The present disclosure relates to a wellhead port plug assembly for use in a port of a wellhead of a hydrocarbon well, i.e. an oil and/or gas well.
It is common to provide a wellhead of a hydrocarbon well with ports allowing the mounting of devices for monitoring the annuli of the well. It is crucial that such devices, when mounted in a wellhead port, provide a secure seal between the annulus and the atmosphere, in order to prevent leakage of the generally high-pressure hydrocarbon fluids. When not utilised for monitoring and measuring purposes, such ports must also be blocked in order to prevent leakage. This is normally done by positioning a blind plug in the port such that the port is blocked. A blind plug is basically a plug body having no other purpose than to provide a sealing or plugging function. In all cases, double barriers are usually required.
A problem related to plug bodies positioned in wellhead ports of a hydrocarbon producing well, is that the well need normally to be taken out of production if the plug body is to be replaced. For example, a plug body may occasionally leak, in which case the plug body may need to be substituted for a new plug body, or sensors or sensor electronics arranged in such plug bodies may fail or need replacement for other reasons. Also, it may be desirable to install a monitoring or measuring system in a previously unused port without modification to the wellhead, in which case a blind plug needs to be removed and a plug body comprising a sensor needs to be positioned in its place. During such removal, installation or replacement, it may also be necessary to pressure test all seals and barriers upon installation, and in some cases also regularly during production from the well, in order to ensure the integrity of the barriers.
Prior art which may be useful for understanding the background includes WO 2013/056857, WO 2001/57360, WO 2006/061645, and WO 2011/093717.
With the serious consequences that may result from a potential leakage of hydrocarbon fluids, there is a continuous need for improved systems and methods for measuring and monitoring well operational parameters (such as annulus pressures). The present disclosure has the objective to provide a wellhead port plug assembly and associated method which provides advantages over known solutions and techniques with regards to the above mentioned or other aspects.
Embodiments of the present disclosure relate to a wellhead port plug assembly comprising a sensor unit with connection elements allowing the sensor unit to be sealingly and removably mounted in a port of a wellhead of a petroleum well. Embodiments also relates to a wellhead of a petroleum well comprising such a sensor unit and to a method of installing, removing or replacing the sensor unit.
Embodiments also relate to methods for removing, replacing or installing a sensor unit in a port of a wellhead, and to methods for operating a wellhead having a port plug assembly.
Further embodiments are set out and specified in the appended claims.
Illustrative embodiments of the present disclosure will now be described with reference to the appended drawings, in which:
Ports or channels are arranged in the wellhead 1 to allow access from outside the wellhead 1 to one or more of the annuli A, B, C, for injection of fluids into an annulus, for example for gas lift purposes, or in order to bleed off fluids from the annulus, for example in the case of a pressure build-up in the annulus. Valves will typically be installed in the ports or channels in the wellhead structure for this purpose. Such valves may be arranged to be actively be opened by applying hydraulic pressure or actively closed by an elastic element, when no hydraulic force is present. In the closed position the valve will act as a fail safe closed barrier, even if e.g. hydraulic supply lines should be damaged.
A sensor unit 200 having a generally cylindrical form and comprises at least one sensor 211 for measuring a physical parameter related to a fluid in the port 301 is arranged in the port 301. Such sensors 211 are known as such and will not be discussed further here. As is known in the art, the parameters may comprise, for example, temperature and/or pressure. The sensor unit 200 comprises external threads 201 for cooperation with corresponding internal threads of the channel 301. The sensor unit 200 is threaded into the channel 301 and may be arranged to abut a shoulder in the channel 301 such that a fluid-tight metal-to-metal connection or seal is formed between the sensor unit 200 and the inside wall of the channel 301. The sensor unit 200 thus forms a fluid-tight plug arranged in the channel 301.
The sensor unit 200 comprises a wireless transmission unit 220. The sensor unit 200 may extend into the through-channel 101 such that the wireless transmission unit 220 is positioned fully within the through-channel 101. This may improve wireless transmission quality. Alternatively, the sensor unit 200 can be designed such that the wireless transmission unit 220 is positioned partly in the channel 301 and partly in the through-channel 101, or fully within the channel 301.
A wireless receiver unit 600 is arranged on an outer wall of the spool unit 102. In this embodiment the wireless receiver unit 600 is generally annular in its form and arranged around a section of the spool unit 102.
The wireless transmission unit 220 and the wireless receiver unit 600 are illustrated in further detail in
The controller 230 is connected to a wireless signal transmitter 236 via cable 237. The sensor unit 200 is thereby able to transmit a wireless signal of the sensor reading, for example a signal indicative of the measured pressure in the channel 301.
The wireless transmission unit 220 has a protective housing 220′ in which the abovementioned components are arranged. The housing 220′ is a sealed enclosure which may, optionally, be made pressure resistant such that the components of the wireless transmission unit 220 are not damaged or otherwise negatively effected by pressure variations in the through-channel 101.
The wireless receiver unit 600 comprises a receiver 636 configured to receive the wireless signal from the transmitter 236. A signal processor 630 is connected to the receiver 636 and further connected to a transmission line 631 through which the signal can be transmitted from the receiver unit 600 and to, for example, an oilfield control centre or a data storage. The receiver unit 600 further comprises a coil unit 634 which is configured to energise the inductive coils 234 in the sensor unit 200. The coil unit 634 is connected to a power line 632 via the transmission line 631.
Alternatively, the wireless receiver unit 600 may be a stand-alone unit in which data is stored and can be retrieved manually and/or periodically from a data storage incorporated in the receiver unit 600. The wireless receiver unit may be battery-powered.
Referring again to
An annular shoulder 106 is arranged between the first through-channel portion 101a and the second through-channel portion 101b. The annular shoulder 106 may be arranged to co-operate with the plug 400 for providing a metal-to-metal seal between the spool unit 102 and the plug 400. This ensures a secure and reliable seal between the spool unit 102 and the plug 400.
The second through-channel portion 101b has the same or a larger cross-sectional area, i.e. bore, than the first through-channel portion 101a, such as to allow the sensor unit 200 to pass through the second through-channel portion 101b. The smaller cross-sectional area of the first through-channel portion 101a may also provide advantages in terms if signal transmittance and communication between the sensor unit 200 and the receiver unit 600, in that also the outer diameter of the spool unit 102 in this area may be made smaller, as can be seen in
A blind flange 500, such as a dust cap, is removably mounted to the second end 102b such as to cover the end opening 105 of the through-channel 101. This protects the through-channel 101 and the tool engagement element 402 of the plug 400 from e.g. dust, debris, or contaminations from the surroundings.
The flange 103 has a conduit 104 extending from an outer side wall 112 of the plug assembly 100 and into the through-channel 101. The first conduit 104 can be used as a test port, to pressure test the sealings when the sensor unit 200 and the plug 400 are installed. A connector 104a is arranged on the outer side wall 112 in conjunction with the first conduit 104 to allow e.g. a pressure test line to be connected.
In one embodiment, a method of operating a plug assembly will now be described with reference to
In a first step, the blind flange 500 is removed. In the next step, a valve unit 751 is mounted to the second end 102b, as shown in
The next step comprises attaching a placement and removal tool 758 to the valve unit 751, as is also shown in
The valve unit 751 and the placement and removal tool 758 can be mounted onto the spool unit 102 sequentially, i.e. first mounting the valve unit 751 to the spool unit 102 and then the tool 758 to the valve unit 751, or these may be pre-connected and mounted onto the spool unit 102 in the same operation.
After mounting the placement and removal tool 758 and the valve unit 751, the connections are pressure-tested by applying a pressure to the channel 752. Appropriate conduits (e.g. conduit 765; see
In the next step, the valve body 756, if originally provided in the closed position, is opened, as shown in
Thereafter, the arm 762 and the now detached plug 400 are retracted out of the spool unit 102 and into the valve unit 751 past the valve body 756, whereafter the valve body 756 is brought to its closed position. This situation is illustrated in
The next step comprises detaching the tool 758 from the valve unit 751 and removing the plug 400 from the engagement element 763. Prior to detaching the tool 758 from the valve unit 751, the tool 758 may be vented via through-bores or channels 765 in the flange 760 of the tool 758. The engagement element 763 is substituted for a different engagement element 764 (see
The tool 758 is then reattached to the valve unit 751, as is shown in
Alternatively, the tool 758 may be arranged with an internal handling mechanism to remove the plug 400 from the engagement element 763 while the tool 758 is connected to the plug port assembly 100, so that detaching and re-attaching the tool 758 between the removal of the plug 400 and the removal of the sensor unit 200 is not necessary. For example, the tool 758 may have a clamp and a container, whereby after retracting the arm 762 the clamp engages the plug 400, the engagement element 763 releases the plug 400, and the plug 400 is allowed to drop into the container, whereby the arm 762 is immediately ready to carry out the step for removing the sensor unit 200.
After disengaging the sensor unit 200, the arm 762 and the now detached sensor unit 200 are retracted out of the spool unit 102 as is shown in
The sensor unit 200 has now been removed and can be, for example, serviced or replaced. The valve body 756 is in the closed position, thus holding any pressure from the well reaching the port 301 and channel 752.
To insert the sensor unit 200 (or a replacement sensor unit), the new sensor unit 200 is attached to the engagement element 764 and the tool 758 is reattached to the valve unit 751.
Next, the steps described above are performed substantially in reverse order, i.e.:
In certain cases, it may be desirable to remove sensor unit 200 mounted in a wellhead 300 and install a dummy plug. This may be advantageous if the port 301 is to be permanently or semi-permanently sealed off, for example while obtaining a replacement sensor unit 200 or at times when use of the port 301 is not required for a temporary period or permanently.
In one embodiment, the method therefore comprises the steps, after having removed a sensor unit 200 from the port 301, of:
Thus, a double barrier between the port 301 and the atmosphere can be obtained.
In certain cases, it may be desirable to be able to install a sensor unit 200 in a port 301 of a wellhead 300, where the port is arranged with a dummy plug. According to one embodiment, the method comprises the steps, prior to installing a sensor unit 200, of:
In one embodiment, the method further comprises the step of arranging a receiver unit 600 on the spool unit 102. This allows installation of, for example, a pressure monitoring system in a port 301 on a wellhead which did not have this capability.
According to embodiments, a safe and reliable port plug assembly is provided, having a double barrier between the well and the atmosphere. In the case of leakage across one of the barriers, for example across the sensor unit 200, components can be replaced without requiring the well to be taken out of production. Pressure testing of the various seals can be carried out between steps in an installation/removal/replacement process as described above or while the port plug assembly is installed and the well is producing, in order to ensure and/or verify the integrity of the seals. In one embodiment, the seal between the tool 758 and the second end 102b is pressure tested by increasing a pressure in the channel 752. In one embodiment, the seal between the plug 400 and the through-channel 101 and/or the seal between the sensor unit 200 and the port 301 is pressure tested by increasing the pressure in the through-channel 101. Such pressure testing can be carried out in the conventional manner, by e.g. supplying a compressed gas to the relevant space via appropriate conduits (e.g. conduits 104 and 765).
Embodiments of the present disclosure allow installation of a sensor unit 200 in a port 301 of a wellhead 300 without compromising safety, for example in that a double fluid barrier is maintained during well production and no feed-through of signal or power cables (which may introduce a possible leakage path) is needed, while at the same time allowing the sensor unit 200 to be retrieved and replaced in a safe manner, if required. The integrity of the system can be maintained and the risk of leaks minimised in that pressure testing of seals and connections can be carried out, as required, without the risk of damaging, for example, electronics components of the sensor unit 200 or feed-through arrangements for electric signal or power cables. According to embodiments described herein, a wellhead port plug assembly 100 can additionally, or alternatively, be made more compact and more robust, and/or less prone to failure, for example in that no signal or power cable extending through an end cap and from a back end of a spool unit 102 is required. This reduces the risk of damage from mechanical impacts to the signal and/or power cable and eases the layout and cabling on the wellhead.
When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising embodiments of this disclosure in diverse forms thereof.
The present disclosure is not limited to the embodiments described herein; reference should be had to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
20170297 | Mar 2017 | NO | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2018/050051 | 2/27/2018 | WO | 00 |