Not applicable.
Not applicable.
Not applicable.
Hydrocarbon-producing wells often are stimulated by hydraulic fracturing operations, wherein a servicing fluid such as a fracturing fluid or a perforating fluid may be introduced into a portion of a subterranean formation penetrated by a wellbore at a hydraulic pressure sufficient to create or enhance at least one fracture therein. Such a subterranean formation stimulation treatment may increase hydrocarbon production from the well.
In the performance of such a stimulation treatment and/or in the performance of one or more other wellbore operations (e.g., a drilling operation, a completion operation, a fluid-loss control operation, a cementing operation, production, or combinations thereof), it may be necessary to selectively manipulate one or more well tools which will be utilized in such operations. However, well tools conventionally employed in such wellbore operations are limited in their manner of usage and may be inefficient due to power consumption limitations. Moreover, tools conventionally employed may be limited as to their useful life and/or duration of use because of power availability limitations. As such, there exists a need for improved tools for use in wellbore operations and for methods and system of using such tools.
Disclosed herein is a wellbore tool comprising a power supply, an electrical load, a receiving unit configured to passively receive a triggering signal, and a switching system electrically coupled to the power supply, the receiving unit, and the electrical load, wherein the switching system is configured to selectively transition from an inactive state to an active state in response to the triggering signal, from the active state to the active state in response to the triggering signal, or combinations thereof, wherein in the inactive state a circuit is incomplete and any route of electrical current flow between the power supply and the electrical load is disallowed, and wherein in the active state the circuit is complete and at least one route of electrical current flow between the power supply and the electrical load is allowed.
Also disclosed herein is a wellbore servicing system comprising one or more stationary receiving well tools disposed within a wellbore, wherein the stationary receiving well tools are configured to selectively transition from an inactive state to an active state in response to a triggering signal, wherein in the inactive state a circuit is incomplete and current flow between the power supply and the electrical load is disallowed, and wherein in the active state the circuit is complete and electrical current flow between the power supply and the electrical load is allowed, and a transitory transmitting well tool configured to be communicated through at least a portion of the wellbore, wherein the transitory transmitting well tool is configured to transmit the triggering signal to one or more stationary receiving well tools.
Further disclosed herein is a wellbore servicing method comprising positioning one or more stationary receiving well tools within a wellbore, wherein the stationary receiving well tools are each configured to selectively transition from an inactive state to an active state in response to a triggering signal, wherein in the inactive state a circuit is incomplete and any route of electrical current flow between the power supply and the electrical load is disallowed, and wherein in the activate state the circuit is complete and at least one route of electrical current flow between the power supply and the electrical load is allowed, communicating a transitory transmitting well tool through the wellbore such that the transitory transmitting well tool comes into signal communication with at least one of the one or more stationary receiving well tools, wherein the transitory transmitting well tool communicates with at least one of the one or more stationary receiving well tools via one or more triggering signals, and sensing the triggering signal to transition one or more stationary receiving well tools to the active state.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description:
In the drawings and description that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. In addition, similar reference numerals may refer to similar components in different embodiments disclosed herein. The drawing figures are not necessarily to scale. Certain features of the invention may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. The present invention is susceptible to embodiments of different forms. Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is not intended to limit the invention to the embodiments illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed herein may be employed separately or in any suitable combination to produce desired results.
Unless otherwise specified, use of the terms “connect,” “engage,” “couple,” “attach,” or any other like term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described.
Unless otherwise specified, use of the terms “up,” “upper,” “upward,” “up-hole,” “upstream,” or other like terms shall be construed as generally from the formation toward the surface or toward the surface of a body of water; likewise, use of “down,” “lower,” “downward,” “down-hole,” “downstream,” or other like terms shall be construed as generally into the formation away from the surface or away from the surface of a body of water, regardless of the wellbore orientation. Use of any one or more of the foregoing terms shall not be construed as denoting positions along a perfectly vertical axis.
Unless otherwise specified, use of the term “subterranean formation” shall be construed as encompassing both areas below exposed earth and areas below earth covered by water such as ocean or fresh water.
Disclosed herein are one or more embodiments of wellbore servicing systems and wellbore servicing methods to activate a well tool, for example, upon the communication of one or more triggering signals from a first well tool (e.g., a transmitting well tool) to a second well tool (e.g., a receiving well tool), for example, within a wellbore environment. In such embodiments, the one or more triggering signals may be effective to activate (e.g., to switch “on”) one or more well tools utilizing a downhole wireless switch, as will be disclosed herein, for example, the triggering signal may be effective to induce a response within the downhole wireless switch so as to transition such a well tool from a configuration in which no electrical or electronic component associated with the tool receives power from a power source associated with the tool to a configuration in which one or more electrical or electronic components receive electrical power from the power source. Also disclosed herein are one or more embodiments of well tools that may be employed in such wellbore servicing systems and/or wellbore servicing methods utilizing a downhole wireless switch.
Referring to
Referring to
While the operating environment depicted in
In an embodiment the wellbore 114 may extend substantially vertically away from the earth's surface 104 over a vertical wellbore portion, or may deviate at any angle from the earth's surface 104 over a deviated or horizontal wellbore portion. In alternative operating environments, portions or substantially all of the wellbore 114 may be vertical, deviated, horizontal, and/or curved.
In an embodiment, at least a portion of the completion string 190 may be secured into position against the formation 102 in a conventional manner using cement 116. Additionally or alternatively, at least a portion of the completion string may be secured into position with a packer, for example a mechanical or swellable packer (such as SwellPackers™, commercially available from Halliburton Energy Services). In additional or alternative embodiments, the wellbore 114 may be partially completed (e.g., partially cased and cemented) thereby resulting in a portion of the wellbore 114 being uncompleted (e.g., uncased and/or uncemented) or the wellbore may be uncompleted.
In an embodiment, as will be disclosed herein, one or more well tools may be incorporated within the completion string 190. For example, in such an embodiment, one or more selectively actuatable wellbore stimulation tools (e.g., fracturing tools), selectively actuatable wellbore isolation tools, or the like may be incorporated within the completion string 190. Additionally or alternatively, in an embodiment, one or more other wellbore servicing tools (e.g., a sensor, a logging device, an inflow control device, the like, or combinations thereof) may be similarly incorporated within the completion string 190.
It is noted that although the environment illustrated with respect to
In an embodiment, a well tool may be configured as a transmitting well tool, that is, such that the transmitting well tool is configured to transmit a triggering signal to one or more other well tools (e.g., a receiving well tool). For example, a transmitting well tool may comprise a transmitter system, as will be disclosed herein. Alternatively, a well tool may be configured as a receiving well tool, that is, such that the receiving well tool is configured to receive a triggering signal from another well tool (e.g., a transmitting well tool). For example, a receiving well tool may comprise a receiver system, as will be disclosed herein. Alternatively, a well tool may be configured as a transceiver well tool, that is, such that the transceiver well tool (e.g., a transmitting/receiving well tool) is configured to both receive a triggering signal and to transmit a triggering signal. For example, the transceiver tool may comprise a receiver system and a transmitter system, as will be disclosed herein.
In an embodiment, as will be disclosed herein, a transmitting well tool may be configured to transmit a triggering signal to a receiving well tool and, similarly, a receiving well tool may be configured to receive the triggering signal, particularly, to passively receive the triggering signal. For example, in an embodiment, upon receiving the triggering signal, the receiving well tool may be transitioned from an inactive state to an active state. In such an inactive state, a circuit associated with the well tool is incomplete and any route of electrical current flow between a power supply associated with the well tool and an electrical load associated with the well tool is disallowed (e.g., no electrical or electronic component associated with the tool receives power from the power source). Also, in such an active state, the circuit is complete and the route of electrical current flow between the power supply and the electrical load is allowed (e.g., one or more electrical or electronic components receive electrical power from the power source).
In an embodiment, two or more well tools (e.g., a transmitting well tool and a receiving well tool) may be configured to communicate via a suitable signal. For example, in an embodiment, two or more well tools may be configured to communicate via a triggering signal, as will be disclosed herein. In an embodiment, the triggering signal may be generally defined as a signal sufficient to be sensed by a receiver portion of a well tool and thereby invoke a response within the well tool, as will be disclosed herein. Particularly, in an embodiment, the triggering signal may be effective to induce an electrical response within a receiving well tool, upon the receipt thereof, and to transition the receiving well tool from a configuration in which no electrical or electronic component associated with the receiving well tool receives power from a power source associated with the receiving well tool to a configuration in which one or more electrical or electronic components receive electrical power from the power source. For example the triggering signal may be formed of an electromagnetic (EM) signal, an energy signal, or any other suitable signal type which may be received or sensed by a receiving well tool and induce an electrical response as would be appreciated by one of ordinary skill in the art upon viewing this disclosure.
As used herein, the term “EM signal” refers to wireless signal having one or more electrical and/or magnetic characteristics or properties, for example, with respect to time. Additionally, the EM signal may be communicated via a transmitting and/or a receiving antenna (e.g., an electrical conducting material, such as, a copper wire). For example, the EM signal may be receivable and transformable into an electrical signal (e.g., an electrical current) via a receiving antenna (e.g., an electrical conducting material, for example, a copper wire). Further, the EM signal may be transmitted at a suitable magnitude of power transmission as would be appreciated by one of ordinary skill in the art upon viewing this disclosure. In an embodiment, the triggering signal is an EM signal and is characterized as having any suitable type and/or configuration of waveform or combinations of waveforms, having any suitable characteristics or combinations of characteristics. For example, the triggering signal may be transmitted at a predetermined frequency, for example, at a frequency within the radio frequency (RF) spectrum. In an embodiment, the triggering signal comprises a frequency between about 3 hertz (Hz) to 300 gigahertz (GHz), for example, a frequency of about 10 kilohertz (kHz).
In an additional or alternative embodiment, the triggering signal may be an energy signal. For example, in an embodiment, the triggering signal may comprise a signal from an energy source, for example, an acoustic signal, an optical signal, a magnetic signal, or any other energy signal as would be appreciated by one of ordinary skill in the art upon viewing this disclosure. Alternatively, the triggering signal may be an electrical signal communicated via one or more electrical contacts.
In an embodiment, and not intending to be bound by theory, the triggering signal is received or sensed by a receiver system and is sufficient to cause an electrical response within the receiver system, for example, the triggering signal induces an electrical current to be generated via an inductive coupling between a transmitter system and the receiver system. In such an embodiment, the induced electrical response may be effective to activate one or more electronic switches of the receiver system to allow one or more routes of electrical current flow within the receiver system to supply power to an electrical load, as will be disclosed herein.
In an embodiment, a given well tool (e.g., a receiving well tool and/or a transmitting well tool) may comprise one or more electronic circuits comprising a plurality of functional units. In an embodiment, a functional unit (e.g., an integrated circuit (IC)) may perform a single function, for example, serving as an amplifier or a buffer. The functional unit may perform multiple functions on a single chip. The functional unit may comprise a group of components (e.g., transistors, resistors, capacitors, diodes, and/or inductors) on an IC which may perform a defined function. The functional unit may comprise a specific set of inputs, a specific set of outputs, and an interface (e.g., an electrical interface, a logical interface, and/or other interfaces) with other functional units of the IC and/or with external components. In some embodiments, the functional unit may comprise repeated instances of a single function (e.g., multiple flip-flops or adders on a single chip) or may comprise two or more different types of functional units which may together provide the functional unit with its overall functionality. For example, a microprocessor or a microcontroller may comprise functional units such as an arithmetic logic unit (ALU), one or more floating-point units (FPU), one or more load or store units, one or more branch prediction units, one or more memory controllers, and other such modules. In some embodiments, the functional unit may be further subdivided into component functional units. A microprocessor or a microcontroller as a whole may be viewed as a functional unit of an IC, for example, if the microprocessor shares circuit with at least one other functional unit (e.g., a cache memory unit).
The functional units may comprise, for example, a general purpose processor, a mathematical processor, a state machine, a digital signal processor, a video processor, an audio processor, a logic unit, a logic element, a multiplexer, a demultiplexer, a switching unit, a switching element an input/output (I/O) element, a peripheral controller, a bus, a bus controller, a register, a combinatorial logic element, a storage unit, a programmable logic device, a memory unit, a neural network, a sensing circuit, a control circuit, a digital to analog converter (DAC), an analog to digital converter (ADC), an oscillator, a memory, a filter, an amplifier, a mixer, a modulator, a demodulator, and/or any other suitable devices as would be appreciated by one of ordinary skill in the art.
In the embodiments of
In an embodiment where the well tool comprises a receiving well tool, the receiving well tool may comprise a receiver system 200 configured to receive a triggering signal. In an embodiment, the receiver system 200 may be configured to transition a switching system from an inactive state to an active state to supply power to an electrical load, in response to the triggering signal. For example, in the inactive state the well tool may be configured to substantially consume no power, for example, less power consumption than a conventional “sleep” or idle state. The inactive state may also be characterized as being an incomplete circuit and thereby disallows a route of electrical current flow between a power supply and an electrical load, as will be disclosed herein. Alternatively, in the active state the well tool may be configured to provide and/or consume power, for example, to perform one or more wellbore servicing operations, as will be disclosed herein. The active state may also be characterized as being a complete circuit and thereby allows a route of electrical current flow between a power supply and an electrical load, as will be disclosed herein.
In the embodiment of
In an alternative embodiment, the well tool may comprise various combinations of such functional units (e.g., a switching system, a power supply, an antenna, and an electrical load, etc.). While
In an embodiment, the receiving unit 206 may be generally configured to passively receive and/or passively sense a triggering signal. As such, the receiving unit 206 is a passive device and is not electrically coupled to a power source or power supply. For example, the receiving unit 206 does not require electrical power to operate and/or to generate an electrical response. Additionally, the receiving unit 206 may be configured to convert an energy signal (e.g., a triggering signal) to a suitable output signal, for example, an electrical signal sufficient to activate the switching system 202.
In an embodiment, the receiving unit 206 may comprise the one or more antennas. The antennas may be configured to receive a triggering signal, for example, an EM signal. For example, the antennas may be configured to be responsive to a triggering signal comprising a frequency within the RF spectrum (e.g., from about 3 Hz to 300 GHz). In an embodiment, the antennas may be responsive to a triggering signal within the 10 kHz band. In an additional or alternative embodiment, the antennas may be configured to be responsive to any other suitable frequency band as would be appreciated by one of ordinary skill in the art upon viewing this disclosure. The antennas may generally comprise a monopole antenna, a dipole antenna, a folded dipole antenna, a patch antenna, a microstrip antenna, a loop antenna, an omnidirectional antenna, a directional antenna, a planar inverted-F antenna (PIFA), a folded inverted conformal antenna (FICA), any other suitable type and/or configuration of antenna as would be appreciated by one of ordinary skill in the art upon viewing this disclosure, or combinations thereof. For example, the antenna may be a loop antenna and, in response to receiving a triggering signal of about a predetermined frequency, the antenna may inductively couple and/or generate a magnetic field which may be converted into an electrical current or an electrical voltage (e.g., via inductive coupling). Additionally, the antennas may comprise a terminal interface and/or may be configured to physically and/or electrically connect to one or more functional units, for example, the switching system 202 (as shown in
In an alternative embodiment, the receiving unit 206 may comprise one or more passive transducers as an alternative to the antenna. For example, a passive transducer may be in electrical signal communication with the switching system 202 and may be employed to experience a triggering signal (e.g., an acoustic signal, an optical signal, a magnetic signal, etc.) and to output a suitable signal (e.g., an electrical signal sufficient to activate the switching system 202) in response to sensing and/or detecting the triggering signal. For example, suitable transducers may include, but are not limited to, acoustic sensors, accelerometers, capacitive sensors, piezoresistive strain gauge sensors, ferroelectric sensors, electromagnetic sensors, piezoelectric sensors, optical sensors, a magneto-resistive sensor, a giant magneto-resistive (GMR) sensor, a microelectromechanical systems (MEMS) sensor, a Hall-effect sensor, a conductive coils sensor, or any other suitable type of transducers as would be appreciated by one of ordinary skill in the art upon viewing this disclosure.
Additionally, in an embodiment, the antennas or sensors may be electrically coupled to a signal conditioning filter (e.g., a low-pass filter, a high-pass filter, a band-pass filter, and/or a band-stop filter). In such an embodiment, the signal conditioning filter may be employed to remove and/or substantially reduce frequencies outside of a desired frequency range and/or bandwidth. For example, the signal conditioning filter may be configured to reduce false positives caused by signals having frequencies outside of the desired frequency range and/or bandwidth.
In an embodiment, the power supply (e.g., the power supply 204) may supply power to the switching system 202 and/or any other functional units of the well tool. Additionally, the power supply 204 may supply power to the load when enabled by the switching system 202. The power supply may comprise an on-board battery, a renewable power source, a voltage source, a current source, or any other suitable power source as would be appreciated by one of ordinary skill in the art upon viewing this disclosure. For example, the power source is a Galvanic cell. Additionally, in such an embodiment, the power supply may be configured to supply any suitable voltage, current, and/or power required to power and/operate the electrical load 208. For example, in an embodiment, the power supply may supply power in the range of about 0.5 watts to 10 watts, alternatively, from about 0.5 watts to about 1.0 watts. Additionally or alternatively, the power supply may supply voltage in the range of about 0.5 volts (V) to 1.5 V, alternatively, from about 0.5 V to 3.7 V, alternatively, from about 0.5 V to 8V, alternatively, from about 0.5 V to 40 V, etc.
Referring to
In an embodiment, the switching system 202 comprises a rectifier portion 280, a triggering portion 282, and a power switching portion 284. For example, the rectifier portion 280 may be configured to convert a triggering signal (e.g., an alternating current (AC) signal) received by the receiving unit 206 to a rectified signal (e.g., a direct current (DC) signal) to be applied to the triggering portion 282. In such an embodiment, the rectifier portion 280 may comprise a diode 214 electrically coupled (e.g., via an anode terminal) to the receiving unit 206 and electrically coupled (e.g., via a cathode terminal) to a capacitor 216 and a resistor 218 connected in parallel with the electrical ground 250b and a resistor 220 electrically coupled to the triggering portion 282 (e.g., via an input terminal).
In an embodiment, the triggering portion 282 may comprise an electronic switch 222 (e.g., a transistor, a mechanical relay, a silicon-controlled rectifier, etc.) configured to selectively allow a route of electrical current communication between a first terminal (e.g., a first switch terminal 222b) and a second terminal (e.g., a second switch terminal 222c) upon experiencing a voltage or current applied to an input terminal (e.g., an input terminal 222a), for example, to activate the power switching portion 284, as will be disclosed herein. For example, in the embodiment of
In an embodiment, the power switching portion 284 may comprise a second electronic switch 230 (e.g., a transistor, a mechanical relay, etc.) configured to provide power from the power supply 204 (e.g., the positive voltage terminal 250a) to the electrical load 208 (e.g., a packer, a sensor, an actuator, etc.). For example, in the embodiment of
Additionally, the switching system 202 may further comprise a feedback portion 210. In an embodiment, the feedback portion 210 may be configured to keep the power switching portion 284 active (e.g., providing power from the power supply 204 to the electrical load 208), for example, following the deactivation of the triggering portion. For example, in the embodiment of
Additionally, the switching system 202 may further comprise a power disconnection portion 212. In an embodiment, the power disconnection portion 212 may be configured to deactivate the feedback portion 210 and thereby suspend the power transmission between the power supply 204 and the electrical load 208. Additionally, the power disconnection portion 212 comprises a fourth electronic switch 264 (e.g., a NMOSFET transistor). In such an embodiment, an input terminal 264a of the fourth electronic switch 264 is electrically coupled to an external voltage trigger (e.g., an input-output (I/O) port of a processor or controller). Additionally, the fourth electronic switch 264 may be configured to provide an electrical current path between the positive voltage terminal 250a and the electrical ground 250b, for example, via a resistor 262, a first terminal 264b, and a second terminal 264c upon experiencing a voltage (e.g., a voltage greater than the threshold voltage of the NMOSFET) applied to the input terminal 264a, for example, via an I/O port of a processor or controller. Further, the fourth electronic switch 264 may be electrically coupled to the feedback portion 210. For example, the input terminal 236a of the third electronic switch 236 may be electrically coupled to the power disconnection portion 212 via the first terminal 264b of the fourth electronic switch 264. In an alternative embodiment, the input terminal 264a of the fourth electronic switch 264 is electrically coupled to the rectifier portion 280 and configured such that a rectified signal generated by the rectifier portion 280 (e.g., in response to a triggering signal) may be applied to the fourth electronic switch 264 to activate the fourth electronic switch 264. In an additional or alternative embodiment, the input terminal 264a of the fourth electronic switch 264 is electrically coupled to the rectifier portion 280 via a latching system. For example, the latching system may be configured to toggle in response to the rectified signal generated by the rectifier portion 280. In such an embodiment, the latching system may be configured to not activate the power disconnection portion 212 in response to a first rectified signal (e.g., in response to a first triggering signal) and to activate the power disconnection portion 212 in response to a second rectified signal (e.g., in response to a second triggering signal). As such, the power disconnection portion 212 will deactivate the feedback portion 210 in response to the second rectified signal. Any suitable latching system may be employed as would be appreciate by one of ordinary skill in the art upon viewing this disclosure.
In the embodiment of
Additionally, where the switching system 202 comprises a feedback portion 210, activating the second electronic switch 230 configures the switching system 202 to allow a current flow to the RC circuit of the feedback portion 210 which may induce a voltage (e.g., a voltage 308 as shown in
In an additional embodiment, where the switching system 202 comprises a power disconnection portion 212, applying a voltage (e.g., via an I/O port of a processor or controller) to the input terminal 264a of the fourth electrical switch 264 configures the switching system 202 to deactivate the feedback portion 210 and thereby suspend the power transmission between the power supply 204 and the electrical load 208. For example, activating the fourth electronic switch 264 causes an electrical current path between the input terminal 236a of the third electronic switch 236 and the electrical ground 250b via the first terminal 264b and the second terminal 264c of the fourth electronic switch 264. As such, the voltage applied to input terminal 236a of the third electronic switch 236 may fall below voltage level sufficient to activate the third electronic switch 236 (e.g., below the threshold voltage of the NMOSFET) and thereby deactivates the third electronic switch 236 and the feedback portion 210.
In an embodiment, the electrical load (e.g., the electrical load 208) may be a resistive load, a capacitive load, and/or an inductive load. For example, the electrical load 208 may comprise one or more electronically activatable tool or devices. As such, the electrical load may be configured to receive power from the power supply (e.g., power supply 204) via the switching system 202, when so-configured. In an embodiment, the electrical load 208 may comprise a transducer, a microprocessor, an electronic circuit, an actuator, a wireless telemetry system, a fluid sampler, a detonator, a motor, a transmitter system, a receiver system, a transceiver, any other suitable passive or active electronically activatable tool or devices, or combinations thereof.
In an additional embodiment, the transmitting well tool may further comprise a transmitter system 400 configured to transmit a triggering signal to one or more other well tools. In the embodiment of
In an alternative embodiment, the well tool may comprise various combinations of such functional unit (e.g., a power supply, an antenna, and an electronic circuit, etc.). While
In an embodiment, the transmitting unit 402 may be generally configured to transmit a triggering signal. For example, the transmitting unit 402 may be configured to receive an electronic signal and to output a suitable triggering signal (e.g., an electrical signal sufficient to activate the switching system 202).
In an embodiment, the transmitting unit 402 may comprise one or more antennas. The antennas may be configured to transmit and/or receive a triggering signal, similarly to what has been previously disclosed with respect to the receiving unit 206. In an additional or alternative embodiment, the transmitting unit 402 may comprise one or more energy sources (e.g., an electromagnet, a light source, etc.). As such, the energy source may be in electrical signal communication with the electronic circuit 404 and may be employed to generate and/or transmit a triggering signal (e.g., an acoustic signal, an optical signal, a magnetic signal, etc.).
In an embodiment, the power supply (e.g., the power supply 406) may supply power to the electronic circuit 404, and/or any other functional units of the transmitting well tool, similarly to what has been previously disclosed.
Referring to
In the embodiment of
In an embodiment, the receiving and/or transmitting well tool may further comprise a processor (e.g., electrically coupled to the switching system 202 or the electronic circuit 404), which may be referred to as a central processing unit (CPU), may be configured to control one or more functional units of the receiving and/or transmitting well tool and/or to control data flow through the well tool. For example, the processor may be configured to communicate one or more electrical signals (e.g., data packets, control signals, etc.) with one or more functional units of the well tool (e.g., a switching system, a power supply, an antenna, an electronic circuit, and an electrical load, etc.) and/or to perform one or more processes (e.g., filtering, logical operations, signal processing, counting, etc.). For example, the processor may be configured to apply a voltage signal (e.g., via an I/O port) to the power disconnection portion 212 of the switching system 202, for example, following a predetermined duration of time. In such an embodiment, one or more of the processes may be performed in software, hardware, or a combination of software and hardware. In an embodiment, the processor may be implemented as one or more CPU chips, cores (e.g., a multi-core processor), digital signal processor (DSP), an application specific integrated circuit (ASIC), and/or any other suitable type and/or configuration as would be appreciated by one of ordinary skill in the arts upon viewing this disclosure.
In an embodiment, one or more well tools may comprise a receiver system 200 and/or a transmitter system 400 (e.g., disposed within an interior portion of the well tool) and each having a suitable configuration, as will be disclosed herein, may be utilized or otherwise deployed within an operational environment such as previously disclosed. For example, each of the one or more well tools.
In an embodiment, a well tool may be characterized as stationary. For example, in an embodiment, such a stationary well tool or a portion thereof may be in a relatively fixed position, for example, a fixed position with respect to a tubular string disposed within a wellbore. For example, in an embodiment a well tool may be configured for incorporation within and/or attachment to a tubular string (e.g., a drill string, a work string, a coiled tubing string, a jointed tubing string, or the like). In an additional or alternative embodiment, a well tool may comprise a collar or joint incorporated within a string of segmented pipe and/or a casing string.
Additionally, in an embodiment, the well tool may comprise and/or be configured as an actuatable flow assembly (AFA). In such an embodiment, the AFA may generally comprise a housing and one or more sleeves movably (e.g., slidably) positioned within the housing. For example, the one or more sleeves may be movable from a position in which the sleeves and housing cooperatively allow a route of fluid communication to a position in which the sleeves and housing cooperatively disallow a route of fluid communication, or vice versa. For example, in an embodiment, the one or more sleeves may be movable (e.g., slidable) relative to the housing so as to obstruct or unobstruct one or more flow ports extending between an axial flowbore of the AFA and an exterior thereof. In various embodiments, a node comprising an AFA may be configured for use in a stimulation operation (such as a fracturing, perforating, or hydrojetting operation, an acidizing operation), for use in a drilling operation, for use in a completion operation (such as a cementing operation or fluid loss control operation), for use during production of formation fluids, or combinations thereof. Suitable examples of such an AFA are disclosed in U.S. patent application Ser. No. 13/781,093 to Walton et al. filed on Feb. 28, 2013 and U.S. patent application Ser. No. 13/828,824 filed on Mar. 14, 2013, each of which is incorporated herein by reference in its entirety.
In another embodiment, the well tool may comprise and/or be configured as an actuatable packer. In such an embodiment, the actuatable packer may generally comprise a packer mandrel and one or more packer elements that exhibit radial expansion upon being longitudinally compressed. The actuatable packer may be configured such that, upon actuation, the actuatable pack is caused to longitudinally compress the one or more packer elements, thereby causing the packer elements to radially expand into sealing contact with the wellbore walls or with an inner bore surface of a tubular string in which the actuatable packer is disposed. Suitable examples of such an actuatable packer are disclosed in U.S. patent application Ser. No. 13/660,678 to Helms et al. filed on Oct. 25, 2012, which is incorporated herein by reference in its entirety.
In another embodiment, the well tool may comprise and/or be configured as an actuatable valve assembly (AVA). In such an embodiment, the AVA may generally comprise a housing generally defining an axial flowbore therethrough and an acuatable valve. The actuatable valve may be positioned within the housing (e.g., within the axial flowbore) and may be transitionable from a first configuration in which the actuatable valve allows fluid communication via the axial flowbore in at least one direction to a second configuration in which the actuatable valve does not allow fluid communication via the flowbore in that direction, or vice versa. Suitable configurations of such an actuatable valve include a flapper valve and a ball valve. In an embodiment, the actuatable valve may be transitioned from the first configuration to the second configuration, or vice-verse, via the movement of a sliding sleeve also positioned within the housing, for example, which may be moved or allowed to move upon the actuation of an actuator. Suitable examples of such an AVA are disclosed in International Application No. PCT/US 13/27674 filed Feb. 25, 2013 and International Application No. PCT/US 13/27666 filed Feb. 25, 2013.
Alternatively, a well tool may be characterized as transitory. For example, in an embodiment, such a transitory well tool may be mobile and/or positionable, for example, a ball or dart configured to be introduced into the wellbore, communicated (e.g., pumped/flowed) within a wellbore, removed from the wellbore, or any combination thereof. In an embodiment, a transitory well tool may be a flowable or pumpable component, a disposable member, a ball, a dart, a wireline or work string member, or the like and may be configured to be communicated through at least a portion of the wellbore and/or a tubular disposed within the wellbore along with a fluid being communicated therethrough. For example, such a well tool may be communicated downwardly through a wellbore (e.g., while a fluid is forward-circulated into the wellbore). Additionally or alternatively, such a well tool may be communicated upwardly through a wellbore (e.g., while a fluid is reverse-circulated out of the wellbore or along with formation fluids flowing out of the wellbore).
In an embodiment, where the transitory well tool is a disposable member (e.g., a ball), the transitory well tool may be formed of a sealed (e.g., hermetically sealed) assembly. As such, the transitory well tool may be configured such that access to the interior, a receiver system 200, and/or transmitter system 400 is no longer provided and/or required. Such a configuration may allow the transitory well tool to be formed having minimal interior air space and, thereby increasing the structural strength of the transitory well tool. For example, such a transitory well tool may be configured to provide an increase in pressure holding capability. Additionally, such a transitory well tool may reduce and/or prevent leakage pathways from the exterior to an interior portion of the transitory well tool and thereby reduces and/or prevents potential corruption of any electronics (e.g., the receiver system 200, the transmitter system 400, etc.).
In an embodiment, one or more receiving well tools and transmitting well tools employing a receiver system 200 and/or a transmitter system 400 and having, for example, a configuration and/or functionality as disclosed herein, or a combination of such configurations and functionalities, may be employed in a wellbore servicing system and/or a wellbore servicing method, as will be disclosed.
Referring to
In the embodiment of
Also in the embodiment of
In an embodiment, a wellbore servicing system such as the wellbore servicing system 460 disclosed with respect to
Referring again to
In an embodiment, a transitory transmitting well tool 464 may be introduced in the wellbore 114 (e.g., into the casing string 190) and communicated downwardly through the wellbore 114. For example, in an embodiment, the transitory transmitting well tool 464 may be communicated downwardly through the wellbore 114, for example, via the movement of a fluid into the wellbore 114 (e.g., the forward-circulation of a fluid). As the transitory transmitting well tool 464 is communicated through the wellbore 114, the transitory transmitting well tool 464 comes into signal communication with one or more stationary receiving well tools 462, for example, one or more of the stationary receiving well tools 462a, 462b, and 462c, respectively. In an embodiment, as the transitory transmitting well tool 464 comes into signal communication with each of the stationary receiving well tools 462, the transitory transmitting well tool 464 may transmit a triggering signal to the stationary receiving well tools 462.
In an embodiment, the triggering signal may be sufficient to activate one or more stationary receiving well tools 462. For example, one or more switching systems 202 of the stationary receiving well tools 462 may transition from the inactive state to the active state in response to the triggering signal. In such an embodiment, upon activating a stationary receiving well tool 462, the switching system 202 may provide power to the electrical load 208 coupled with the stationary receiving well tool 462. For example, the electrical load 208 may comprise an electronic actuator which actuates (e.g., from a closed position to an open position or vice-versa) in response to receiving power from the switching system 202. As such, upon actuation of the electronic actuator, the stationary receiving tool 462 may transition from a first configuration to a second configuration, for example, via the transitioning one or more components (e.g., a valve, a sleeve, a packer element, etc.) of the stationary receiving well tool 462. Alternatively, the electrical load 208 may comprise a transducer and/or a microcontroller which measures and/or logs wellbore data in response to receiving power from the switching system 202. Alternatively, the electrical load 208 may comprise a transmitting system (e.g., transmitting system 400) and may begin communicating a signal (e.g., a triggering signal, a near field communication (NFC) signal, a radio frequency identification (RFID) signal, etc.) in response to providing power to the electrical load 208. Alternatively, the stationary receiving well tool 462 may employ any suitable electrical load 208 as would be appreciated by one of ordinary skill in the art upon viewing this disclosure.
In an additional or alternative embodiment, the switching system 202 of one or more of the stationary well tools 462 is configured such that the stationary receiving well tool 462 will remain in the active state (e.g., providing power to the electrical load 208) for a predetermined duration of time. In such an embodiment, following the predetermined duration of time, the switching system 202 may transition from the active state to the inactive state and, thereby no longer provide power to the electrical load 208. For example, the switching system 202 may be coupled to a processor and the processor may apply a voltage signal to the power disconnection portion 212 of the switching system 202 following a predetermined duration of time.
In an additional or alternative embodiment, the switching system 202 of one or more of the stationary receiving well tools 462 is coupled to a processor and is configured to increment or decrement a counter (e.g., a hardware or software counter) upon activation of the switching system 202. For example, in an embodiment, following a predetermined duration of time after incrementing or decrementing a counter, the switching system 202 may transition from the active state to the inactive state while a predetermined numerical value is not achieved. Alternatively, the stationary well tool 462 may perform one or more wellbore servicing operations (e.g., actuate an electronic actuator) in response to the counter transitioning to a predetermined numerical value (e.g., a threshold value).
In an additional or alternative embodiment, the switching system 202 of one or more of the stationary well tools 462 is configured such that the stationary receiving well tool 462 will remain in the active state (e.g., providing power to the electrical load 208) until receiving a second triggering signal. For example, the switching system 202 is configured to activate the power disconnection portion 212 in response to a second triggering signal to deactivate the feedback portion 210, as previously disclosed.
In an additional or alternative embodiment, the stationary receiving well tool 462 comprises a transducer, the switching system 202 may transition from the active state to the inactive state in response to one or more wellbore conditions. For example, upon activating the transducer (e.g., via activating the switching system 202), the transducer (e.g., a temperature sensor) may obtain data (e.g., temperature data) from within the wellbore 114 and the stationary receiving well tool 462 may transition from the active state to the inactive state until one or more wellbore conditions are satisfied (e.g., a temperature threshold). Alternatively, the duration of time necessary for the switching system 202 to transition from the active state to the inactive state may be a function of data obtained from within the wellbore 114.
In an additional or alternative embodiment, an additional well tool (e.g., a ball, a dart, a wire line tool, a work string member, etc.) may be introduced to the wellbore servicing system 460 (e.g., within the casing string 190) and may be employed to perform one or more wellbore servicing operations. For example, the additional well tool may engage the stationary receiving well tool 462 and may actuate (e.g., further actuate) the stationary receiving well tool 462 to perform one or more wellbore servicing operations. As such, one or more the transitory transmitting well tool 464 may be employed to incrementally adjust a stationary receiving well tool 462, for example, to adjust a flowrate and/or degree of restriction (e.g., to incrementally open or close) of the stationary receiving well tool 462 in a wellbore production environment.
In an embodiment, one or more steps of such a wellbore stimulation operation may be repeated. For example, one or more additional transitory transmitting well tool 464 may be introduced in the wellbore 114 and may transmit one or more triggering signals to one or more of the stationary receiving well tools 462, for example, for the purpose of providing power to one or more additional electrical load 208 (e.g., actuators, transducers, electronic circuits, transmitter systems, receiver systems, etc.).
Referring to
In the embodiment of
In the embodiment of
Also in the embodiment of
Also in the embodiment of
In an embodiment, the wellbore servicing system such as the wellbore servicing system 470 disclosed with respect to
Referring again to
Additionally, in an embodiment, one or more transmitting activation well tools 476 may be positioned within a wellbore, such as wellbore 114. For example, in the embodiment of
In an embodiment, a transitory transceiver well tool 474 may be introduced into the wellbore 114 (e.g., into the casing string 190) in an inactive state and communicated downwardly through the wellbore 114. For example, in an embodiment, the transitory transceiver well tool 474 may be communicated downwardly through the wellbore 114, for example, via the movement of a fluid into the wellbore 114 (e.g., the forward-circulation of a fluid). As the transitory transceiver well tool 474 is communicated through the wellbore 114, the transitory transceiver well tool 474 comes into signal communication with the transmitting activation well tool 476. In an embodiment, as the transitory transceiver well tool 474 comes into signal communication with the transmitting activation well tools 476, the transitory transceiver well tool 474 may experience and/or receive the first triggering signal from the transmitting activation well tool 476. In an alternative embodiment, the transitory transceiver well tool 474 may be activated at the surface (e.g., prior to being disposed within the wellbore 114), for example, where the transmitting activation well tool 474 is a handheld device, a mobile device, etc.
In an embodiment, the triggering signal may be sufficient to activate the transitory transceiver well tool 474. For example, the switching systems 202 of the transitory transceiver well tool 474 may transition from the inactive state to the active state in response to the triggering signal. In such an embodiment, upon activating the transitory transceiver well tool 474, the switching system 202 may provide power to the electrical load 208 coupled with the transitory transceiver well tool 474. For example, the transitory transceiver well tool 474 comprises a transmitter system 400 which begin generating and/or transmitting a second triggering signal in response to receiving power from the switching system 202.
In an embodiment, the second triggering signal may be sufficient to activate one or more stationary receiving well tools 472. For example, one or more switching systems 202 of the stationary receiving well tools 472 may transition from the inactive state to the active state in response to the triggering signal. In such an embodiment, upon activating a stationary receiving well tool 472, the stationary receiving well tool 472 may provide power to the electrical load 208 coupled with the stationary receiving well tool 472. For example, the electrical load 208 may comprise an electronic actuator which actuates (e.g., from a closed position to an open position or vice-versa) in response to receiving power from the switching system 202. As such, upon actuation of the electronic actuator, the stationary receiving tool 472 may transition from a first configuration to a second configuration, for example, via the transitioning one or more components (e.g., a valve, a sleeve, a packer element, etc.) of the stationary receiving well tool 472. Alternatively, the electrical load 208 may comprise a transducer and/or a microcontroller which measures and/or logs wellbore data in response to receiving power from the switching system 202. Alternatively, the electrical load 208 may comprise a transmitting system (e.g., transmitting system 400) and may begin communicating a signal (e.g., a triggering signal, a NFC signal, a RFID signal, etc.) in response to providing power to the electrical load 208. Alternatively, the stationary receiving well tool 472 may employ any suitable electrical load 208 as would be appreciated by one of ordinary skill in the art upon viewing this disclosure.
In an embodiment, one or more steps of such a wellbore stimulation operation may be repeated. For example, one or more additional transitory transceiver well tool 474 may be introduced in the wellbore 114 in an inactive state and may become activated to transmit one or more triggering signals to one or more of the stationary receiving well tools 472, for example, for the purpose of providing power to one or more additional electrical load 208 (e.g., actuators, transducers, electronic circuits, transmitter systems, receiver systems, etc.).
Referring to
In the embodiment of
In the embodiment of
In an embodiment, a wellbore servicing system such as the wellbore servicing system 460 disclosed with respect to
In an embodiment, one or more transmitting activation well tools 434 may be positioned within a wellbore, such as wellbore 114. For example, in the embodiment of
In an embodiment, a transitory receiving well tool 432 may be introduced in the wellbore 114 (e.g., into the casing string 190) in an inactive state and communicated downwardly through the wellbore 114. For example, in an embodiment, the transitory receiving well tool 432 may be communicated downwardly through the wellbore 114, for example, via the movement of a work string 435 into the wellbore 114. As the transitory receiving well tool 432 is communicated through the wellbore 114, the transitory receiving well tool 432 comes into signal communication with the transmitting activation well tool 434. In an embodiment, as the transitory receiving well tool 432 comes into signal communication with the transmitting activation well tools 434, the transitory receiving well tool 432 may experience and/or receive the triggering signal from the transmitting activation well tool 432.
In an embodiment, the triggering signal may be sufficient to activate the transitory receiving well tools 432. For example, the switching systems 202 of the transitory receiving well tool 432 may transition from the inactive state to the active state in response to the triggering signal. In such an embodiment, upon activating the transitory receiving well tool 432, the switching system 202 may provide power to the electrical load 208 coupled with the transitory receiving well tool 432. For example, the electrical load 208 may comprise a perforating gun which may be activated (e.g., capable of firing) in response to receiving power from the switching system 202. Alternatively, the transitory receiving tool 432 may employ any suitable electrical load 208 as would be appreciated by one of ordinary skill in the art upon viewing this disclosure. Additionally, upon providing power to the electrical load 208, the transitory receiving well tool 432 may perform one or more wellbore servicing operations, for example, perforating the casing string 190.
In an embodiment, upon the completion of one or more wellbore servicing operations, the transitory receiving well tool 432 may be communicated upwardly through the wellbore 114. As the transitory receiving well tool 432 is communicated upwardly through the wellbore 114, the transitory receiving well tool 432 comes into signal communication with the transmitting activation well tool 434. In an embodiment, as the transitory receiving well tool 432 comes into signal communication with the transmitting activation well tools 434, the transitory receiving well tool 432 may experience and/or receive a second triggering signal from the transmitting activation well tool 432. In an embodiment, the triggering signal may be sufficient to transition the transitory receiving well tool 432 to the inactive state (e.g., to deactivate the transitory receiving well tool 432 such that the perforating gun is no longer capable of firing). For example, the switching systems 202 of the transitory receiving well tool 432 may transition from the active state to the inactive state in response to the second triggering signal.
In an embodiment, one or more steps of such a wellbore stimulation operation may be repeated. For example, one or more additional transitory receiving well tool 432 may be introduced in the wellbore 114 in an inactive state and may be activated to perform one or more wellbore servicing operations. Following one or more wellbore servicing operations the transitory receiving well tool 432 may be transitioned to the inactive state upon being retrieved from the wellbore 114.
In an embodiment, a well tool, a wellbore servicing system comprising one or more well tools, a wellbore servicing method employing such a wellbore servicing system and/or such a well tool, or combinations thereof may be advantageously employed in the performance of a wellbore servicing operation. In an embodiment, as previously disclosed, employing such a well tool comprising a switching system enables an operator to further reduce power consumption and increase service life of a well tool. Additionally, as previously disclosed, employing such a well tool comprising a switching system enables an operator to increase safety during the performance of one or more hazardous or dangerous wellbore servicing operations, for example, explosive detonation, perforation, etc. For example, a well tool may be configured to remain in an inactive state until activated by a triggering signal. Conventional, well tools and/or wellbore servicing systems may not have the ability to wirelessly induce an electrical response to complete a switching circuit and thereby transition from an inactive state where substantially no power (e.g., less power consumed than a “sleep” or idle state) is consumed to an active state. As such, a switching system may be employed to increase the service life of a well tool, for example, to allow a well tool to draw substantially no power until activated (e.g., via a triggering signal) to perform one or more wellbore servicing operations and thereby increasing the service life of the well tool. Additionally, such a switching system may be employed to increase safety during the performance of one or more hazardous or dangerous wellbore servicing operations, for example, to allow an operator to activate hazardous equipment remotely.
The following are non-limiting, specific embodiments in accordance with the present disclosure:
A first embodiment, which is a wellbore tool comprising:
A second embodiment, which is the wellbore tool of the first embodiment, wherein the switching system comprises a rectifier portion configured to convert the triggering signal to a rectified signal.
A third embodiment, which is the wellbore tool of the second embodiment, wherein the switching system comprises a triggering portion and a power switching portion, wherein the triggering portion is configured to activate the power switching portion in response to the rectified signal.
A fourth embodiment, which is the wellbore tool of one of the first through the third embodiments, wherein the switching system comprises a triggering portion and a power switching portion, wherein the triggering portion is configured to activate the power switching portion in response to the triggering signal.
A fifth embodiment, which is the wellbore tool of one of the first through the fourth embodiments, wherein the switching system comprises a feedback portion configured to retain the power switching portion in an active state.
A sixth embodiment, which is the wellbore tool of one of the first through the fifth embodiments, wherein the switching system comprises a power disconnection portion configured to deactivate the power switching portion.
A seventh embodiment, which is the wellbore tool of one of the first through the sixth embodiments, wherein the receiving unit is an antenna.
An eighth embodiment, which is the wellbore tool of one of the first through the seventh embodiments, wherein the receiving unit is a passive transducer.
A ninth embodiment, which is the wellbore tool of one of the first through the eighth embodiments, wherein the electrical load is a microprocessor.
A tenth embodiment, which is the wellbore tool of one of the first through the ninth embodiments, wherein the electrical load is an electronically actuatable valve.
An eleventh embodiment, which is the wellbore tool of one of the first through the tenth embodiments, wherein the electrical load is a transmitter system.
A twelfth embodiment, which is the wellbore tool of one of the first through the eleventh embodiments, wherein the electrical load is a detonator.
A thirteenth embodiment, which is the wellbore tool of one of the first through the twelfth embodiments, wherein the wellbore servicing tool is disposed within a ball or a dart.
A fourteenth embodiment, which is the wellbore tool of one of the first through the thirteenth embodiments, wherein the wellbore servicing tool is configured such that upon receiving the triggering signal the receiving unit generates an electrical response effective to activate one or more electrical switches of the switching system to complete one or more circuits and, thereby configure the switching system to allow a route of electrical current flow between the power supply and the electrical load.
A fifteenth embodiment, which is a wellbore servicing system comprising:
A sixteenth embodiment, which is the wellbore servicing system of the fifteenth embodiment, wherein the transitory transmitting well tool is a ball or dart.
A seventeenth embodiment, which is the wellbore servicing system of one of the fifteenth through the sixteenth embodiments, wherein the transitory transmitting well tool is a member attached to a coiled-tubing string or a member attached to a wireline.
An eighteenth embodiment, which is the wellbore servicing system of one of the fifteenth through the seventeenth embodiments, wherein the stationary receiving well tools are each configured to transition from the inactive state to the active state in response to the triggering signal.
A nineteenth embodiment, which is the wellbore servicing system of the eighteenth embodiment, wherein the stationary receiving well tools are each configured to perform one or more wellbore servicing operations in response to transitioning to the active state.
A twentieth embodiment, which is a wellbore servicing method comprising:
A twenty-first embodiment, which is the wellbore servicing method of the twentieth embodiment, further comprising performing one or more wellbore servicing operations in response to transitioning to the active state.
A twenty-second embodiment, which is the wellbore servicing method of one of the twentieth through the twenty-first embodiments, wherein transitioning from an inactive state to an active state in response to a triggering signal comprises the steps of:
A twenty-third embodiment, which is the wellbore servicing method of the twenty-second embodiment, further comprising the steps of:
A twenty-fourth embodiment, which is the wellbore servicing method of the twenty-third embodiment, further comprising the steps of:
A twenty-fifth embodiment, which is a wellbore system comprising:
A twenty-sixth embodiment, which is the wellbore system of the twenty-fifth embodiment, wherein the stationary receiving well tools are each configured to perform one or more wellbore servicing operations in response to transitioning to the active state.
A twenty-seventh embodiment, which is a wellbore servicing method comprising:
A twenty-eighth embodiment, which is the wellbore servicing method of the twenty-seventh embodiment, further comprising performing one or more wellbore servicing operations in response to transitioning one or more stationary well tools to the active state.
A twenty-ninth embodiment, which is a wellbore servicing system comprising:
A thirtieth embodiment, which is the wellbore servicing system of the twenty-ninth embodiment, wherein the transitory receiving well tool is further configured to transition to the inactive state in response to receiving a second triggering signal.
A thirty-first embodiment, which is the wellbore servicing system of the thirtieth embodiment, wherein the transitory receiving well tool is configured to perforate a portion of a wellbore or tubular string.
A thirty-second embodiment, which is the wellbore servicing system of the thirty-first embodiment, wherein the transitory receiving well tool comprises a perforating gun.
A thirty-third embodiment, which is the wellbore servicing system of the thirty-second embodiment, wherein the perforating gun comprises a selectively detonable explosive charge.
A thirty-fourth embodiment, which is the wellbore servicing system of the thirty-third embodiment, wherein prior to receiving the first triggering signal, the explosive charge cannot be detonated and after receiving the first triggering signal, the explosive charge can be detonated.
A thirty-fifth embodiment, which is the wellbore servicing system of one of the twenty-ninth through the thirty-fourth embodiments, wherein the transmitting activation well tool is incorporated within a tubular string in the wellbore.
A thirty-sixth embodiment, which is the wellbore servicing system of one of the twenty-ninth through the thirty-fifth embodiments, wherein the transitory receiving well tool is a member attached to a coil-tubing string or a member attached to a wireline.
A thirty-seventh embodiment, which is the wellbore servicing system of one of the twenty-ninth through the thirty-sixth embodiments, wherein when the transitory receiving well tool is in the inactive state, the transitory receiving well tool is configured to disallow a route of electrical current flow between a power supply and an electrical load.
A thirty-eighth embodiment, which is the wellbore servicing system of one of the twenty-ninth through the thirty-seventh embodiments, wherein when the transitory receiving well tool is in the active state, the transitory receiving well tool is configured to allow a route of electrical current flow between a power supply and an electrical load.
A thirty-ninth embodiment, which is a wellbore servicing system comprising:
A fortieth embodiment, which is the wellbore servicing system of the thirty-ninth embodiment, wherein the transitory receiving well tool is further configured to transition to the active state in response to receiving a second triggering signal.
A forty-first embodiment, which is the wellbore servicing system of the fortieth embodiment, wherein the transitory receiving well tool is configured to perforate a portion of a wellbore or tubular string.
A forty-second embodiment, which is the wellbore servicing system of the forty-first embodiment, wherein the transitory receiving well tool comprises a perforating gun.
A forty-third embodiment, which is the wellbore servicing system of the forty-second embodiment, wherein the perforating gun comprises a selectively detonable explosive charge.
A forty-fourth embodiment, which is the wellbore servicing system of the forty-third embodiment, wherein prior to receiving the first triggering signal, the explosive charge can be detonated and after receiving the first triggering signal, the explosive charge cannot be detonated.
A forty-fifth embodiment, which is the wellbore servicing system of one of the thirty-ninth through the forty-fourth embodiments, wherein the transmitting activation well tool is incorporated within a tubular string in the wellbore.
A forty-sixth embodiment, which is the wellbore servicing system of one of the thirty-ninth through the forty-fifth embodiments, wherein the transitory receiving well tool is a member attached to a coil-tubing string or a member attached to a wireline.
A forty-seventh embodiment, which is the wellbore servicing system of one of the thirty-ninth through the forty-sixth embodiments, wherein when the transitory receiving well tool is in the inactive state, the transitory receiving well tool is configured to disallow a route of electrical current flow between a power supply and an electrical load.
A forty-eighth embodiment, which is the wellbore servicing system of one of the thirty-ninth through the forty seventh embodiments, wherein when the transitory receiving well tool is in the active state, the transitory receiving well tool is configured to allow a route of electrical current flow between a power supply and an electrical load.
A forty-ninth embodiment, which is a wellbore servicing method comprising:
A fiftieth embodiment, which is the wellbore servicing method of the forty-ninth embodiment, wherein the transitory receiving well tool comprises a perforating gun comprising a selectively detonatable explosive charge.
A fifty-first embodiment, which is the wellbore servicing method of the fiftieth embodiment, wherein, prior to communication with the transmitting activation well tool, the explosive charge cannot be detonated and, after communication with the transmitting activation well tool, the explosive charge can be detonated.
A fifty-second embodiment, which is the wellbore servicing method of the fifty-first embodiment, further comprising positioning the perforating gun proximate to a portion of the wellbore and/or a tubular string into which one or more perforations are to be introduced.
A fifty-third embodiment, which is the wellbore servicing method of the fifty-second embodiment, further comprising causing the explosive charge to detonate.
A fifty-fourth embodiment, which is the wellbore servicing method of the fifty-third embodiment, wherein the transmitting activation well tool is positioned within the wellbore proximate to a portion of the wellbore and/or a tubular string into which one or more perforations are to be introduced.
A fifty-fifth embodiment, which is the wellbore servicing method of one of the forty-ninth through the fifty-fourth embodiments, wherein when the transitory receiving well tool is in the inactive state, the transitory receiving well tool is configured to disallow a route of electrical current flow between a power supply and an electrical load.
A fifty-sixth embodiment, which is the wellbore servicing method of one of the forty-ninth through the fifty-fifth embodiments, wherein when the transitory receiving well tool is in the active state, the transitory receiving well tool is configured to allow a route of electrical current flow between a power supply and an electrical load.
While embodiments of the invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the invention. The embodiments described herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the invention disclosed herein are possible and are within the scope of the invention. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, Rl, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=Rl+k*(Ru−Rl), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the claim. Use of broader terms such as comprises, includes, having, etc. should be understood to provide support for narrower terms such as consisting of, consisting essentially of, comprised substantially of, etc.
Accordingly, the scope of protection is not limited by the description set out above but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated into the specification as an embodiment of the present invention. Thus, the claims are a further description and are an addition to the embodiments of the present invention. The discussion of a reference in the Detailed Description of the Embodiments is not an admission that it is prior art to the present invention, especially any reference that may have a publication date after the priority date of this application. The disclosures of all patents, patent applications, and publications cited herein are hereby incorporated by reference, to the extent that they provide exemplary, procedural or other details supplementary to those set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2076308 | Wells | Apr 1937 | A |
2189936 | Brandfon | Feb 1940 | A |
2189937 | Broyles | Feb 1940 | A |
2308004 | Hart | Jan 1943 | A |
2330265 | Burt | Sep 1943 | A |
2373006 | Baker | Apr 1945 | A |
2381929 | Schlumberger | Aug 1945 | A |
2618340 | Lynd | Nov 1952 | A |
2618343 | Conrad | Nov 1952 | A |
2637402 | Baker et al. | May 1953 | A |
2640547 | Baker et al. | Jun 1953 | A |
2695064 | Ragan et al. | Nov 1954 | A |
2715444 | Fewel | Aug 1955 | A |
2871946 | Bigelow | Feb 1959 | A |
2918125 | Sweetman | Dec 1959 | A |
2961045 | Stogner et al. | Nov 1960 | A |
2974727 | Goodwin | Mar 1961 | A |
3029873 | Hanes | Apr 1962 | A |
3055430 | Campbell | Sep 1962 | A |
3076928 | Waters | Feb 1963 | A |
3122728 | Lindberg, Jr. | Feb 1964 | A |
3160209 | Bonner | Dec 1964 | A |
3195637 | Wayte | Jul 1965 | A |
RE25846 | Campbell | Aug 1965 | E |
3217804 | Peter | Nov 1965 | A |
3233674 | Leutwyler | Feb 1966 | A |
3266575 | Owen | Aug 1966 | A |
3398803 | Leutwyler et al. | Aug 1968 | A |
3556211 | Bohn et al. | Jan 1971 | A |
3659648 | Cobbs | May 1972 | A |
3737845 | Maroney | Jun 1973 | A |
4085590 | Powell et al. | Apr 1978 | A |
4206810 | Blackman | Jun 1980 | A |
4282931 | Golben | Aug 1981 | A |
4352397 | Christopher | Oct 1982 | A |
4377209 | Golben | Mar 1983 | A |
4385494 | Golben | May 1983 | A |
4402187 | Golben et al. | Sep 1983 | A |
4598769 | Robertson | Jul 1986 | A |
4796699 | Upchurch | Jan 1989 | A |
4856595 | Upchurch | Aug 1989 | A |
4884953 | Golben | Dec 1989 | A |
4901069 | Veneruso | Feb 1990 | A |
5024270 | Bostick | Jun 1991 | A |
5040602 | Helms | Aug 1991 | A |
5058674 | Schultz et al. | Oct 1991 | A |
5074940 | Ochi et al. | Dec 1991 | A |
5089069 | Ramaswamy et al. | Feb 1992 | A |
5101907 | Schultz et al. | Apr 1992 | A |
5117548 | Griffith et al. | Jun 1992 | A |
5155471 | Ellis et al. | Oct 1992 | A |
5163521 | Pustanyk et al. | Nov 1992 | A |
5188183 | Hopmann et al. | Feb 1993 | A |
5197758 | Lund et al. | Mar 1993 | A |
5211224 | Bouldin | May 1993 | A |
5238070 | Schultz et al. | Aug 1993 | A |
5279321 | Krimm | Jan 1994 | A |
5293551 | Perkins et al. | Mar 1994 | A |
5316081 | Baski et al. | May 1994 | A |
5316087 | Manke et al. | May 1994 | A |
5355960 | Schultz et al. | Oct 1994 | A |
5396951 | Ross | Mar 1995 | A |
5452763 | Owen | Sep 1995 | A |
5476018 | Nakanishi et al. | Dec 1995 | A |
5485884 | Hanley et al. | Jan 1996 | A |
5490564 | Schultz et al. | Feb 1996 | A |
5531845 | Flanigan et al. | Jul 1996 | A |
5558153 | Holcombe et al. | Sep 1996 | A |
5573307 | Wilkinson et al. | Nov 1996 | A |
5575331 | Terrell | Nov 1996 | A |
5622211 | Martin et al. | Apr 1997 | A |
5662166 | Shammai | Sep 1997 | A |
5673556 | Goldben et al. | Oct 1997 | A |
5687791 | Beck et al. | Nov 1997 | A |
5700974 | Taylor | Dec 1997 | A |
5725699 | Hinshaw et al. | Mar 1998 | A |
5971072 | Huber et al. | Oct 1999 | A |
6021095 | Tubel | Feb 2000 | A |
6061000 | Edwards | May 2000 | A |
6128904 | Rosso, Jr. et al. | Oct 2000 | A |
6137747 | Shah et al. | Oct 2000 | A |
6160492 | Herman | Dec 2000 | A |
6172614 | Robison et al. | Jan 2001 | B1 |
6186226 | Robertson | Feb 2001 | B1 |
6196584 | Shirk et al. | Mar 2001 | B1 |
6244340 | McGlothen et al. | Jun 2001 | B1 |
6315043 | Farrant et al. | Nov 2001 | B1 |
6333699 | Zierolf | Dec 2001 | B1 |
6364037 | Brunnert et al. | Apr 2002 | B1 |
6378611 | Helderle | Apr 2002 | B1 |
6382234 | Birckhead et al. | May 2002 | B1 |
6438070 | Birchak et al. | Aug 2002 | B1 |
6450258 | Green et al. | Sep 2002 | B2 |
6450263 | Schwendemann | Sep 2002 | B1 |
6470996 | Kyle et al. | Oct 2002 | B1 |
6536524 | Snider | Mar 2003 | B1 |
6561479 | Eldridge | May 2003 | B1 |
6568470 | Goodson, Jr. et al. | May 2003 | B2 |
6583729 | Gardner et al. | Jun 2003 | B1 |
6584911 | Bergerson et al. | Jul 2003 | B2 |
6598679 | Robertson | Jul 2003 | B2 |
6619388 | Dietz et al. | Sep 2003 | B2 |
6651747 | Chen et al. | Nov 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6672382 | Schultz et al. | Jan 2004 | B2 |
6695061 | Fripp et al. | Feb 2004 | B2 |
6705425 | West | Mar 2004 | B2 |
6717283 | Skinner et al. | Apr 2004 | B2 |
6776255 | West et al. | Aug 2004 | B2 |
6848503 | Schultz et al. | Feb 2005 | B2 |
6880634 | Gardner et al. | Apr 2005 | B2 |
6915848 | Thomeer et al. | Jul 2005 | B2 |
6925937 | Robertson | Aug 2005 | B2 |
6971449 | Robertson | Dec 2005 | B1 |
6973993 | West et al. | Dec 2005 | B2 |
6998999 | Fripp et al. | Feb 2006 | B2 |
7012545 | Skinner et al. | Mar 2006 | B2 |
7063146 | Schultz et al. | Jun 2006 | B2 |
7063148 | Jabusch | Jun 2006 | B2 |
7068183 | Shah et al. | Jun 2006 | B2 |
7082078 | Fripp et al. | Jul 2006 | B2 |
7083009 | Paluch et al. | Aug 2006 | B2 |
7104276 | Einhaus | Sep 2006 | B2 |
7152657 | Bosma et al. | Dec 2006 | B2 |
7152679 | Simpson | Dec 2006 | B2 |
7165608 | Schultz et al. | Jan 2007 | B2 |
7191672 | Ringgenberg et al. | Mar 2007 | B2 |
7195067 | Manke et al. | Mar 2007 | B2 |
7197923 | Wright et al. | Apr 2007 | B1 |
7199480 | Fripp et al. | Apr 2007 | B2 |
7201230 | Schultz et al. | Apr 2007 | B2 |
7210555 | Shah et al | May 2007 | B2 |
7234519 | Fripp et al. | Jun 2007 | B2 |
7237616 | Patel | Jul 2007 | B2 |
7246659 | Fripp et al. | Jul 2007 | B2 |
7246660 | Fripp et al. | Jul 2007 | B2 |
7252152 | LoGiudice et al. | Aug 2007 | B2 |
7258169 | Fripp et al. | Aug 2007 | B2 |
7301472 | Kyle et al. | Nov 2007 | B2 |
7301473 | Shah et al. | Nov 2007 | B2 |
7322416 | Burris, II et al. | Jan 2008 | B2 |
7325605 | Fripp et al. | Feb 2008 | B2 |
7337852 | Manke et al. | Mar 2008 | B2 |
7339494 | Shah et al. | Mar 2008 | B2 |
7363967 | Burris, II et al. | Apr 2008 | B2 |
7367394 | Villareal et al. | May 2008 | B2 |
7372263 | Edwards | May 2008 | B2 |
7373944 | Smith et al. | May 2008 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7395882 | Oldham et al. | Jul 2008 | B2 |
7398996 | Saito et al. | Jul 2008 | B2 |
7404416 | Schultz et al. | Jul 2008 | B2 |
7428922 | Fripp et al. | Sep 2008 | B2 |
7431335 | Khandhadia et al. | Oct 2008 | B2 |
7472589 | Irani et al. | Jan 2009 | B2 |
7472752 | Rogers et al. | Jan 2009 | B2 |
7508734 | Fink et al. | Mar 2009 | B2 |
7510017 | Howell et al. | Mar 2009 | B2 |
7557492 | Fripp et al. | Jul 2009 | B2 |
7559363 | Howell et al. | Jul 2009 | B2 |
7559373 | Jackson et al. | Jul 2009 | B2 |
7595737 | Fink et al. | Sep 2009 | B2 |
7596995 | Irani et al. | Oct 2009 | B2 |
7604062 | Murray | Oct 2009 | B2 |
7610964 | Cox | Nov 2009 | B2 |
7617871 | Surjaatmadja et al. | Nov 2009 | B2 |
7624792 | Wright et al. | Dec 2009 | B2 |
7640965 | Bosma et al. | Jan 2010 | B2 |
7665355 | Zhang et al. | Feb 2010 | B2 |
7669661 | Johnson | Mar 2010 | B2 |
7673506 | Irani et al. | Mar 2010 | B2 |
7673673 | Surjaatmadja et al. | Mar 2010 | B2 |
7699101 | Fripp et al. | Apr 2010 | B2 |
7699102 | Storm et al. | Apr 2010 | B2 |
7712527 | Roddy | May 2010 | B2 |
7717167 | Storm et al. | May 2010 | B2 |
7730954 | Schultz et al. | Jun 2010 | B2 |
7777645 | Shah et al. | Aug 2010 | B2 |
7781939 | Fripp et al. | Aug 2010 | B2 |
7802627 | Hofman et al. | Sep 2010 | B2 |
7804172 | Schultz et al. | Sep 2010 | B2 |
7832474 | Nguy | Nov 2010 | B2 |
7836952 | Fripp | Nov 2010 | B2 |
7856872 | Irani et al. | Dec 2010 | B2 |
7878255 | Howell et al. | Feb 2011 | B2 |
7946166 | Irani et al. | May 2011 | B2 |
7946340 | Surjaatmadja et al. | May 2011 | B2 |
7963331 | Surjaatmadja et al. | Jun 2011 | B2 |
7987914 | Benton | Aug 2011 | B2 |
8040249 | Shah et al. | Oct 2011 | B2 |
8091637 | Fripp | Jan 2012 | B2 |
8118098 | Hromas et al. | Feb 2012 | B2 |
8140010 | Symons et al. | Mar 2012 | B2 |
8146673 | Howell et al. | Apr 2012 | B2 |
8162050 | Roddy et al. | Apr 2012 | B2 |
8191627 | Hamid et al. | Jun 2012 | B2 |
8196515 | Streibich et al. | Jun 2012 | B2 |
8196653 | Fripp et al. | Jun 2012 | B2 |
8215404 | Makowiecki et al. | Jul 2012 | B2 |
8220545 | Storm, Jr. et al. | Jul 2012 | B2 |
8225014 | Kuhl | Jul 2012 | B2 |
8235103 | Wright et al. | Aug 2012 | B2 |
8235128 | Dykstra et al. | Aug 2012 | B2 |
8240384 | Miller et al. | Aug 2012 | B2 |
8261839 | Fripp et al. | Sep 2012 | B2 |
8276669 | Dykstra et al. | Oct 2012 | B2 |
8276675 | Williamson et al. | Oct 2012 | B2 |
8284075 | Fincher et al. | Oct 2012 | B2 |
8297367 | Chen et al. | Oct 2012 | B2 |
8302681 | Fripp et al. | Nov 2012 | B2 |
8319657 | Godager | Nov 2012 | B2 |
8322426 | Wright et al. | Dec 2012 | B2 |
8327885 | Dykstra et al. | Dec 2012 | B2 |
8356668 | Dykstra et al. | Jan 2013 | B2 |
8376047 | Dykstra et al. | Feb 2013 | B2 |
8387662 | Dykstra et al. | Mar 2013 | B2 |
8397803 | Crabb et al. | Mar 2013 | B2 |
8403068 | Robison et al. | Mar 2013 | B2 |
8432167 | Reiderman | Apr 2013 | B2 |
8459377 | Moyes | Jun 2013 | B2 |
8472282 | Fink et al. | Jun 2013 | B2 |
8474533 | Miller et al. | Jul 2013 | B2 |
8479831 | Dykstra et al. | Jul 2013 | B2 |
8505639 | Robison et al. | Aug 2013 | B2 |
8517113 | Sheffield | Aug 2013 | B2 |
8544564 | Moore et al. | Oct 2013 | B2 |
8555975 | Dykstra et al. | Oct 2013 | B2 |
8584762 | Fripp et al. | Nov 2013 | B2 |
8602100 | Dykstra et al. | Dec 2013 | B2 |
8607863 | Fripp et al. | Dec 2013 | B2 |
8616276 | Tips et al. | Dec 2013 | B2 |
8616290 | Dykstra et al. | Dec 2013 | B2 |
8622136 | Dykstra et al. | Jan 2014 | B2 |
8636062 | Fripp et al. | Jan 2014 | B2 |
8708056 | Helms et al. | Apr 2014 | B2 |
8973657 | Miller et al. | Mar 2015 | B2 |
8991486 | Acosta et al. | Mar 2015 | B2 |
9010442 | Streich et al. | Apr 2015 | B2 |
9169705 | Helms et al. | Oct 2015 | B2 |
9284817 | Walton et al. | Mar 2016 | B2 |
9366134 | Walton et al. | Jun 2016 | B2 |
9562429 | Walton et al. | Feb 2017 | B2 |
9587486 | Walton et al. | Mar 2017 | B2 |
9587487 | Walton et al. | Mar 2017 | B2 |
20020048135 | Lerche et al. | Apr 2002 | A1 |
20030213595 | Jackson | Nov 2003 | A1 |
20040108114 | Lerche et al. | Jun 2004 | A1 |
20040156264 | Gardner et al. | Aug 2004 | A1 |
20040227509 | Ucan | Nov 2004 | A1 |
20050241835 | Burris, II et al. | Nov 2005 | A1 |
20050260468 | Fripp et al. | Nov 2005 | A1 |
20050269083 | Burris, II et al. | Dec 2005 | A1 |
20060118303 | Schultz et al. | Jun 2006 | A1 |
20060144590 | Lopez de Cardenas et al. | Jul 2006 | A1 |
20070189452 | Johnson et al. | Aug 2007 | A1 |
20080135248 | Talley et al. | Jun 2008 | A1 |
20080137481 | Shah et al. | Jun 2008 | A1 |
20080202766 | Howell et al. | Aug 2008 | A1 |
20090192731 | De Jesus et al. | Jul 2009 | A1 |
20090308588 | Howell et al. | Dec 2009 | A1 |
20100065125 | Telfer | Mar 2010 | A1 |
20100084060 | Hinshaw et al. | Apr 2010 | A1 |
20100175867 | Wright | Jul 2010 | A1 |
20100201352 | Englert | Aug 2010 | A1 |
20110042092 | Fripp et al. | Feb 2011 | A1 |
20110168390 | Fripp et al. | Jul 2011 | A1 |
20110174484 | Wright et al. | Jul 2011 | A1 |
20110174504 | Wright et al. | Jul 2011 | A1 |
20110199859 | Fink et al. | Aug 2011 | A1 |
20110214853 | Robichaux et al. | Sep 2011 | A1 |
20110248566 | Purkis | Oct 2011 | A1 |
20110253383 | Porter et al. | Oct 2011 | A1 |
20110266001 | Dykstra et al. | Nov 2011 | A1 |
20110308806 | Dykstra et al. | Dec 2011 | A9 |
20120001629 | Hopper et al. | Jan 2012 | A1 |
20120018167 | Konopczynski et al. | Jan 2012 | A1 |
20120048531 | Marzouk et al. | Mar 2012 | A1 |
20120075113 | Loi et al. | Mar 2012 | A1 |
20120111577 | Dykstra et al. | May 2012 | A1 |
20120146805 | Vick, Jr. et al. | Jun 2012 | A1 |
20120179428 | Dykstra et al. | Jul 2012 | A1 |
20120186819 | Dagenais et al. | Jul 2012 | A1 |
20120205120 | Howell | Aug 2012 | A1 |
20120205121 | Porter et al. | Aug 2012 | A1 |
20120211243 | Dykstra et al. | Aug 2012 | A1 |
20120234557 | Dykstra et al. | Sep 2012 | A1 |
20120241143 | Wright et al. | Sep 2012 | A1 |
20120255739 | Fripp et al. | Oct 2012 | A1 |
20120255740 | Fripp et al. | Oct 2012 | A1 |
20120279593 | Fripp et al. | Nov 2012 | A1 |
20120313790 | Heijnen et al. | Dec 2012 | A1 |
20120318511 | Dykstra et al. | Dec 2012 | A1 |
20120318526 | Dykstra et al. | Dec 2012 | A1 |
20130000922 | Skinner et al. | Jan 2013 | A1 |
20130014940 | Fripp et al. | Jan 2013 | A1 |
20130014941 | Tips et al. | Jan 2013 | A1 |
20130014955 | Fripp et al. | Jan 2013 | A1 |
20130020090 | Fripp et al. | Jan 2013 | A1 |
20130048290 | Howell et al. | Feb 2013 | A1 |
20130048291 | Merron et al. | Feb 2013 | A1 |
20130048298 | Merron et al. | Feb 2013 | A1 |
20130048301 | Gano et al. | Feb 2013 | A1 |
20130075107 | Dykstra et al. | Mar 2013 | A1 |
20130092382 | Dykstra et al. | Apr 2013 | A1 |
20130092393 | Dykstra et al. | Apr 2013 | A1 |
20130098614 | Dagenais et al. | Apr 2013 | A1 |
20130106366 | Fripp et al. | May 2013 | A1 |
20130112423 | Dykstra et al. | May 2013 | A1 |
20130112424 | Dykstra et al. | May 2013 | A1 |
20130112425 | Dykstra et al. | May 2013 | A1 |
20130122296 | Rose et al. | May 2013 | A1 |
20130140038 | Fripp et al. | Jun 2013 | A1 |
20130153238 | Fripp et al. | Jun 2013 | A1 |
20130180727 | Dykstra et al. | Jul 2013 | A1 |
20130180732 | Acosta et al. | Jul 2013 | A1 |
20130186634 | Fripp et al. | Jul 2013 | A1 |
20130192829 | Fadul et al. | Aug 2013 | A1 |
20130264053 | Miller et al. | Oct 2013 | A1 |
20140102807 | Zhao et al. | Apr 2014 | A1 |
20140238666 | Walton et al. | Aug 2014 | A1 |
20140262234 | Walton et al. | Sep 2014 | A1 |
20140262237 | Walton et al. | Sep 2014 | A1 |
20140262320 | Walton et al. | Sep 2014 | A1 |
20140262321 | Fripp et al. | Sep 2014 | A1 |
20140262502 | Walton et al. | Sep 2014 | A1 |
20140266772 | Walton et al. | Sep 2014 | A1 |
20140352981 | Walton et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
9925070 | May 1999 | WO |
0220942 | Mar 2002 | WO |
2004018833 | Mar 2004 | WO |
2004099564 | Nov 2004 | WO |
2009109788 | Sep 2009 | WO |
2010002270 | Jan 2010 | WO |
2010111076 | Sep 2010 | WO |
2011021053 | Feb 2011 | WO |
2011087721 | Jul 2011 | WO |
2012078204 | Jun 2012 | WO |
2012082248 | Jun 2012 | WO |
2012161854 | Nov 2012 | WO |
2013032687 | Mar 2013 | WO |
2013032687 | Mar 2013 | WO |
2014092836 | Jun 2014 | WO |
2014163821 | Sep 2014 | WO |
Entry |
---|
National Instruments, Jan. 3, 2003 “What determines if a Transducer is Active or Passive?”, http://digital.ni.com/public.nsf/allkb/084702CE98679BB886256CA3006752D7. |
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2013/061386, Apr. 10, 2014, 12 pages. |
Danaher product information, Motion Brakes, http://www.danahermotion.com/website/usa/eng/products/clutches—and—brakes/115836.php, Mar. 4, 2009, 3 pages, Danaher Motion. |
Filing receipt and specification for provisional patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Mar. 12, 2013 as U.S. Appl. No. 61/778,312. |
Filing receipt and specification for patent application entitled “Remotely Activated Down Hole Systems and Methods,” by Frank V. Acosta, et al., filed Mar. 7, 2012 as U.S. Appl. No. 13/414,016. |
Filing receipt and specification for patent application entitled “External Casing Packer and Method of Performing Cementing Job,” by Lonnie Helms, et al., filed Mar. 7, 2012 as U.S. Appl. No. 13/414,140. |
Filing receipt and specification for patent application entitled “Method of Completing a Multi-Zone Fracture Stimulation Treatment of a Wellbore,” by Steven G. Streich, et al., filed Sep. 21, 2012 as U.S. Appl. No. 13/624,173. |
Filing receipt and specification for patent application entitled “Pressure Relief-Assisted Packer,” by Lonnie Carl Helms, et al., filed Oct. 25, 2012 as U.S. Appl. No. 13/660,678. |
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/913,881. |
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,004. |
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,114. |
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,177. |
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,216. |
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,238. |
Filing receipt and specification for International application entitled “Pressure Equalization for Dual Seat Ball Valve,” filed Feb. 25, 2013 as International application No. PCT/US2013/027666. |
Filing receipt and specification for International application entitled “Autofill and Circulation Assembly and Method of Using the Same,” filed Feb. 25, 2013 as International application No. PCT/US2013/027674. |
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2010/061047, Jun. 23, 2011, 7 pages. |
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2011/036686, Nov. 30, 2011, 8 pages. |
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2011/036686, Jun. 12, 2013, 5 pages. |
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2012/050762, Mar. 11, 2013, 12 pages. |
Halliburton brochure entitled “Armada™ Sampling System,” Sep. 2007, 2 pages. |
Halliburton Drawing 672.03800, May 4, 1994, p. 1 of 2. |
Halliburton Drawing 672.03800, May 4, 1994, p. 2 of 2. |
Halliburton Drawing 626.02100, Apr. 20, 1999, 2 pages. |
Magneta Electromagnetic Clutches and Brakes catalog, Jan. 2004, 28 pages, Magneta GmbH & Co KG. |
Office Action dated Dec. 24, 2012 (26 pages), U.S. Appl. No. 12/688,058, filed Jan. 15, 2010. |
Office Action dated Dec. 23, 2011 (34 pages), U.S. Appl. No. 12/688,058, filed Jan. 15, 2010. |
Office Action dated Dec. 22, 2011 (30 pages), U.S. Appl. No. 12/965,859, filed Dec. 11, 2010. |
Ogura product information, “Electromagnetic Clutch/Brake,” http://www.ogura-clutch.com/products.html?category=2&by=type&no=1, Mar. 4, 2009, 4 pages, Ogura Industrial Corp. |
Paus, Annika, “Near Field Communication in Cell Phones,” Jul. 24, 2007, pp. 1-22 plus 1 cover and 1 content pages. |
Sanni, Modiu L., et al., “Reservoir Nanorobots,” Saudi Aramco Journal of Technology, Spring 2008, pp. 44-52. |
Ward, Matt, et al., “RFID: Frequency, standards, adoption and innovation,” JISC Technology and Standards Watch, May 2006, pp. 1-36. |
Filing receipt and specification for patent application entitled “Dual Magnetic Sensor Actuation Assembly,” by Zachary W. Walton, et al., filed Mar. 14, 2013 as U.S. Appl. No. 13/828,824. |
Filing receipt and specification for patent application entitled “Method and Apparatus for Magnetic Pulse Signature Actuation,” by Zachary W. Walton, et al., filed Feb. 28, 2013 as U.S. Appl. No. 13/781,093. |
Office Action dated Dec. 3, 2013 (46 pages), U.S. Appl. No. 13/905,859, filed May 30, 2013. |
Office Action dated Sep. 19, 2013 (17 pages), U.S. Appl. No. 12/688,058, filed Jan. 15, 2010. |
Office Action dated Sep. 19, 2013 (30 pages), U.S. Appl. No. 12/965,859, filed Dec. 11, 2010. |
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2010/061047, Jul. 17, 2012, 5 pages. |
Advisory Action dated Jul. 1, 2014 (3 pages), U.S. Appl. No. 12/688,058, filed Jan. 15, 2010. |
Foreign communication from a related counterpart application—Australian Office Action, AU Application No. 2010341610, Feb. 27, 2014, 5 pages. |
Notice of Allowance dated Jul. 15, 2014 (28 pages), U.S. Appl. No. 12/688,058, filed Jan. 15, 2010. |
Office Action (Final) dated Mar. 10, 2014 (13 pages), U.S. Appl. No. 12/688,058, filed Jan. 15, 2010. |
Office Action (Final) dated May 9, 2014 (16 pages), U.S. Appl. No. 12/965,859, filed Dec. 11, 2010. |
Office Action (Final) dated Jul. 22, 2014 (21 pages), U.S. Appl. No. 13/905,859, filed May 30, 2013. |
International Search Report and Written Opinion in related PCT Application No. PCT/US2014/039569, mailed on Jul. 16, 2015 (17 pages). |
International Preliminary Report on Patentability issued in related PCT Application No. PCT/US2014/039569 mailed Dec. 10, 2015 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20140352981 A1 | Dec 2014 | US |