This application is a national stage filing of PCT/EP2007/004568, filed May 23, 2007, which claims priority to Swedish application 0601248-8, filed Jun. 7, 2006, each of which is incorporated by reference herein in its entirety.
The present invention relates to a wet electrostatic precipitator comprising an inlet for receiving a gas containing a pollutant, an outlet for discharging such a gas from which said pollutant has been at least partially removed, a casing through which such a gas flows substantially horizontally from said inlet to said outlet, at least one discharge electrode, and at least one collecting electrode.
The present invention also relates to a method of cleaning at least one collecting electrode of a wet electrostatic precipitator having an inlet for receiving a gas containing a pollutant, and an outlet for discharging such gas from which said pollutant has been at least partially removed.
Combustion of coal, oil, industrial waste, domestic waste, peat, etc. produces flue gases that may contain pollutants, such as dust particles, sulphur trioxide (SO3), etc. Pollutants, such as dust particles and sulphur trioxide, can also be produced as a residual product in gases formed in chemical processes, for instance in metallurgical processes. For removing dust particles from a gas it is common to employ an electrostatic precipitator. In the electrostatic precipitator the dust particles are charged by means of discharge electrodes. The charged dust particles are then collected on collecting electrode plates. The dust particles, and any other pollutants that have been collected on the collecting electrode plates, are then removed from the collecting electrode plates and transported away for further processing. For some processes, including processes where very fine dust particles and/or aerosols of, e.g., sulphur trioxide, are to be removed from a gas, a wet electrostatic precipitator is often employed. In a wet electrostatic precipitator a film in the form of a liquid, which is often water, is made to flow, continuously or at certain intervals, along the collecting electrode plates in order to clean the collecting electrode plates by removing the collected dust particles and any other pollutants therefrom. The use of a liquid for cleaning the collecting electrode plates has the advantage that a limited re-entrainment of collected pollutants occurs, as compared to that which occurs in “dry” electrostatic precipitators.
Patent Abstracts of Japan JP 06031202, filed in the name of Chubu Electric Power Co et. al., includes a description of an electrostatic precipitator, which has discharge electrodes and collecting electrodes. As described therein, the collecting electrodes are to be cleaned by means of water supply nozzles. These water supply nozzles spray water towards the collecting electrodes such that the collecting electrodes are cleaned by removing the collected dust particles therefrom. A problem with the electrostatic precipitator, which is described in the aforementioned JP 06031202 document, is that these water supply nozzles create small water droplets and/or aerosols, which in turn are entrained with the gas that is flowing through the electrostatic precipitator. Such water droplets and/or aerosols can cause corrosion problems in the equipment, such as the stacks, fans, reheaters, etc, which are located downstream of the electrostatic precipitator. Also, such water droplets and/or aerosols may in addition cause the emission of dust particles, due to the fact that such entrained water droplets and/or aerosols, in addition to the liquid, may also contain dust particles and dissolved chemicals.
An object of the present invention is to provide a wet electrostatic precipitator useful for cleaning gases, which wet electrostatic precipitator is provided with means for reducing the amount of liquid droplets and/or aerosols that are entrained with the gas that leaves said wet electrostatic precipitator after such a gas is subjected to cleaning in said wet electrostatic precipitator.
This object is achieved by a wet electrostatic precipitator comprising an inlet for receiving a gas containing a pollutant, an outlet for discharging such a gas from which said pollutant has been at least partially removed, a casing through which such a gas flows substantially horizontally from said inlet to said outlet, at least one discharge electrode, and at least one collecting electrode, characterised in that said wet electrostatic precipitator further comprises
a set of nozzles that is operative for spraying liquid onto at least one first vertical collecting surface of said at least one collecting electrode, and
at least one liquid distributor that is operative for pouring liquid onto at least one second vertical collecting surface, which is located on said at least one collecting electrode downstream of said at least one first vertical collecting surface, or is located on at least one further collecting electrode, which is located downstream of said at least one collecting electrode, as viewed with reference to the direction of the flow of such a gas,
and with the set of nozzles being located upstream of said at least one liquid distributor, as viewed with reference to the direction of the flow of such a gas.
An advantage of this invention is that the set of nozzles, which is operative for spraying liquid onto said at least one first vertical collecting surface, is very efficient in cleaning said at least one first vertical collecting surface, which is located in an upstream region of said wet electrostatic precipitator. A side-effect of such spraying of liquid from such a set of nozzles, which is made in order to clean said at least one first vertical collecting surface, is the formation of liquid droplets. These liquid droplets, which are formed in the upstream region of said wet electrostatic precipitator by the spraying of liquid onto said at least one first vertical collecting surface, are collected on said at least one second vertical collecting surface, which is located in a downstream region of said wet electrostatic precipitator. Thus, said at least one second vertical collecting surface serves as a collector for such liquid droplets. Cleaning of said at least one second vertical collecting surface, which is located in the downstream region of said wet electrostatic precipitator, is accomplished by pouring liquid onto said at least one second vertical collecting surface by means of said at least one liquid distributor. The pouring of such liquid, which is made by means of said at least one liquid distributor, has the advantage that no droplets are formed in the downstream region of said wet electrostatic precipitator, and, thus, the amount of liquid droplets, which leave said wet electrostatic precipitator, is very low. According to what has been described in the prior art, a separate mist eliminator normally needs to be mounted after the wet electrostatic precipitator, in order to effect a reduction in the amount of liquid droplets that is leaving said wet electrostatic precipitator. However, even with the use of such a mist eliminator, the spraying of liquid, for the purpose of cleaning vertical collecting surfaces, must be accomplished with a limited amount of liquid in order to avoid the risk of overloading such a mist eliminator with liquid droplets. In contrast thereto, when the present invention is employed, there is, in most cases, no need for a separate mist eliminator to be utilized after said wet electrostatic precipitator. Furthermore, the cleaning of said at least one second vertical collecting surface in the downstream region of said wet electrostatic precipitator, can, in accordance with the present invention, be accomplished through the use of large amounts of liquid. As a consequence of such large amounts of liquid being used for purposes of cleaning said at least one second vertical collecting surface, the risk of corrosion is reduced, such that, in some cases, the collecting electrodes can be manufactured from cheaper materials, compared to what is possible when the teachings of the prior art are followed.
According to the preferred embodiment of the present invention, said wet electrostatic precipitator further comprises
at least a first field and a second field,
said first field comprising a first set of discharge electrodes and collecting electrodes,
said second field comprising a second set of discharge electrodes and collecting electrodes,
a set of nozzles that is operative for spraying liquid onto the first vertical collecting surfaces of the collecting electrodes of said first set of collecting electrodes,
a set of liquid distributors being provided for pouring liquid onto the second vertical collecting surfaces of the collecting electrodes of said second set of collecting electrodes, and
said second field being located downstream, as viewed with reference the direction of the flow of the gas from which a pollutant is to be at least partially removed, of said first field, and being operative for collecting liquid droplets generated by said set of nozzles. An advantage of this embodiment of the present invention is that the collecting efficiency of such a wet electrostatic precipitator can be more efficiently controlled, due to the fact that said first field thereof can be controlled, with respect to voltage, etc., in order to thereby achieve a high efficiency insofar as the collection of dust particles and/or aerosols is concerned, while the second field can be controlled, with respect to voltage, etc., in order to thereby achieve a high efficiency insofar as the collection of liquid droplets, which are generated by the spraying of liquid from the set of nozzles of said first field, is concerned.
Preferably said second field of such a wet electrostatic precipitator comprises the last field of said wet electrostatic precipitator, and as such is located adjacent to the outlet of said wet electrostatic precipitator. By placing said second field, in which cleaning of the collecting electrodes of such a wet electrostatic precipitator is accomplished by means of the pouring of liquid from the set of liquid distributors, in a last field position insofar as said wet electrostatic precipitator is concerned, said second field thus functions as a so-called “guard-field”, thereby ensuring that the amount of dust particles, liquid droplets and/or aerosols leaving said wet electrostatic precipitator will be kept at a sufficiently low level.
According to the preferred embodiment of the present invention, said at least one liquid distributor comprises at least one tube, each said at least one tube extends along a collecting electrode plate and is provided with at least one aperture through which liquid may flow from said at least one tube to a second vertical collecting surface of said collecting electrode plate. An advantage of such an at least one liquid distributor is that such an at least one liquid distributor is efficient in spreading liquid over the entire length of said second vertical collecting surface that is to be cleaned, without liquid droplets being created as a result thereof. Still more preferably, liquid flowing out of said aperture has a velocity of less than 4 m/s. This velocity has proven to be sufficiently low to keep the creation of such liquid droplets at sufficiently low levels.
Preferably at least 50% of the liquid supplied to said at least one liquid distributor is fresh makeup liquid. An advantage that is derived from this embodiment of the present invention is that any liquid from said at least one liquid distributor, which is entrained by the gas, will contain a very low amount of pollutants and, thus, any liquid carried with such gas will result in a very limited contribution to the dust particles that are emitted from such a wet electrostatic precipitator. However, it is still more preferable that substantially all of the liquid, which is supplied to said at least one liquid distributor, be fresh makeup liquid.
Preferably more than 50% of the fresh makeup liquid supplied to such a wet electrostatic precipitator is supplied to said at least one liquid distributor. An advantage to be derived from this is that the liquid and the gas will bear a counter-current flow relation to each other, because the cleanest liquid, which is supplied to said at least one liquid distributor, will be in contact with the purest gas, that is, the gas that has already been cleaned to a great extent in the upstream region of said wet electrostatic precipitator. The result of this is that the emission of dust particles from said wet electrostatic precipitator is decreased, due to the fact that any liquid, which is entrained with the gas, will contain only a small amount of pollutants.
According to one preferred embodiment of the present invention, liquid that has been supplied to said set of nozzles, and liquid that has been supplied to said at least one liquid distributor, are both collected in a common tank. An advantage to be derived from doing so is that liquid supplied to said at least one liquid distributor, which liquid is mostly fresh makeup liquid, effects the dilution of the pollutants, which are captured in the liquid that is supplied to said set of nozzles, such that the liquid collected in said common tank is suitable for feeding to said set of nozzles.
According to another preferred embodiment of the present invention, the wet electrostatic precipitator in accordance therewith includes a casing, which is comprised of at least a first hopper that is operative for receiving liquid from said set of nozzles, and a second hopper, which is separate from said first hopper and which is operative for receiving liquid from said set of liquid distributors. According to this embodiment of the present invention, such liquids can be kept separate from each other, which is an advantage if, for instance, liquid that has been supplied to said set of liquid distributors and, which has been collected in said second hopper, is supposed to be recirculated, usually at least partially, back to said set of liquid distributors. However, it is still preferable that at least some of the liquid, which is collected in said second hopper, be transmitted to said set of nozzles.
According to one preferred embodiment of the present invention, the wet electrostatic precipitator in accordance therewith preferably includes at least one intermediate field that is preferably located between said first field and said second field. The use of such an intermediate field enables the realization of further improved efficiency as regards the efficiency insofar as the collection of dust particles and/or aerosols is concerned. Still more preferably, said at least one intermediate field is provided with nozzles, which are operative for spraying liquid towards the collecting electrodes of said intermediate field. Such spraying is operative for effecting an efficient cleaning of the collecting electrodes of the intermediate field and, due to the fact that said second field functions as a mist eliminator, there is no increased emission of liquid droplets from said wet electrostatic precipitator.
A further object of the present invention is to provide a method of cleaning at least one collecting electrode of a wet electrostatic precipitator, said cleaning being performed in such a manner, that the amount of liquid droplets and/or aerosols, that are entrained with the gas leaving said wet electrostatic precipitator, is reduced.
Such an object is achieved through the use of a method of cleaning at least one collecting electrode of a wet electrostatic precipitator having an inlet for receiving a gas containing a pollutant, and an outlet for discharging such gas from which said pollutant has been at least partially removed, and characterised in that
such gas flows substantially horizontally through a casing from said inlet to said outlet of said wet electrostatic precipitator, past at least one discharge electrode and said at least one collecting electrode,
liquid is sprayed onto at least one first vertical collecting surface of said at least one collecting electrode, and
liquid is poured onto at least one second vertical collecting surface, said at least one second vertical collecting surface either being located on said at least one collecting electrode downstream of said at least one first vertical collecting surface, or being located on at least one further collecting electrode, which is located downstream of said at least one collecting electrode, as viewed with reference to the direction of the flow of the gas through said wet electrostatic precipitator. An advantage of such a method in accordance with the present invention is that liquid droplets, which are created from the spraying of liquid onto said at least one first vertical collecting surface, are collected on said at least one second vertical collecting surface, said at least one second vertical collecting surface being located downstream of said at least one first vertical collecting surface. Said at least one second vertical collecting surface will thus function as a mist eliminator, such that said at least one second vertical collecting surface is operative to collect liquid droplets that are created during the cleaning of said at least one first vertical collecting surface, which is located upstream, with respect to the direction of flow of the gas through said wet electrostatic precipitator, of said at least one second vertical collecting surface. Due to said at least one second vertical collecting surface being cleaned by means of pouring liquid onto it, there is no, or almost no, creation of liquid droplets during the cleaning of said at least one second vertical collecting surface. Thus, the gas leaving said wet electrostatic precipitator will contain no, or at most very few, such liquid droplets. This method in accordance with the present invention thus provides for an efficient cleaning of said at least one first vertical collecting surface, without resulting in a large amount of liquid droplets being created and thus leaving together with the gas from the wet electrostatic precipitator.
Further objects and features of the present invention will be apparent from the following description and from the claims.
The invention to which the present application is directed will now be described in more detail with reference to the appended drawings in which:
By “spraying liquid”, as this term is used in this application, is meant forcing a liquid flow through a nozzle, said nozzle being operative to atomise the liquid flow, such that liquid droplets are formed. In accordance with the present invention, “spraying liquid” is defined as a liquid flow being exposed to atomisation in such a way that at least 90% of such liquid, on a weight basis, produces liquid droplets having a diameter of less than 1.5 mm. Typically, a pressure difference of at least 0.5 bar across the nozzle is required in order to obtain the desired atomisation of the liquid. The liquid droplets that are produced from such atomisation, generally, have an average initial velocity of 8 m/s or more.
By “pouring liquid”, as this term is used in this application, is meant causing a liquid to flow through an aperture in such a way that the flow of liquid, following the liquid's passage through said aperture, is in the form of a substantially continuous jet or film. In accordance with the present invention, “pouring liquid” is defined as a flow of liquid being caused to pass through an aperture in such a way that less than 10% of such liquid flow, on a weight basis, produces liquid droplets of a diameter of less than 1.5 mm, and with the main part of the liquid flow thus forming a jet, or a film, upon leaving said aperture. The pressure difference across said aperture preferably should be less than 0.3 bar, in order to thereby avoid the atomisation of the liquid passing through said aperture. The film or jet that is thus formed preferably has an average initial velocity of 4 m/s or less. More preferably, such film or jet has an average initial velocity of less than 2 m/s.
The group of upper nozzle lances 26, in accordance with the present invention, are preferably arranged so as to spray liquid downwards at an angle of about 0-80° to the vertical plane, and towards the collecting electrode plates 18, as best understood with reference to
The second field 12 comprises a second set 32 of discharge electrodes 34 and collecting electrodes, which preferably consist of the collecting electrode plates 36. The discharge electrodes 34 and the collecting electrode plates 36 both of the second field 12 are arranged in a manner similar to that which has been described hereinbefore insofar as the first field 10 is concerned. The second field 12 includes an independent power source in the form of a rectifier 38, which can be seen in
When the wet electrostatic precipitator 1 is in operation, the rectifier 20 applies a voltage between the discharge electrodes 16 and the collecting electrode plates 18 of the first set 14 thereof, and the rectifier 38 applies a voltage between the discharge electrodes 34 and the collecting electrode plates 36 of the second set 32 thereof. As best understood with reference to
The liquid droplets, which are created as a result of the spraying from the nozzles 24, will, to some extent, follow the flue gas 4 as the flue gas 4 flows from the first field 10 to the second field 12. In the second field 12, the discharge electrodes 34 of the second set 32 will charge these liquid droplets that flow thereto from the first field 10. These liquid droplets are subsequently collected on the collecting electrode plates 36 of the second set 32. The relatively small amounts of dust particles and/or aerosols, that are not collected in the first field 10, and which are made to flow to the second field 12, will also be charged by the discharge electrodes 34 and will be collected on the collecting electrode plates 36. The liquid that is poured, by means of the liquid distributors 42, along the second vertical collecting surfaces 44 of the collecting electrode plates 36, is operative to effect the cleaning of the collecting electrode plates 36. The liquid droplets, which are collected, as well as the pouring liquid and the dust particles and/or aerosols are all collected in a second hopper 50.
The first field 10 in accordance with the present invention functions as the main collector of dust particles and/or aerosols. Typically more than about 70% of the total amount of dust particles and/or aerosols that are collected in the wet electrostatic precipitator 1 are collected in the first field 10. Due to the fact that the concentration of dust particles in the first field 10 is high as compared to that present in the second field 12, it is of necessity a requirement that the collecting electrode plates 18 of the first field 10 be cleaned very efficiently. This is achievable through the use of the set 22 of nozzles 24. In addition, preferably, the nozzles 24 are designed to be operable to provide some cleaning of the discharge electrodes 16. The second field 12 in accordance with the present invention functions as a mist eliminator, by which is meant the fact that the second field 12 collects the liquid droplets that are entrained in the flue gas 4 that flows from the first field 10 to the second field 12. As a consequence of the liquid distributors 42 pouring the liquid on the collecting electrode plates 36, there are almost no liquid droplets created in the second field 12. Thus, almost no liquid droplets are entrained in the flue gas 8 that is discharged from the wet electrostatic precipitator 1. In addition to functioning as a mist eliminator, the second field 12 in accordance with the present invention also functions to remove much of the dust particles and/or aerosols that still remain entrained in the flue gas 4 after the flue gas 4 passes through the first field 10. Accordingly, the second field 12 performs the dual functions both of that of removing liquid droplets, and that of cleaning dust particles and/or aerosols from the flue gas 4. Due to the fact that the concentration of dust particles is lower in the second field 12, as compared to that present in the first field 10, the need, insofar as the efficient cleaning of the second vertical collecting surfaces 44 is concerned, is generally lower than for the first vertical collecting surfaces 30. Further, there is often no need to clean the discharge electrodes 34 of the second set 32. As such, it is normally sufficient to effect the cleaning of the second vertical collecting surfaces 44 simply by means of pouring liquid onto them. If a need for additional cleaning of the discharge electrodes 34 of the second field 12 should arise, this need can be addressed by providing the discharge electrodes 34 with liquid distributors, which embody a design similar to that of the liquid distributors 42 that have been described hereinbefore as being employed for purposes of effecting therewith the cleaning of the collecting electrode plates 36.
As will be best understood with reference to
In
To avoid the creation of liquid droplets in the second field 12, in accordance with the present invention the pressure difference, between the inside of the liquid distributor 42 and the flue gas 4 inside the wet electrostatic precipitator 1, is preferably less than about 0.3 bar. Due to the fact that the absolute pressure present inside the wet electrostatic precipitator 1 is approximately equal to atmospheric pressure, in accordance with the present invention the liquid pressure inside the liquid distributor 42 is preferably less than 0.3 bar(o). Thus, the pressure difference, to which the liquid 72 is exposed when leaving the liquid distributor 42, is preferably in the range of 0-0.3 bar, and the velocity of the liquid 72, when leaving the liquid distributor 42, is preferably less than 4 m/s, and in order to avoid the creation of liquid droplets, more specifically, preferably less than 2 m/s. Typically, the velocity of the liquid 72, when leaving the liquid distributor 42, is in the range of 0.1 to 0.5 m/s.
It will be appreciated that numerous variants of the above described embodiments are possible within the scope of the appended claims.
To thus summarize, it has been described hereinbefore, that a wet electrostatic precipitator 1, 100, 200 according to the present invention could have one field 210, as depicted in
Number | Date | Country | Kind |
---|---|---|---|
0601248 | Jun 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/004568 | 5/23/2007 | WO | 00 | 11/11/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/140882 | 12/13/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1888022 | Wintermute et al. | Nov 1932 | A |
2874802 | Gustafsson et al. | Feb 1959 | A |
3444668 | Masuda | May 1969 | A |
3509695 | Egan et al. | May 1970 | A |
3958958 | Klugman et al. | May 1976 | A |
3958961 | Bakke | May 1976 | A |
4074983 | Bakke | Feb 1978 | A |
4189308 | Feldman | Feb 1980 | A |
4553987 | Artama et al. | Nov 1985 | A |
5137546 | Steinbacher et al. | Aug 1992 | A |
5160510 | Steinbacher et al. | Nov 1992 | A |
5624476 | Eyraud | Apr 1997 | A |
6302945 | Altman et al. | Oct 2001 | B1 |
20030217642 | Pasic et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
0415486 | Mar 1991 | EP |
988350 | Jul 1965 | GB |
4-176346 | Jun 1992 | JP |
6-31202 | Feb 1994 | JP |
7702430 | Sep 1978 | NL |
Number | Date | Country | |
---|---|---|---|
20090114092 A1 | May 2009 | US |