump 345. The hydraulic drive system 335, in this embodiment, additionally includes a solenoid 350, which feeds into a manifold 355. In the embodiment shown, a filed joint 360 couples the hydraulic power pack section 310 to the well scraper assembly section 370.
The well scraper assembly section 370, in accordance with the disclosure, incudes a well scraper assembly 375. The well scraper assembly 375, in accordance with the disclosure, includes a tubular housing 380, as well as a plurality of hydraulically deployable scraper features 385 associated with the tubular housing. In the illustrated embodiment, the plurality of hydraulically deployable scraper features 385 are configured to move from a first retracted state (not shown) to the second radially extended state illustrated in
In operation, the wireline based scraper system 300 could be lowered downhole into a wellbore casing using a wireline. When running downhole, the hydraulically deployable scraper features 385 would generally be in the first retracted state. At the point the wireline based scraper system 300 reaches a region of the wellbore casing to be cleaned, the hydraulically deployable scraper features 385 could be extended to the second radially extended state shown in
With the hydraulically deployable scraper features 385 in the second radially extended state, the wireline based scraper system 300 could be moved uphole and downhole within the region to form a cleaned area of the wellbore casing. In one example, the solenoid 350 remains powered, and thus in a closed position, while cleaning the wellbore casing. Thus, even though power has been cut to the electric motor 340, the hydraulically deployable scraper features 385 are maintained in the second radially extended state. When the cleaning is complete, power may be cut to the solenoid 350, which would allow a return mechanism (e.g., a spring 399 in the embodiment of
Turning to
In accordance with one embodiment, the wellbore scraper assembly 375 may include one or more adjustable limit mechanisms 450. The adjustable limit mechanisms 450, in accordance with this embodiment, are configured to adjust how radially extended the hydraulically deployable scraper features 385 are when in the second radially extended state. For example, in the embodiment illustrated in
Turning to
Turning to
Aspects disclosed herein include:
A. A wellbore scraper assembly for use with a wireline. The wellbore scraper includes: a tubular housing; a plurality of hydraulically deployable scraper features associated with the tubular housing, the plurality of hydraulically deployable scraper features configured to move from a first retracted state to a second radially extended state; and a hydraulic deployment system coupled to the plurality of hydraulically deployable scraper features, the hydraulic deployment system configured to move the plurality of hydraulically deployable scraper features from the first state to the second state.
B. A wireline based scraper system for use within a wellbore. The wireline based scraper system includes: a hydraulic power pack; a wellbore scraper assembly hydraulically coupled to the hydraulic power pack, the wellbore scraper assembly comprising 1) a tubular housing, 2) a plurality of hydraulically deployable scraper features associated with the tubular housing, the plurality of hydraulically deployable scraper features configured to move from a first retracted state to a second radially extended state, and 3) a hydraulic deployment system in fluid communication with the hydraulic power pack and coupled to the plurality of hydraulically deployable scraper features, the hydraulic deployment system configured to move the plurality of hydraulically deployable scraper features from the first state to the second state; and a wellbore tool coupled proximate a downhole end of the wellbore scraper assembly and hydraulically coupled to the hydraulic power pack.
C. A method for cleaning a wellbore casing. The method includes: lowering a wireline based scraper system into a wellbore casing using a wireline, the wireline based scraper system including 1) a hydraulic power pack, 2) a wellbore scraper assembly hydraulically coupled to the hydraulic power pack, the wellbore scraper assembly including a) a tubular housing, b) a plurality of hydraulically deployable scraper features associated with the tubular housing, the plurality of hydraulically deployable scraper features in a first retracted state, and c) a hydraulic deployment system in fluid communication with the hydraulic power pack and coupled to the plurality of hydraulically deployable scraper features, the hydraulic deployment system configured to move the plurality of hydraulically deployable scraper features from the first state to a second radially extended state, 3) a wellbore tool coupled proximate a downhole end of the wellbore scraper assembly and hydraulically coupled to the hydraulic power pack; extending the hydraulically deployable scraper features from the first retracted state to the second radially extended state when the wireline based scraper system reaches a region of the wellbore casing to be cleaned; moving the wireline based scraper system with the hydraulically deployable scraper features in the second radially extended state uphole and downhole in the region to form a cleaned area of the wellbore casing; returning the hydraulically deployable scraper features to the first retracted state after forming the cleaned area; and setting a wellbore tool in the cleaned area after returning the hydraulically deployable scraper features to the first retracted state.
Aspects A, B, and C may have one or more of the following additional elements in combination:
Element 1: further including a deployment rod located within the tubular housing, and further wherein the hydraulic deployment system includes a fluid chamber, the deployment rod configured to slide relative to the tubular housing as a volume of the fluid chamber changes. Element 2: wherein plurality of hydraulically deployable scraper features are coupled to the deployment rod, and further wherein the plurality of hydraulically deployable scraper features move from the first state to the second state as the volume of the fluid chamber changes. Element 3: wherein the plurality of hydraulically deployable scraper features are a plurality of individual thin wall arms. Element 4: wherein the plurality of individual thin wall arms are coupled to a slidable deployment rod located within the tubular housing, and further wherein the plurality of individual thin wall arms are configured to move from the first state to the second state as the slidable deployment rod slides within the tubular housing. Element 5: wherein each of the individual thin wall arms extend through associated individual guide slots within the tubular housing, and further wherein the individual guide slots are sloped to help move the plurality of individual thin wall arms between the first and second states. Element 6: wherein the plurality of hydraulically deployable scraper features are a plurality of linkage arms. Element 7: wherein each of the plurality of linkage arms includes a scraper petal located proximate a center point thereof. Element 8: wherein the plurality of hydraulically deployable scraper features are a plurality of bow springs. Element 9: wherein each of the plurality of bow springs has a first arc in the first state and a second tighter arc in the second state. Element 10: further including interchangeable attachments added to the plurality of bow springs for scraping different wellbore contaminants. Element 11: further including a spring mechanism associated with the plurality of hydraulically deployable scraper features, the spring mechanism configured to return the plurality of hydraulically deployable scraper features to the first state from the second state. Element 12: further including an adjustable limit mechanism, the adjustable limit mechanism configured to adjust the second state. Element 13: further including a jar mechanism coupled proximate a top end thereof. Element 14: further including a catch basket including hydraulically deployable collection arms coupled proximate a downhole end of the wellbore scraper tool.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
This application is a divisional of U.S. application Ser. No. 16/575,529, filed on Sep. 19, 2019, entitled “WELLBORE SCRAPER ASSEMBLY” which claims priority to International Application Number PCT/US2018/065691 filed on Dec. 14, 2018, entitled “WELLBORE SCRAPER ASSEMBLY,” which applications are commonly assigned with this application and incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1401464 | Crotto | Dec 1921 | A |
1402786 | Muehl | Jan 1922 | A |
2396935 | Walstrom | Mar 1946 | A |
2728398 | Taylor | Dec 1955 | A |
2865455 | Rhoads | Dec 1958 | A |
2998074 | Casady | Aug 1961 | A |
3292705 | Hall, Sr. | Dec 1966 | A |
3961824 | Van Eek et al. | Jun 1976 | A |
4299282 | Thornton | Nov 1981 | A |
4603739 | Krugh | Aug 1986 | A |
8491727 | Jonassen | Jul 2013 | B2 |
8499399 | Jones | Aug 2013 | B1 |
9879505 | Holloway et al. | Jan 2018 | B2 |
10119368 | Tunget | Nov 2018 | B2 |
20140110179 | Lassoie | Apr 2014 | A1 |
20150075799 | Wilson et al. | Mar 2015 | A1 |
20160010413 | Stokes et al. | Jan 2016 | A1 |
20160138369 | Tunget | May 2016 | A1 |
20160168643 | Ahlquist et al. | Jun 2016 | A1 |
20160230508 | Jensen | Aug 2016 | A1 |
20160312582 | Ali et al. | Oct 2016 | A1 |
20170362917 | Esslemont et al. | Dec 2017 | A1 |
20180119507 | Nordenstam | May 2018 | A1 |
20190284905 | Sehsah et al. | Sep 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20220325610 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16575529 | Sep 2019 | US |
Child | 17850544 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/065691 | Dec 2018 | US |
Child | 16575529 | US |