The present invention relates generally to systems that deploy, convey, or otherwise interact with instruments in oilfield operations including, but not limited to, well services, completions, wireline, marine and land seismic jobs, and sub sea oil exploration and the like. The present invention also relates generally to the field of reversibly expandable loop assemblies and actuators for transforming reversibly expandable loop assemblies between expanded and collapsed states.
Embodiments of the present invention also relate generally to a class self-supporting structures configured to expand or collapse, while maintaining their overall shape as they expand or collapse in a synchronized manner. Such structures have been used for diverse applications including architectural uses, public exhibits, and unique folding toys. A basic building block of such structures is a “loop-assembly” that consists of three or more scissor units (described in U.S. Pat. Nos. 4,942,700 and 5,024,031) or polygon-link pairs (described in U.S. Pat. Nos. 6,082,056 and 6,219,974), each consisting of a pair of links that are pinned together at pivots lying near the middle of each link. Such a loop assembly includes a ring of interconnected links that can freely fold and unfold. Exemplary structures and methods for constructing such reversibly expandable truss-structures in a wide variety of shapes are described in the above referenced patents. Structures that transform in size or shape have numerous uses. If one desires to have a portable shelter of some kind, it should package down to a compact bundle (tents being a prime example).
It is desirable to provide a system and apparatus for deploying tools into a wellbore and/or in wellsite equipment.
According to an embodiment of the present invention, an apparatus and a method for deploying an instrument usable with a well comprises at least one reversibly expandable structure, at least one actuator operable to change a perimeter dimension of the at least one reversibly expandable structure, at least one instrument disposed interior of the at least one reversibly expandable structure, and having an axial dimension, and tractoring fluid disposed between the at least one reversibly expandable structure and the at least one instrument. The apparatus is operable to perform an operation on the instrument with respect to at least one adjacent surface. The operation is preferably at least one of exerting thrust to convey the at least one instrument with respect to the at least one adjacent surface, creating compensating pressure between the at least one instrument and the at least one adjacent surface, and sealing between the at least one instrument and the at least one adjacent surface.
Alternatively, the perimeter dimension of the at least one reversibly expandable structure is variable, lockable, and adjustable. Alternatively, the at least one reversibly expandable structure has a predetermined maximum and minimum perimeter dimension defined by an expansion ratio. The at least one actuator may be operable to move the at least one reversibly expandable structure between the maximum and minimum perimeter dimensions. Alternatively, the at least one actuator comprises a one of a linear actuator, a rotary actuator, a rotatable disk actuator, a lever actuator, and a Peaucellier-Lipkin type actuatable linkage.
Alternatively, the apparatus or method further comprises at least one compliant mechanism attached to an interior perimeter of the at least one reversibly expandable structure. The at least one compliant mechanism may be disposed between the at least one reversibly expandable structure and the at least one instrument. The compliant mechanism may comprise at least one compliant ring. Alternatively, the at least one reversibly expandable structure is operable to engage with instruments and adjacent surfaces having a range of dimensions. Alternatively, the at least one adjacent surface is a wellsite equipment surface and the instrument may comprise a one of an injector, a blow out preventer, a slip ram, a shear ram and a stripper. Alternatively, the at least one adjacent surface is a surface in a wellbore and the instrument may comprises a one of patch, a plug, an actuator, a tractor, a logging tool, and a sliding sleeve.
Alternatively, the apparatus produces thrust in the instrument by propagating a one of retrograde film wave motion and direct wave film motion in the tractoring fluid. Alternatively, the apparatus produces thrust by inch-worm motion. Alternatively, the apparatus further comprises sealing material disposed between the outer surface of the instrument and the inner surface of a one of the at least one reversibly expandable structure. Alternatively, the at least one reversibly expandable structure comprises at least a pair of reversibly expandable structures connected in series along an axial dimension of the at least one instrument. Each of the reversibly expandable structures may perform one of exerting thrust to convey the at least one instrument with respect to at least one adjacent surface, creating pressure between the at least one instrument and at least one adjacent surface, and sealing between the at least one instrument and at least one adjacent surface.
In another embodiment, the present invention provides an apparatus for wellsite surface equipment disposed adjacent a wellbore comprising at least one reversibly expandable structure disposed adjacent at least one wellsite surface, at least one actuator operable to move the at least one reversibly expandable structure between an expanded state defining a first diameter and a collapsed state defining a second diameter, the first diameter greater than the second diameter. The apparatus is operable to at least seal the at least one wellsite surface against wellbore pressure. Alternatively, the apparatus seals the at least one wellsite surface by closing off the wellbore in its collapsed state. Alternatively, the at least one actuator comprises a one of a linear actuator, a rotary actuator, a rotatable disk actuator, a lever actuator, and a Peaucellier-Lipkin type actuatable linkage. Alternatively, the at least one reversibly expandable structure is lockable at predetermined positions between the expanded state and the collapsed state. Alternatively, the apparatus is operable to convey the apparatus with respect to the at least one wellsite surface by inch-worm motion
Alternatively, the apparatus further comprises at least one tubular adapted to be disposed in the wellbore via the surface equipment. The apparatus is preferably operable to seal the tubular and the wellsite equipment against wellbore pressure. The apparatus may comprise a one of an injector, a blow out preventer, a slip ram, a shear ram and a stripper. The at least one actuator may comprise a one of a linear actuator, a rotary actuator, a rotatable disk actuator, a lever actuator, and a Peaucellier-Lipkin type actuatable linkage. The at least one reversibly expandable structure is preferably lockable at predetermined positions between the expanded state and the collapsed state.
In another embodiment, the present invention provides a method for sealing wellsite surface equipment with respect to a wellbore, comprising the steps of providing an apparatus comprising at least one reversibly expandable structure disposed adjacent at least one wellsite surface, at least one actuator operable to move the at least one reversibly expandable structure between an expanded state defining a first diameter and a collapsed state defining a second diameter, the first diameter greater than the second diameter, operating the actuator to move the at least one reversibly expandable structure from the expanded state to the collapsed state to at least seal the at least one wellsite surface against wellbore pressure.
Alternatively, the operating step comprises the apparatus sealing the at least one wellsite surface by closing off the wellbore in its collapsed state. Alternatively, the at least one actuator comprises a one of a linear actuator, a rotary actuator, a rotatable disk actuator, a lever actuator, and a Peaucellier-Lipkin type actuatable linkage. Alternatively, the at least one reversibly expandable structure is lockable at predetermined positions between the expanded state and the collapsed state. Alternatively, the operating step further comprises conveying the apparatus with respect to the at least one wellsite surface
Alternatively, the method further comprises providing at least one tubular adapted to be disposed in the wellbore via the surface equipment. The operating step may comprise sealing the tubular and the wellsite equipment against wellbore pressure. Alternatively, the apparatus comprises a one of an injector, a blow out preventer, a slip ram, a shear ram and a stripper. Alternatively, the at least one actuator comprises a one of a linear actuator, a rotary actuator, a rotatable disk actuator, a lever actuator, and a Peaucellier-Lipkin type actuatable linkage. Alternatively, the at least one reversibly expandable structure is lockable at predetermined positions between the expanded state and the collapsed state.
The apparatus, method, or system in accordance with embodiments of the present invention advantageously combines a mechanical system (a reversibly expandable or deployable structure) that utilizes thin film fluid mechanics in non newtonian fluids to convey instruments, such as in a wellbore or the like.
Embodiments of the apparatus and system of the present invention are operable to exert thrust in order to convey instruments in their longitudinal axis, seal the instrument such as during their conveyance, and pressure compensate during their conveyance. Similarly, an embodiment of the system may comprise a module or assembly that includes all these capabilities or can have several modules addressing each one of them separately.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
A schematic diagram of an actuatable deployable structure system 100 is shown in
In the exemplary embodiment, the reversibly expandable structure 102 in its collapsed state is circular having an outside diameter OD1. In some embodiments, the deployable structure system is annular, also having an inside diameter ID1. In operation, the motor 106 generates an expansion actuation force coupled to the reversibly expandable structure 102 through the linkage 108 causing the reversibly expandable structure 102 in a collapsed state to expand. Upon application of a sufficient expansion actuation force, the reversibly expandable structure 102 is transformed, or expanded, to a fully expanded state as shown in
In some embodiments, the motor 106 remains coupled to the reversibly expandable structure 102 in the expanded state, producing a contracting activating force that reconfigures the reversibly expandable structure 102 from an expanded state (
In some embodiments, the system includes a lock 114 configured to hold the reversibly expandable structure 102 in a fixed state of transformation between expanded and collapsed states. In a locked state, the reversibly expandable structure 102 can provide a loading force F1, F2 opposing loading of the device. For example, a lock can be engaged in at least one of the collapsed or expanded states to retain the reversibly expandable structure 102 in the locked configuration in the presence of external forces acting upon the structure. Keys 114 can include pins insertable into a mechanical linkage of the reversibly expandable structure 102 to prohibit expansion or contraction. In some embodiments, the motor 106 can function as a lock by providing an opposing force to prevent further expansion or collapse of the reversibly expandable structure 102 in a locked state.
In some embodiments, one of the inside or outside diameters remains substantially constant during transition from collapsed to expanded states, while the other one of the inside or outside diameters varies as just described. An exemplary structure in which the outside diameter remains substantially constant, while the inside diameter varies is described in U.S. Pat. No. 5,024,031.
The reversibly expandable device 102 is substantially planar, such that expansion and collapse occur parallel to a plane. Examples of such planar devices included the disk structures described herein. In some embodiments, the reversibly expandable device can be a three dimensional structure, such that expansion and collapse occur in three dimensions. Examples of some three dimensional structures include spherical devices.
Referring now to
An exemplary basic module 130 of the reversibly expandable structure 122 is illustrated in more detail in
A more detailed illustration of the basic module 130 integrated within the reversibly expandable structure 122 is illustrated in
As the reversibly expandable structure 122 transitions from a collapsed state to an expanded state, the first and second angle members 132a, 132b pivot with respect to each other such that the angle φ formed between the first angled portion of each of the angled members 132a, 132b increases. The basic module 130′ is illustrated in phantom in a partially expanded state with an angle φ′>φ. The basic module 130″ is illustrated in phantom again in a fully expanded state with an angle φ″>φ′>φ. The central pivot 133, 133′, 133″ of the basic module 130, 130′, 130″ travels along a common radial line throughout transformation from collapsed to expanded states.
Throughout this transition, the basic module 130 remains pivotally interconnected to adjacent basic modules on either side through its left-hand and right-hand pivots 142b, 144a, 142a, 144b. The inner and outer pivots 142b, 144a, 142a, 144b pivot with respect to each of the adjacent basic modules, such that the inner and outer pivots 142b, 144a and 142a, 144b are drawn toward each other during an expansion stroke of the reversibly expandable structure 122. Drawing the inner and outer pivots together induces scissor action in the adjacent, pivotally connected basic modules that is likewise transmitted throughout each of the other modules of the reversibly expandable structure 122. Thus, it would be possible to reconfigure the reversibly expandable structure 122 between collapsed and expanded states by actuating a single basic module 130.
Although the first and second angled members 132a, 132b are illustrated as linear struts having the same basic angled shape, in some embodiments, they can have different shapes with respect to each other. Generally, the shapes of the first and second angled struts 132a, 132b control the shape of the reversibly expandable structure 122. By varying the relative shapes, different geometric structures can be obtained such as ellipses, polygons, and other arbitrary shapes. In the exemplary embodiment, all of the basic modules 130 of the reversibly expandable structure are identical. In some embodiments, one or more of the basic modules 130 can be different, again controlling the overall shape of the reversibly expandable structure 122. In some embodiments, one or more of the angled members can include a planar member such as a polygon. By including planar members, the reversibly expandable structure 122 can fill an area along the annular region covered by the reversibly expandable structure 122. This filled region can be used to occlude or block an opening.
Preferably, each of the angled members 132a, 132b of the basic module 130 are substantially rigid. Using rigid members 132a, 132b promotes transfer of force by the reversibly expandable structure 122a on an external body. Using rigid members 132a, 132b also promotes the reversibly expandable structure 122 maintaining its general shape during transitions between collapsed and expanded states. The angled members can be made from any suitable rigid material such as metals, alloys, polymers, composites, ceramics, glass, wood.
A portion of an exemplary embodiment of a circular reversibly expandable structure 150 is shown in
The reversibly expandable structure 150 can be transformed between collapsed and expanded states by a gear-driven actuator. In the exemplary embodiment, two gears 156, 158 are used in actuation of the device 150. The gears 156, 158 can be identically shaped or differently shaped. In the exemplary embodiment, a first gear 156 is larger than a second gear 158. The first and second gears 156, 158 mechanically engage each other such that rotation of one induces a rotation of the other. The relative angular velocities of the two gears 156, 158 are inversely related by their relative diameters.
At least one of the gears 156, 158 is fixedly coupled to one of the members 153a, 153b of the basic module 152. In the exemplary embodiment, the first gear 156 is fixedly coupled to one of the members 153a at its outer pivot 155c. Thus, rotation of the first gear 156 results in a corresponding rotation of the fixedly coupled member 153a about its pivot 155a. The second gear 158 is rotatably coupled to at least the other member 153b of the basic module 152, being allowed to freely rotate. In the exemplary embodiment, the second gear 158 is rotatably coupled to the central pivot 155a of the member 153a of the basic module 152. Rotation of either one of the first and second gears 156, 158 applies a torque to the first member 153a with respect to the second member 153b, causing the members 153a, 153b to rotate with respect to each other about their central pivot 155a. By linkage of the basic actuated module 152 to adjacent basic modules forming the enclosed reversibly expandable structure 150, scissor action of the actuated basic module 152 induces similar scissor action in each of the other basic modules of the reversibly expandable structure 150. Thus, actuation of one of the basic modules 152 with the geared actuator can vary the reversibly expandable structure between its collapsed and expanded states.
Mounting the first, relatively large gear 156 about an external pivot 155c provides maximum clearance with respect to an internal aperture of an annular reversibly expandable structure 150, since a portion of the first gear 156 is positioned towards the outer perimeter 151. Such a configuration having maximum internal clearance is well suited for applications applying a force along an interior perimeter 157. An alternative embodiment of a similar reversibly expandable structure 170 is illustrated in
In this embodiment, a second, relatively small gear 178 is rotatably coupled to one member 153a of the basic module 152 at its central pivot 160. A first, larger gear 176 is fixedly mounted to an internal pivot 155b of the other member 153b of the basic module 152. Rotation of the second gear 178 with respect to the first gear 176 induces a relative rotation of the members 153a, 153b of the basic module 152 about the central pivot 155a. Mounting the larger gear 176 with respect to the internal pivot 155b is preferred when the reversible structure 170 will be used for external loading. Thus, an external perimeter 151 of the reversibly expandable structure 170 can be applied to an external structure without interference of the larger gear 176. Of course, interference is also controlled by the diameters of the gears 156, 158 (
In some embodiments, the reversibly expandable structure 170 includes one or more locking members 180. The locking members 180 can be used to lock the reversibly expandable structure 170 at one or more configurations between expanded and collapsed states to prevent further expansion or collapse of the structure 170. In some embodiments, the locking member 180 can be used to lock the reversibly expandable structure 170 in a fully expanded position. Alternatively or in addition, the locking member 180 can be used to lock the reversibly expandable structure 170 in a fully collapsed position. In some embodiments, the locking member 180 can be used to lock the reversibly expandable structure 170 in a selectable intermediate state between fully expanded and fully collapsed states.
In the exemplary embodiment, one or more of the angled members 153a, 153b of a basic module include a lockable surface 182. For example, the locking surface can include a locking surface 182 along one end of a first angled member 153a of the basic module 152. A separate locking member 180 is provided adjacent to the locking surface 182 and configured to engage the locking surface 182. In the exemplary embodiment, the locking surface 182 is a ratchet surface 182. The locking member includes a pawl 184 positioned to engage the ratchet surface 182, allowing movement in one direction, while preventing movement in an opposite direction. The ratchet surface 182 and the pawl 184 can be configured in a preferred direction to prevent collapsing of the reversibly expandable structure 170 while allowing further expansion, as illustrated. Alternatively, the ratchet surface 182 and pawl 184 can be configured in an opposite sense to prevent further expansion of the reversibly expandable structure 170 while allowing further collapse. In the exemplary embodiment, the locking member 180 is pivotally joined to at least one of the angled members 174a, 174b. In some embodiments, the locking member 180 can be a separate component that is used to engage one or more of the angled members 153a, 153b. For example, a locking member can include a pin or elongated rigid member that is insertable in an aperture of one or more of the angled members 153a, 153b. When the pin is inserted, further rotation of one of the members with respect to the other is prohibited, thereby locking the basic module 172 in its current state of deployment. A single locking member can be used to lock the entire reversibly expandable structure. In other embodiments, more than one locking members are used to provide greater strength. For example, a respective locking member can be provided for each of the basic modules 152.
In some embodiments, a linear actuator is used to induce a torque causing pivoting of the basic modules and inducing the transition in a reversibly expandable structure between collapsed and expanded states.
The linear actuator 201 includes an outer end 204 coupled to the outer pivot point 208 and an inner end 202 coupled to the inner pivot point 210. The linear actuator 201 is configured to vary in length according to an input signal. The exemplary linear actuator 201 is illustrated in an extended state providing maximum separation of the interior and exterior pivot points 208, 210. By extending the interior and exterior pivot points 210, 208 of the adjacent basic modules 206a, 206b, the exemplary reversibly expandable structure is transformed to a collapsed state as shown in
The linear actuator 201 is a length adjustable, or length-changing device. Such length-changing devices can be mechanical, electrical, electromechanical, hydraulic, or pneumatic. For example, a linear actuator 201 can include a piston driven by pneumatic or hydraulic action between extended and contracted states. In other embodiments, the linear actuator can include a bolt-and-screw drive. For example, an elongated threaded shaft can be aligned between the pivot points. Each of the pivot points is coupled to the elongated threaded shaft through a bolt. Rotation of the threaded shaft causes linear displacement of the bolts along the length of the shaft according to the direction of rotation and the orientation of the threads. In other embodiments, the linear actuator includes a solenoid device. Electrical activation of a coil causes linear displacement of a bolt through the coil, thereby achieving extended and contracted states depending on activation of the coil. In some embodiments, the linear actuator 201 includes a linear motor such as a Lorentz force actuator. Position of the Lorentz force actuator is configurable between extended and contracted lengths and selectable lengths therebetween according to an activation signal provided to the coil. In some embodiments, the linear actuator 201 includes a phase-change material, such as a shape memory alloy. The linear actuator 201 may also contain piezoelectric devices configured to alter a length of the linear actuator 201.
Referring now to
The reversibly expandable structure 220 is shown in a collapsed state in
In order to maintain a tension within the drive belt 228, a tension pulley 230 is provided in communication with the drive belt 228. The tension pulley is orthogonally displaced from the radius joining the driving pulley 224 and the driven pulley 222. The tension pulley 230 is rotatably coupled to a length-adjustable device 232. The length-adjustable device 232 can include an elongated member rotatably coupled to the tension pulley 230 at one end and fixedly coupled at an opposite end with respect to a center point of the reversibly expandable structure 220. With the reversibly expandable structure 220 in a collapsed state, the driven pulley 226 is maximally displaced from the driving pulley 224 along the radius. The length-adjustable device 232 is maximally extended such that the tension pulley 230 is relatively close to the radius. As the reversibly expandable structure 220 transitions to an expanded state, the driven pulley 226 migrates toward the driving pulley 224. In order to maintain belt tension, the length-adjustable device 232 is adjusted to a minimum length such that the tension pulley 230 takes up slack within the belt 228. In some embodiments, the length adjustable device includes a spring. Alternatively or in addition, the length adjustable device includes a piston, which may be hydraulic or pneumatic, a belt-and-screw drive, a solenoid, a linear motor, a phase change material, such as a shaped memory allow, or a combination of one or more of these devices. Although the exemplary embodiment has been described in the configuration of a belt-and-pulley drive, a similar actuator could be accomplished with a chain-and-sprocket drive. Thus, the pulleys 224, 226, 230 would be replaced by sprockets and the drive belt 228 would be replaced by a drive chain.
In some embodiments, referring now to
One or more fixed points on the reversibly expandable structure 260 are configured for capture by the overlap 258. Rotation of the first disk 252 with respect to the second disk 255 results in a controlled translation of each overlap 258 along its respective radial track 256. Resulting translation of the overlap 258 is coupled to the fixed point on the reversibly expandable structure 260. Translation of the fixed point applies a torque to a respective basic structure 262 of the reversibly expandable structure 260. Thus, rotation of the first disk 252 with respect to the second disk 255 can be used to control transformation of the reversibly expandable structure 260 between collapsed and expanded states.
In an illustrative embodiment including a rotatable disk actuator 250, the first disk 252 includes three right-hand spiral tracks 254a, 254b, 254c spaced apart from each other by 120°. The second disk 255 includes three radial tracks 256a, 256b, 256c also spaced apart from each other by 120°. The length of the radial tracks 256 can be sufficient to cover full radial displacement of the spiral tracks 254. In some embodiments, the spiral tracks 254 are slotted apertures cut through from one side of the disk 252 to the other. In other embodiments, the spiral tracks 254 are grooves formed along a surface of the first disk 252 facing the second disk 255. The radial tracks 256 can also be slotted apertures cut from one side of the second disk to the other. Generally, at least one of the spiral tracks 254 and radial tracks 156 is a through aperture extending from one side of the respective disk to the other. The other of the spiral tracks 254 and radial tracks 156 can be a through aperture, or a groove.
In some embodiments, fixed points on the reversibly expandable structure 160 aligned with respective overlaps 258 coincide with pivot points of the reversibly expandable structure 260. An extension of such a pivot point can be extended to pass through an adjacent radial slot 256 and extend into a corresponding spiral slot 254 at the overlap 258. When the reversibly expandable structure is positioned along an opposite side of the actuator 148, the extension of the pivot point can be extended to pass through an adjacent spiral slot 154 and extend into a corresponding radial slot. Thus, as the first disk 252 is rotated with respect to the second disk 255, the overlap is captured to one of the pivot points through the extended joint such that the pivot point is translated in a radial direction. In this manner, the reversibly expandable structure 260 can be transformed between its collapsed and expanded states, depending upon the orientation of the spiral (right-hand or left-hand spiral) and the direction of relative rotation of the disks 252, 255.
A cross-section of the exemplary system including the rotatable disk actuator 250 taken along A A is illustrated in
In some embodiments, one of the disks includes a feature to facilitate relative rotation of the disks 252, 255. In the exemplary embodiment, the first disk 252 includes three tabs 261 that can be used as bearing surfaces to rotate the bottom disk 255. In some embodiments, one of the disks is fixedly mounted to an external structure. In other embodiments, both disks 252, 255 includes tabs 261. Alternatively or in addition, one or more of the first and second disks 252, 255 can include a gear surface along an external or internal perimeter. The geared surface Is engagable by another gear coupled to motor providing a torque for rotating at least one of the disks 252, 255.
A second embodiment of the first disk 252′ is illustrated in
On rotation, the spiral shape of the first disk 252 will push the joints along the radial slots of the second disk 255, deploying the structure. In some embodiments the second disk 255 is fixed in place, while the first disk 252 is rotated. A torque is applied to the first disk 252 to cause its rotation. Energy conservation dictates that the speed of expansion of the deployable device is inversely proportional to the force of expansion F.
where the quantity after θ is the ratio of the torque exerted on the system to the force exerted on the device. This ratio is the force multiplication ratio, which can be altered by changing the shape of the slotted paths of the first, rotating disk 252. For example, a rotating disk with slotted paths that have a length several times that of the disk's radius will produce a large expansion force, but will subsequently require multiple rotations of the disk to fully expand the device. With a function of the slotted path defined in polar coordinates, r=f(θ). The derivative of the path radius with respect to θ also provides the torque multiplication factor. A disk that produces a constant force multiplication regardless of expansion in diameter has the slotted path equation of r=a·θ.
A plane view of an exemplary rotatable disk actuator 250 is illustrated in
An exemplary embodiment of a reversibly actuatable expandable structure 280 including an reversibly expandable enclosed mechanical linkage having a lever-type actuator 282 is shown in
An alternative configuration of a reversibly actuatable expandable structure 290 including an reversibly expandable enclosed mechanical linkage 293 having a lever-type actuator 292 is illustrated in
There exists at least one class of external linkages configured to convert rotary motion to linear motion referred to as Peaucellier-Lipkin linkages.
Rotation of the seventh strut 314 about the second pivot point 308b urges the attached radial corner of the parallelogram 310 towards a center of the reversibly expandable structure 302. Since the baseline is fixed 306 with respect to the reversibly expandable structure 302, and the tangential corners of the parallelogram 310 are pivotally connected to the first pivot point 308a, the opposite radial corner of the parallelogram 310 is drawn radially out from the center of the reversibly expandable structure 302. Thus, rotation of the seventh strut 314 about its pivot 308b results in a linear motion of an inner radial corner along a radius of the reversibly expandable structure 302. Beneficially, the reversibly expandable structure remains centered about the same point during transformation between expanded and collapsed states. The actuatable deployable structure system 300 is shown in an expanded state in
The baseline of the Peaucellier-Lipkin type actuatable linkage 304 is positioned external to the reversibly expandable structure 302 for applications in which an interior perimeter of the reversibly expandable structure 302 is used for applying a force.
The compliant layer 354 or sleeve can be retained in this position by frictional engagement. Alternatively or in addition, the compliant layer 354 can be attached to the reversibly expandable linkage with mechanical fasteners, such as screws, clips, or staples, with chemical fasteners, such as adhesives, or bonding, or by a combination of two or more of these fasteners. In some embodiments, the compliant layer can be positioned against an interior perimeter of the reversibly expandable linkage. This is particularly advantageous when the structure 350 transfers a force to another body using its internal perimeter.
The compliant layer 354 can be a continuous layer that may be provided as a continuous sleeve of compliant material. The compliant layer can be a discontinuous layer that may be provided as segments against selected perimeter surfaces of one or more basic modules of the reversibly expandable structure 352. For example, the compliant layer can be formed using compliant pads attached to at least one of an interior and exterior perimeter surface of at least some of the basic modules of the reversibly expandable structure 352. When applied to all of the interior or all of the exterior surfaces of all of the basic structures of the reversibly expandable structure 352, a smooth continuous compliant layer can be obtained transformed in at least one of the collapsed or expanded states.
The compliant material can be formed from one or more polymers, rubbers, elastomers, or foams. In some embodiments the compliant layer 354 includes more than one layer of compliant material. For example, a binary layer device includes two adjacent compliant layers that can have the same or different compliant properties. In some embodiments, a first compliant layer is relatively dense providing a coarse fit, while a second layer is relatively less dense providing a fine layer. The fine layer can be positioned against one of the reversibly expandable structure or an external body, depending upon which surface requires a fine seal.
The deployable structure systems described herein can be used in a wide variety of applications, including drilling and well applications. At least some of these applications related to drilling and wells include conveying material outward in a radial direction into a casing or open hole formation. The systems can also be used as part of robotics module for tractoring or crawling inside cylindrical spaces, such as casings or open holes.
Referring now to
An instrument 406 is disposed interior of the compliant mechanism 404. The instrument 406 may be, but is not limited to, any number of oilfield devices such as logging tools, downhole equipment, surface equipment, and the like. Although shown as cylindrical and having a generally circular cross section, those skilled in the art will appreciate that the instrument 406 may have any cross section or shape while remaining within the scope of the present invention. Alternatively, the instruments 406 that can be deployed by the apparatus 400 have shapes including, but not limited to, prismatic, cylindrical (right cylinder or inclined cylinder), conical (right cone or inclined cone) or truncated pyramidal, as will be appreciated by those skilled in the art.
Those skilled in the art will appreciate that a plurality of reversibly expandable structures 402, such as a plurality of reversibly expandable structures 402 arranged in an array along, for example, an axial length of the instrument 406, may be attached to an instrument 406 while remaining within the scope of the present invention. As seen in
When a plurality of reversibly expandable structures 402 are arranged in series, such as those structures 402a and 402b shown in
In a first step, the reversibly expandable structure 402a grabs the instrument 406 and the linear actuator 413a moves the instrument 406 in the direction 412 while the linear actuator 413b moves the reversibly expandable structure 402b axially in the opposite direction 414 without grabbing the instrument 406. In a second step, the reversibly expandable structure 402a stops conveying, but holds the instrument 406 while reversibly expandable structure 402b grabs the instrument 406. In a third step, the reversibly expandable structure 402a disengages from the instrument 406 and the reversibly expandable structure 402b conveys the instrument in the axial direction 412 in which it has to be conveyed while the reversibly expandable structure 402a moves axially in the opposite direction 414.
The compliant structures 404 advantageously provide a smooth engagement between the inner surfaces of the reversibly expandable structures 402a and 402b and the outer surface or diameter of the instrument 406. Alternatively, the reversibly expandable structures 402a and 402b perform the inchworm conveyance without the use of compliant mechanisms 404.
Alternatively, locomotion is produced for an instrument, such as an instrument 406, using both thin film fluid mechanics, and/or actuation of a flexible membrane that has a wave shape deformation. Gastropods move in this manner by a wave shaped flexible membrane (the gastropod foot) that compresses a thin fluid film and the reaction forces due to the pressures acting on the gastropod foot propel it in the direction opposite to the wave motion.
The tractoring force Ft (that produces the thin fluid film locomotion) is determined by Equation 1 below, where Ft is the tractoring force (in Newtons or N), Mu is Fluid viscosity (in Pascal seconds or Pa·s), Vw is waving speed (in meters per second or m/s), Ac is contact area (in square meters or m2), and h is the gap thickness (in meters or m).
Ft=Ft(mu,Vw,Ac,h,[wave shape]) Equation 1
By applying the theory for thin film locomotion in two dimensions, assuming that there is no side leakage, and estimating the maximum tractoring force when the system is not moving, Equation 2 is obtained to predict the tractoring force.
Ft=mu*Vw*Ac*(1/h)*f(wave shape) Equation 2
Equation 2 shows that the tractoring force changes when the wave shape changes. For a sinusoidal wave, the wave shape changes by changing a/h, or the amplitude of the wave with respect to the average height of the wave. The ratio a/h varies between 0 and 1. The model in equation 2 shows for a/h=0.95, f=85, which means theoretically, if mu=1 Pa·s, Vw=0.1 m/s, Ac=1 m2, h=0.01 m, a=0.0095 m, Ft=850 N. By keeping all variables the same, we would just have to increase Vw by 17% to get Ft=1000 N at Vw=0.117 m/s. Table 2 shows values of f for different values of a/h, which shows the desirability of having the value of a/h very close to 1. However, it must be emphasized that it is important to keep control of the value of a/h with high precision.
The thrust or tractoring force can be exerted by the inch-worm manner combining deployable or reversibly expandable structures and compliant mechanisms, such as the reversibly expandable structures 402 and the compliant mechanisms 404 as recited above and shown in
Referring to the schematic system of
Such tractoring forces and mechanisms for generating the wave shape of deformable bodies, such as the body 421, are shown and described in commonly assigned and co-pending application Ser. No. 11/247,918, which is herein incorporated by reference in its entirety. Such mechanisms include generating the wave shape in a foot by a helix shaped mechanism (driven by an electric motor or the like), which actuates a plurality of plates that are constrained to move in the direction normal to the foot due to slots on the system's frame.
Referring now to
An instrument 436, such as the instrument 406 shown in
Although shown as cylindrical and having a generally circular cross section, those skilled in the art will appreciate that the instrument 436 may have any cross section or shape while remaining within the scope of the present invention. Alternatively, the instruments 436 that can be deployed or otherwise engaged by the apparatus 430 have shapes including, but not limited to, prismatic, cylindrical (right cylinder or inclined cylinder), conical (right cone or inclined cone) or truncated pyramidal, as will be appreciated by those skilled in the art.
A preferably non-Newtonian tractoring fluid 438 (such as, but not limited to, mud or emulsions or the like, i.e. a fluid whose viscosity changes with an applied strain rate) is disposed between the instrument 436 and the compliant mechanism 434. The tractoring fluid 438 may be, but is not limited to, wellbore fluids including drilling mud, or the like. When an actuator, such as, but not limited to, one of the actuators 124, 156/158, 176/178, 196/198, 201, 224/226, 250, 282, 292, 304, and 324 shown in
Referring now to
The reversibly expandable structure 444, when alternately moved by the actuator 450 between a maximum perimeter dimension and a minimum perimeter dimension, generates a wave in the tractoring fluid 451 and moves the instrument 452 in a direction indicated by an arrow 454. The reversibly expandable structure 444 and compliant mechanism 446 are constrained from movement by the enclosure 448. By virtue of this constraint, the wave generated in the tractoring fluid 451 and its resultant generated tractoring force does not move the reversibly expandable structure 444 and compliant mechanism 446 (as shown in
Alternatively, or in addition to the actuator 450, an actuator 456 is provided having a helix shaped mechanism 458, similar to the helix shaped mechanism shown in commonly assigned and co-pending application Ser. No. 11/247,918 (incorporated by reference in its entirety as noted above) that actuates hydraulic cylinders 460 (best seen in
Referring now to
Referring now to
Referring now to
The pressure inside a wellbore, such as the wellbore 480 shown in
In the system or apparatus 430 and 442, the tractoring fluid 438 and 451 is used to pressure compensate the environment (provide a compensating pressure) surrounding the instrument 436 and 452. The tractoring fluid 438 or 451 in the radial gap between the outer diameter of the instrument 436 or 452 and the inner diameter of the reversibly expandable structure 402 or 444 is not affected by the pressure in the surrounding fluid outside the radial gap. In addition, the tractoring fluid 438 or 451 used for conveyance is also utilized for sealing in a manner similar to lubricators utilized for inserting wireline tools into a wellbore or the like.
Sealing around the instruments 406 can be achieved using deployable structures, such as the apparatus 400 in
The apparatus or system 400 or 442 has the capabilities to exert thrust in order to convey instruments 406, 436, and 452 in their longitudinal axis, seal at least a portion of the instrument 406, 436, and 452 from the elements contained in the environment from which they are being conveyed, and pressure compensate (i.e. create a pressure compensating volume around at least a portion of the instrument 406, 436, and 452 in order to counteract the differential pressure between the environment from where the 406, 436, and 452 are being deployed and the well pressure) during their conveyance. The apparatus or system 400 or 442 is operable to provide all these capabilities or a system may include a plurality of the apparatuses or systems 400 or 442 addressing each capability separately.
The apparatus or system 400 or 442 can be used for multiple purposes in not only the oil business and/or wellsite or wellbore equipment, but also other areas including, but not limited to, conveying instruments, with the geometric characteristics mentioned above, in an axial direction into a well or inside a well, as will be appreciated by those skilled in the art. The cross-sectional profiles of the cylindrical instrument can have any shape that varies along its longitudinal axis (Z direction). The apparatus or system 400 or 442 may also be utilized for conveying parts inside cylindrical enclosures during an assembly process or the like.
The apparatus or system 400 or 442 in accordance with embodiments of the present invention advantageously combines a mechanical system (the reversibly expandable structure 402 or 444) that utilizes thin film fluid mechanics in non newtonian fluids 438 and 451. The apparatus or system 400 or 442 of embodiments of the present invention can deploy instruments 406, 436, and 452 into a well continuously without having to connect them to each other before deployment, has a variable and adjustable inner and outer perimeter. In conjunction with a module that uses thin film fluid mechanics with either retrograde waves or direct waves, the apparatus or system 400 or 442 can produce thrust and sealing simultaneously. Alternatively, the system and apparatus 400 or 442 comprises different modules that separately produce thrust and sealing in the different modules.
The apparatus or system 400 or 442 adjusts its perimeter to the perimeter of the space where it deploys and/or conforms to the outer perimeter of the instrument 406, 436, or 452 it deploys. The apparatus or system 400 or 442 has variable and adjustable expansion ratio, defined by the mathematical relationship between the expanded position and the collapsed position of the reversibly expandable structures 402 or 444. The cross sectional perimeter of the instrument 406, 436, and 452 being deployed is not restricted to circular shapes, it can have any shape. The apparatus or system 400 or 442 can be locked and unlocked as desired at different states (such as by utilizing lock 114 or lock 180, as noted above), can be stacked in series along its axial direction (Z direction) with other similar or identical apparatuses or systems 400 or 442, in order to form longer systems with either higher thrust or sealing capability.
The apparatus or system 400 or 442 may further comprise other types of mechanisms, such as compliant mechanisms 404, 434, or 446, to form hybrid systems that have kinematics characteristics of classical mechanism, and elasto-mechanical characteristics of compliant mechanisms. The apparatus or system 400 or 442 can be actuated in different ways such as an electromechanical system or an electro hydraulic system, and has significant stiffness and strength in its expanded state to hold compliant members, such as compliant mechanisms 404, 434, or 446, as needed.
The preceding description has been presented with reference to presently preferred embodiments of the invention. Persons skilled in the art and technology to which this invention pertains will appreciate that alterations and changes in the described structures and methods of operation can be practiced without meaningfully departing from the principle, and scope of this invention. Accordingly, the foregoing description should not be read as pertaining only to the precise structures described and shown in the accompanying drawings, but rather should be read as consistent with and as support for the following claims, which are to have their fullest and fairest scope.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
This application is a continuation-in-part of commonly assigned and co-pending application U.S. Ser. No. 11/962,256, filed Dec. 21, 2007, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12034191 | Feb 2008 | US |
Child | 13027618 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11962256 | Dec 2007 | US |
Child | 12034191 | US |