1. Field of the Invention
The present invention relates generally to floor cleaning devices.
2. Description of Related Art
Many different types of floor cleaning devices are commonly used to clean carpets, rugs and bare floors. Examples of such devices include wet extractors, vacuum cleaners, floor polishers, steam cleaners and the like. A traditional upright floor cleaning device has a base assembly and an operating handle that extends upwardly from the rear of the base assembly. The operating handle is used to guide the base assembly across the floor during operation, and in operation the handle is pushed forward, causing the base to move forward and the handle to pivot downward, and pulled back, causing the handle to move up and the base to move backwards. The operating handle is frequently designed to incorporate various parts of the cleaning device, such as water tanks, vacuum motors, filters, and the like. In these configurations, much of the device's weight is moved up to the handle, thus requiring the user to bear a portion of this weight when operating the device, particularly on the forward strokes. The operating handle also may be equipped with accessory cleaning tools and an extension hose for remote cleaning.
The operating handle of conventional cleaning devices is not configured to facilitate compact storage, shipping, and/or transportation of the device. Specifically, when the floor cleaning device is not in use, most users desire to store the device in a closet or other small space. Because the operating handle occupies a relatively large amount of space, its design is not ideal for compact storage. Shipping is also problematic with conventional cleaning devices because their bulky shapes can not be fit into conventional rectangular shipping boxes without including a large amount of unused air space in the box, which increases shipping cost. In order to reduce this additional shipping expense, some manufacturers disassemble the devices for shipment. While such disassembly reduces shipping costs, it is less desirable to customers, who typically prefer not to assemble the devices, may not be able to do so, and may find it inconvenient to disassemble the device for later storage, shipment and/or transportation. Also, when the floor cleaning device must be transported from one location to another (e.g., up or down a flight of stairs), a user must lift the device off the floor by the operating handle and carry the device in a relatively awkward position to the new location. It can be appreciated that the bulky nature of the device makes this an undesirable task for many users. Similarly, transporting the floor cleaning device in a vehicle (e.g., in a trunk compartment) can be challenging for many users due to the difficulties in loading and unloading the device into and out of the vehicle. This challenge is compounded by the fact that, in the case of wet extractors, users may wish to avoid tipping the device on its side to prevent water from escaping into the vehicle.
In an effort to overcome these problems, floor cleaning devices have been designed in which the operating handle can be partially collapsed to facilitate storage, shipping, and/or transportation of the device. For example, one floor cleaning device has been designed in which the operating handle includes an upper fork and a lower fork, wherein the upper fork can be folded downwardly to a position adjacent the lower fork. An example of such a device is shown in U.S. Pat. No. 3,673,628 to Gaudry et al. (This patent and all others discussed in the present disclosure are hereby incorporated herein by reference in their entireties.) While this device is an improvement on traditional devices, the operating handle is only partially collapsible and thus continues to occupy too much vertical space.
Another floor cleaning device has been designed in which the operating handle includes a pair of upper arms and a pair of lower arms, wherein the lower arms can be pivoted downwardly relative to the base assembly and then the upper arms can be slid inwardly alongside the lower arms. An example of such a device is shown in U.S. Pat. No. 4,245,371 to Satterfield. While the collapsed operating handle of this device occupies a smaller amount of vertical space, a portion of the operating handle still extends laterally a considerable distance from the base assembly and thus occupies a larger amount of horizontal space. As such, this design in not ideal for compact storage, shipping, and/or transportation of the device.
Yet other floor cleaning devices have been designed in which the operating handle includes an upper portion and a lower portion, wherein the upper portion can be folded downwardly relative to the lower portion and then the folded upper/lower portions can be pivoted downwardly relative to the base assembly. Examples of such devices are shown in U.S. Pat. No. 3,203,707 to Anderson and U.S. Pat. No. 3,204,272 to Greene et al. While the collapsed operating handles of these devices occupy a smaller amount of vertical space, substantial portions of the operating handles extend laterally from the base assemblies and thus occupy an even larger amount of horizontal space. As such, these designs are not suitable for compact storage, shipping, and/or transportation of the devices.
Still other floor cleaning devices have been designed in which the operating handle extends upwardly from a two-part base assembly (which includes a horizontal portion and a vertical portion), wherein the vertical portion of the base assembly can be pivoted downwardly onto the floor and then the operating handle can be folded onto the two-part base assembly. Examples of such devices are shown in U.S. Pat. No. 4,660,246 to Duncan et al, U.S. Pat. No. 4,662,026 to Sumerau et al., U.S. Pat. No. 4,670,937 to Sumerau et al., U.S. Pat. No. 4,763,382 to Sumerau, and U.S. Pat. No. Des. 310,438 to Burns. While these devices also occupy less vertical space, the collapsed base assembly occupies an even larger amount of horizontal space. Thus, these designs are also not suitable for compact storage, shipping, and/or transportation of the devices. Furthermore, such devices require the operator to actually remove the handle, reverse it, and reinsert it into the device, which is inconvenient for the operator. This design also limits the manufacturer's ability to place electric switches in the handle, which also inconveniences the operator.
A variety of wet extraction cleaning devices are available for cleaning carpets and bare floors. Typical wet extractors have a supply tank for storing cleaning fluid, and a fluid deposition system that is used to deposit the cleaning fluid onto the floor. In some cases, a mixture of water and detergent may be placed in the supply tank, but in other cases, the wet extractor has a separate detergent tank, and fresh water is placed in the supply tank and is mixed with detergent from the detergent tank by the fluid deposition system. Typical wet extractors also have a vacuum source that is used to suck in the deposited cleaning fluid, and any dirt or grime that it extracts from the floor, through a floor nozzle. This waste fluid is deposited and stored in a recovery tank.
In order to prevent waste fluid from entering and possibly damaging the vacuum source, the recovery tank is positioned, in a fluid flow sense, between the vacuum source and the floor nozzle. The recovery tank is designed to remove the waste fluid from the air flow in which it is entrained, while allowing the air to continue to the vacuum source. Typical wet extractors also have a shutoff mechanism that blocks the vacuum source when the recovery tank is full and prevents waste fluid in the recovery tank from sloshing into the vacuum source when the wet extractor is moved back and forth by the operator. This shutoff mechanism is usually provided in the form of a float device. The float device has a buoyant float that rises on the water, and a sealing surface on or attached to the buoyant float that blocks the passage to the vacuum source. In many cases, the operator of the wet extractor will be alerted to the fullness of the recovery tank by the change in pitch of the vacuum source as its air flow is becoming cut off, and this serves as a signal to empty the recovery tank.
Although a number of different wet extractors, supply tanks and recovery tanks have been produced, the prior art suffers from numerous shortcomings. One shortcoming of prior wet extractors is the that the inlet nozzle often becomes coated or clogged by dirt and debris removed from the surface being cleaned. This is especially true where the inlet nozzle is provided as a narrow slit, which is a common and favorable configuration to generate high-speed airflow and strong, focused suction to remove the fluid and dirt. Because the nozzle profile is so narrow, it is difficult to clean using conventional means, and users must resort to cleaning the nozzle with pipe cleaners and other specialized devices.
Another shortcoming of the prior art relates to supply tanks, which are typically difficult to fill unless a large sink or hose is available. For example, U.S. Pat. No. 5,406,673 to Bradd et al. (the '673 patent) and U.S. Pat. No. 5,937,475 to Kasen et al. (the '475 patent) provide supply tanks that are approximately bucket-shaped, and require a large vertical clearance to place them under sink faucet outlets. Furthermore, such a design may be difficult to fill unless the faucet can be swiveled out of the way to place the tank into the sink. Still further, the supply tank of the '475 patent is retained in place by latching devices that must be manipulated before removing the supply tank. Such latches require additional manufacturing, are subject to breaking, are often not intuitively understood by users, making them difficult to operate, unhook and realign for reinstallation. Similar problems are present with the supply tank of U.S. Pat. No. 6,073,300 to Zahuranec et al. (the '300 patent).
Other shortcomings of the prior art relate to the design of the recovery tank. For example, the recovery tank disclosed in the '673 patent has a complex multi-chambered design that requires the incoming air/fluid mixture to traverse a horizontal inlet that can easily backflow when the vacuum source is turned off, causing waste fluid to seep back out onto the floor. The recovery tank of the '673 patent is also inconveniently placed below the supply tank, and an operator must tilt the operating handle back and away from the upright resting position in order to access the recovery tank. Such maneuvering is awkward to perform and risks toppling the device during recovery tank removal and insertion. Still another shortcoming of the '673 device is that the recovery tank float is located in a relatively large chamber, making it more subject to fluid sloshing and unnecessary vacuum cut-off. The complex structure of the '673 recovery tank also requires disassembly to drain, and is relatively expensive to manufacture.
The recovery tank of the '475 patent also suffers from shortcomings. One shortcoming is that the fluid inlet leads almost directly into the main reservoir of the water recovery tank, and allows the incoming air/fluid mixture to short-circuit the reservoir and go directly into the outlet leading to the vacuum source. Another shortcoming of the '475 recovery tank is that it requires a complex multi-piece construction in which the float is permanently sealed, increasing the cost of construction, making it difficult or impossible to service the float, and necessitating the inclusion of a separate drain plug. Also, like the '673 device, the '475 recovery tank is retained in the wet extractor under the supply tank, and the operating handle must be tilted back from the upright resting position to remove the recovery tank. Still further, the '475 recovery tank uses a pivoting tank handle, which requires additional material and construction effort, and is susceptible to breaking. The recovery tank of the '300 patent has similar shortcomings. In addition to being a complex multi-piece structure, the 300 recovery tank is retained by a latch that requires additional material and construction effort, may be difficult to operate, and appears to be operable only when the operating handle is leaned back from the upright resting position. Other prior art recovery tanks suffer from these and other problems.
Other shortcomings of the prior art relate to the overall configuration of the supply and recovery tanks in the wet extractor. In many instances, such as in the '673 patent, the '475 patent and the 300 patent, the supply tank is carried in the operating handle of the device. Such devices suffer from being difficult to ship and store. These configurations are also unduly complex, making them expensive to manufacture and difficult to operate. Still further, such devices require more operator effort because the operator must bear the weight of the heavier operating handle when the wet extractor is at the end of the forward stroke and the handle is tilted at its lowest angle relative to the ground. Other devices, such as the wet extractor disclosed in U.S. Pat. No. 6,131,237 to Kasper et al. (the '237 patent), have reduced the weight of the operating handle by placing both the supply and recovery tanks in the base, but in the '237 patent device, the handle weight is increased by mounting an accessory device to it, and the operating handle still must be reclined away from the upright resting position to remove the tanks. Furthermore, the supply and recovery tanks of the '237 patent are contained in a single complex chamber having a flexible bladder, which is relatively difficult to manufacture, operate and clean.
Numerous fluid systems for extractors have been developed that apply fluids to a surface to be cleaned to help clean stubborn stains and extract deeply-rooted dirt and grime. The fluid may simply be water, or it may include detergents, fabric brighteners, perfumes and other useful compounds. The fluid also may be heated or converted to steam before being deposited. Liquid management is a continuing challenge in the design of wet extractors. In order to operate well, the operator of the wet extractor must be provided with some way of controlling when the fluid is deposited onto the floor or other surface being cleaned. Furthermore, such operations should be performed for both floor operations, and, if an auxiliary tool attachment is provided, for remote operations.
Previous attempts to provide liquid management systems have entailed the use of complex, bulky and costly arrangements of pumps, valves, solenoids, switches and the like. For example, U.S. Pat. Nos. 6,286,180 (the '180 patent) and 6,131,237 (the '237 patent), both to Kasper et al., disclose decentralized liquid management systems that require the pump priming assembly to be connected to a vacuum source to prime the pump. This requires additional construction material and limits flexibility in locating the priming assembly. This also may cause some delay between the time the pump is activated and the time that fluid is pressurized and available for depositing on the surface to be cleaned. As such, these systems require the fluid pump to operate at all times, and must use a mechanical pushbutton-type valve to control the flow of fluid. The use of this mechanical valve requires the valve to be located in the handle of the device so that it can be operated by the user. Furthermore, alternatives to mechanical valves in systems such as those in the '180 and '237 patents typically require the use of expensive electrically-operated solenoid valves to control fluid flow, such as shown in U.S. Pat. No. 6,513,188 to Zahuranec et al. (the '188 patent). A similar deficiency is encountered in the gravity-fed systems of U.S. Pat. No. 6,073,300 to Zahuranec et al. (the 300 patent), and U.S. Pat. No. 5,676,405 to Reed (the '405 patent), which also require a mechanical valve that must be positioned in the handle of the device, or, if the valve is positioned outside the handle, an expensive solenoid to operate the valve.
Another deficiency of prior art liquid management systems relates to the manner in which such systems are converted to operate in an accessory tool mode. In typical prior art systems, such as those disclosed in the 300 patent, the '180 patent, and the '405 patent, the accessory tool is installed in at least two steps. In one step, the vacuum hose for the accessory tool is installed, and in the other step the fluid line to the accessory tool is attached. In many cases, such as in the '405 and 300 patents, the fluid hose hookup is also constructed as a complex and relatively expensive fitting that has a shutoff valve integrally formed with the fluid passage at the point of connection. These systems are inconvenient and relatively difficult to use.
Other prior art accessory tool hookup systems have been developed that use a single plug to install both the vacuum source and the fluid line. Examples of such devices are provided in U.S. Pat. No. 5,400,462 to Amoretti (the '462 patent), U.S. Pat. No. 5,459,901 to Blase et al., (the '901 patent), and U.S. Pat. No. 5,669,098 to Tono (the '098 patent). Although these devices conveniently use a single plug to attach the tool to a vacuum source and a fluid source, neither the '462 patent nor the '901 patent provides any way to divert vacuum and fluid flow from a floor-cleaning circuit to the accessory tool circuit. Both of these devices also pose electrical shock risks to the user due to the exposed electrical switch and terminals in the '462 patent, and the use of a separate electrical plug in the '901 patent. This risk is compounded by the lack of any sort of shutoff valve or anti-siphoning device for the fluid lines at or near the connection point. The '098 patent also suffers from deficiencies as it relies on a coaxial design that is unnecessarily complex, and uses a complex shutoff valve that is integrally formed with the fluid passage at the point of connection with the accessory tool. Such combined fluid passage/shutoff valves can be relatively expensive, and, because the valve is necessarily positioned at the point of contact between the parts, the valves are susceptible to being contaminated by dirt and debris on the parts, which may impair the seal and result in leakage.
Other deficiencies of prior art liquid management systems relate to detergent mixing and metering systems. It many instances, wet extractors have been provided with separate clean water and detergent tanks so that the user does not have to mix the fluids into a single tank. The use of separate clean water and detergent tanks also allows the user to adjust the amount of detergent that is mixed with the water. Previous detergent control valves have been unduly complex. For example, the control valve disclosed in U.S. Pat. No. 4,570,856 to Groth et al. (the '856 patent) uses a complex system of hoses to pressurize the detergent chamber, and uses a rocker assembly to selectively pinch off the detergent supply hose, which can damage the hose and require more expensive hose material. Other systems, such as the system in U.S. Pat. No. 5,937,475 to Kasen et al. (the '475 patent), use valve assemblies that are located in the clean water flow path, and require a rotational movement to actuate. such devices allow clean water and detergent to mix even when the device is inactive, and must be turned by hand to change the detergent mixture setting.
It is well known in the art of cleaning floors and other surfaces that it is often desirable to agitate the surface being cleaned to shake out and extract deeply embedded dirt and grime. As such, various different mechanical agitators have been made to agitate floors and carpets to assist with cleaning operations. These devices have been used on their own, in conjunction with vacuums and wet extractors and with other cleaning devices. Many previously known agitators can generally be placed into various categories, such as horizontal rotating brushes (often called “beater brushes” or “disturbulators”), and vertical rotating brushes, but other types of agitator have also been devised.
One type of agitator, the horizontal rotating brush, is exemplified by the device disclosed in U.S. Pat. No. 5,937,475 to Kasen et al. (the '475 patent). In this design, the brush comprises an elongated spindle that is oriented horizontally with its rotating axis parallel to the surface to be cleaned, and has a number of bristles extending radially from its surface. When the spindle is rotated, the bristles are driven downward into the surface being cleaned and swept back through a circular arc. Although these devices have been used with some success, it has been found that they suffer from some disadvantages. For example, they tend to spray fluids deposited by wet extractors, they accumulate dirt (especially hair) and require constant cleaning and attention, and are subject to bearing and drive belt failure. In addition, the aggressive sweeping of the bristles through the carpet or other surface being cleaned tends to cause accelerated wear of the surface, and may be unsuitable for delicate fabrics.
A second type of agitator, the vertical rotating brush, is exemplified by U.S. Pat. No. 6,009,593 to Crouser et al. (the '593 patent). This type of agitator comprises one or more spindles that rotate about an axis aligned orthogonally to the surface being cleaned. Each brush has a number of bristles that project approximately along the axis of rotation, and are swept through a flat circular path (relative to the device) when the brushes rotate. Like the horizontal rotating brush design, this design is prone to accumulating dirt, and particularly hair. Furthermore, it has been found that the counter-rotating vertical brushes of this agitator tend to leave an undesirable streaked pattern in the nap of some carpets, and, when used in a wet extractor, tend to leave corresponding streaks of unrecovered fluid on the surface being cleaned. The aggressive sweeping of the bristles through a large path of travel is also believed to contribute to accelerated carpet wear and may be unsuitable for delicate fabrics.
Another type of agitator that has been devised uses a brush that is simultaneously vibrated laterally relative to the fore-aft direction of the cleaning device and vertically relative to the plane of the surface being cleaned. Such devices are shown in U.S. Pat. Nos. 2,109,621 to Kirby (the '621 patent) and 6,353,964 to Andrisin, Jr. et al. (the '964 patent). The '621 patent uses a turbine to drive a shaft that has a brush at its end and an eccentric weight between the brush and the turbine. As the shaft rotates, the eccentric weight applies both vertical and lateral centripetal forces to thereby impel the brush with a “rapid scratching movement.” Additional vertical forces against the surface being cleaned are applied by a set of springs mounted between the brush and the device's housing. The '964 patent uses a similar arrangement, but instead drives the brush using an eccentric that rotates in a corresponding hole in the brush. The eccentric rotates about an axis that is angled relative to the floor, and thereby imparts lateral, longitudinal and vertical forces and movements to the brush. Both of these agitators apply a significant vertical force to the brush, which is believed to contribute to accelerated wear of the surface being cleaned and tends to pound dirt and debris more deeply into the surface being cleaned. These agitators (especially the '621 patent) are also believed to provide inconsistent cleaning due to the somewhat random movements generated by their drive systems. Furthermore, these agitators are somewhat limited in their application because they rely on turbine drives that can not be operated independently of the vacuum source.
Still another agitator has been devised that moves laterally relative to the device's fore-aft direction of operation, such as shown in U.S. Pat. No. 3,685,081. However, this device also suffers from notable shortcomings. for example, the two reciprocating brushes do not fully cover the surface being cleaned, and therefore are believed to provide inconsistent cleaning. Furthermore, the device is believed to cause accelerated wear of the surface being cleaned because the entire weight of the device rests on the agitator brushes, and the brushes sweep through a relatively large range of motion. This device also fails to provide any vacuuming capability, and appears to be very difficult to operate on carpeted floors or other surfaces that would tend to hold the brushes and cause the machine to move erratically.
Similar agitating devices have been employed with accessory tool devices and “power heads” that plug into the main body of a cleaning device to provide remote cleaning capability. These devices suffer from similar deficiencies.
Vacuum cleaning devices often benefit from using a flexible strip that contacts the surface being cleaned to focus the vacuumed air and physically constrain the debris being recovered and direct it through the device's vacuum inlet nozzle. Such flexible strips are typically referred to as “wipers” or “squeegees.” Wipers are particularly effective when the device is used to clean bare floors, windows, or other hard surfaces that form a solid lower barrier that works in conjunction with the flexible strip to prevent debris from escaping the vacuum inlet nozzle. Wipers are also particularly useful with devices that are intended to recover fluids from the surface being cleaned, such as wet extractors and window washers, which deposit cleaning fluid on the surface then recover the fluid with a vacuum. These wipers can be used with both floor cleaning devices and hand-held cleaners, such as accessory cleaning tools and portable cleaners. While many designs for such wipers have been illustrated in the prior art, there still remains a need to provide an improved squeegee system that provides acceptable cleaning performance, but can be selectively removed from a cleaning device in a convenient manner.
Therefore, the objectives of the present invention are to provide various floor cleaning devices and features that partially or fully overcome or ameliorate these and various other shortcomings of the prior art. Although certain deficiencies in the related art are described in this background discussion and elsewhere, it will be understood that these deficiencies were not necessarily heretofore recognized or known as deficiencies. Furthermore, it will be understood that, to the extent that one or more of the deficiencies described herein may be found in an embodiment of the claimed invention, the presence of such deficiencies does not detract from the novelty or non-obviousness of the invention or remove the embodiment from the scope of the claimed invention.
These and other objectives of the invention are addressed by an embodiment of the invention comprising a wet extraction floor cleaning device having a base assembly adapted for movement on a surface being cleaned, an operating handle pivotally attached to the base assembly, a supply tank having a supply tank outlet, and a recovery tank having a recovery tank inlet and a recovery tank outlet. The base assembly has an inlet nozzle that extends from an inlet slip proximal the surface being cleaned to a nozzle outlet. The device further includes a fluid deposition assembly that can be selectively placed in fluid communication with the supply tank outlet, a vacuum source, and first and second external pockets. The supply and recovery tanks are adapted to be selectively placed in the first and second external pockets, thereby placing the supply tank outlet in fluid communication with the fluid deposition system, the recovery tank inlet in fluid communication with the nozzle outlet, and the recovery tank outlet in fluid communication with the vacuum source inlet.
In various additional embodiments, the supply tank and the recovery tank may be received in the first pocket and the second pocket, respectively, by snap engagement, or may be individually removable.
The first and second external pockets also may be located in the base assembly. In such an embodiment, either or both of the first and second external pockets may be adapted to receive the supply tank or recovery tank and thereby prevent longitudinal or lateral translation of the supply or recovery tank relative to the base assembly when received therein. In such an embodiment, the supply or recovery tank may be slidably receivable into the respective external pocket in a substantially vertical direction. The first and second pockets may also be positioned between the nozzle inlet and the pivot axis. In still another embodiment, the base assembly may further have a third external pocket and a detergent tank adapted to be selectively received in the third pocket. In this embodiment, the supply tank, the recovery tank and the detergent tank may be individually removable.
In still another embodiment, the supply tank and the recovery tank may protrude from the lower housing. In this embodiment, the upper housing may have a vertical rib positioned between the supply tank and the recovery tank. A handle lock may also be provided and adapted to selectively hold the operation handle in an upright resting position, in which the supply tank and the recovery tank are selectively removable.
In yet another embodiment, the first and second external pockets may be arranged on opposite sides of a longitudinal centerline of the device, or may be laterally juxtaposed with one another relative to a longitudinal axis of the base assembly.
In still other embodiments, the inlet nozzle may comprise a selectively removable nozzle cover attachable and removable without the use of tools.
Furthermore, the operating handle may comprise a collapsible handle having an upper handle portion and a lower handle portion. In one such embodiment, the device further comprises a handle lock adapted to selectively hold the lower handle portion in an upright resting position, and the supply tank and the recovery tank are selectively removable when the lower handle portion is in the upright resting position. In another such embodiment, the lower handle portion is pivotally attached to the base assembly, and the upper handle portion being pivotally attached to the lower handle portion.
In still another embodiment, the device may further include a carry handle, which may be located on or adjacent to a vertical rib between the supply tank and the recovery tank. In an embodiment having a vertical rib between the tanks, the fluid deposition assembly may comprise a valve assembly located within the vertical rib and fluidly connected to one or more spray nozzles. The inlet nozzle may also be located at least partially on top of the vertical rib, and the device may have an accessory tool attachment port located on the rib and in fluid communication with the nozzle and the recovery tank.
The present invention will be better understood from the following detailed description of the invention, read in connection with the drawings as hereinafter described.
As used herein, and unless otherwise specified, the term “longitudinal” refers to the fore-aft direction of the cleaning device, as generally defined by the device's intended direction of movement during use. In devices with fixed wheels, the longitudinal direction is typically parallel with the orientation of the device's fixed wheels. Also as used herein, and unless otherwise specified, the term “lateral” refers to the direction perpendicular to the longitudinal direction and generally in the plane of the surface being cleaned. Finally, unless otherwise specified, the term “vertical” means the direction orthogonal to the plane of the floor or other surface upon which the device is intended to be operated. The use of these terms is intended to clarify explanation of the invention, and these terms are not intended to limit parts and features described thereby to being strictly co-linear with the above-described directions. For example, a part, such as an operating handle, that is described as extending “vertically” is not limited to only being orthogonal to the plane of the surface to be cleaned, and may additionally extend longitudinally and/or laterally, to thereby be oriented at an angle of less than 90 degrees to the surface to be cleaned. Furthermore, these terms are used in a relative sense with the device as a the frame of reference (rather than using a global frame of reference), and it will be appreciated that a part that is described as having a particular orientation may have a different global orientation if the entire device is rotated in the global frame of reference. The same holds true for terms describing relative positions, such as “side-by-side,” “left,” “right,” “above,” “below,” “next to,” “behind,” “in front of,” “juxtaposed,” and so on.
A first aspect of the present invention is directed to a floor cleaning device with a collapsible operating handle that is designed for compact storage, shipping, and/or transportation of the device. While the invention will be described in detail herein with reference to several embodiments of the invention applied to wet extractors, it should be understood that the invention may be applied to other types of floor cleaning devices, such as vacuum cleaners, floor polishers, steam cleaners and the like. In one preferred embodiment, the device includes a base assembly adapted to be guided across a floor during operation of the device. Also included is an operating handle having a lower handle and an upper handle, which is moveable between an extended position and a collapsed position for storage, shipping, and/or transportation of the device. When the operating handle is moved to the collapsed position, the upper and lower handles are folded on one another. Thus folded, the lower and upper handles preferably also may be pivoted so that they are positioned atop the base assembly so that they do not extend laterally from the outer periphery of the base assembly by a substantial distance. As such, the operating handle occupies a minimal amount of vertical and horizontal space when collapsed. Examples of other advantages provided by embodiments of the present invention are the ability to instantly set up the device without using tools to attach the handle, and the ability to incorporate wiring and switches into the handle.
Referring to
Base assembly 12 includes a Base housing 16 that surrounds and/or holds various internal components of device 10. Base housing 16 has a lower housing 18 positioned adjacent the floor, and an upper housing 20 projecting above lower housing 18 that slopes upwardly from the front side to the rear side thereof. Lower housing 18 may be formed integral with upper housing 20, or may be formed as separate parts and connected together in any suitable manner. Base housing 16 may be formed of any rigid material, and is preferably formed of a material that provides high strength with low weight, such as conventional structural plastic materials, aluminum, and the like. The exterior surface of base housing 16 also may comprise various different parts of the device 10. For example, the exterior surface of base housing 16 may be formed in part by structural housing members, and in part by water tanks, detergent containers, vacuum nozzles, clear windows, and the like.
The outer periphery of lower housing 18 is formed by a front side 22, a rear side 24, a right side 26 (i.e., the side shown in the foreground of
Operating handle 14 includes a lower handle 34 having a pair of spaced lower arms 36 and 38. Lower arms 36 and 38 are preferably disposed generally parallel to each other, and may have a slight inward taper at their upper ends (i.e., the ends distal from the base assembly 12), as shown in
It should be understood that lower handle 34 and upper handle 40 are each preferably formed as two separate clamshell parts or halves (such as the first half 46a and the second half 46b of yoke 46 in
A switch 50 is located on hand grip 48 to facilitate easy control of the various power-driven components located within base housing 16, such as an agitator, pump motor and suction motor. These components are described in more detail elsewhere herein. Switch 50 may be located in the center of the transverse grip 50, as shown, or may be located to the sides. In a preferred embodiment, switch 50 comprises a 3-position rocker switch that turns the device off in its first position, activates a vacuum source in its second position, and activates a vacuum source and a floor agitator in its third position. In other embodiments, multiple different independent switches may instead be used to activate the vacuum source and floor agitator, and such switches may be located together or separately from one another. Switch 50 also may be supplemented with a pushbutton (not shown) that electrically or mechanically activates a fluid deposition system that deposits cleaning fluid onto the floor. As is known in the art, a power cord (not shown) interconnects switch 50 to the power-driven components. Preferably, operating handle 14 is hollow to permit the power cord to be encased therein. It should be understood that the power cord has enough slack to allow operating handle 14 to be moved between the extended position (as shown in
Referring now to
Referring now to
When lower lock 54 is in the locked position, lever 58 is biased upwardly under the action of a spring (not shown) and locking lug 62 is engaged within pocket 56. As such, lower handle 34 is fixed to base assembly 12 in an upright position and cannot be pivoted relative thereto. This locked position is shown in
Lower cross member 52 also may have a cam surface (not shown) that actuates an override switch (not shown) to deactivate switch 50 when lower handle 34 is folded forward to prevent operation of the device when it is collapsed. The override switch may fully or partially disable device 10. In a preferred embodiment, when handle 14 is collapsed, an override switch disables operation of a floor agitator located in base housing 16, but allows operation of a vacuum source, to thereby allow device 10 to operate as a canister-like device.
Although the lower lock system described herein with reference to
Referring now to
Referring now to
As best shown in
Slide body 78 also includes a plurality of generally square-shaped tabs 84, 86, 88, 90 that extend inwardly toward upper cross member 66. Although four tabs have been shown in the illustrated embodiment, it should be understood that any number of tabs may be used, and the tabs may have shapes other than square shapes.
Slide lock 70 also includes two spring retainer posts 92 and 94 that project outwardly from the side of slide body 78. Mounted on spring retainer posts 92 and 94 are two coil compression springs 96 and 98, respectively, that are biased to urge slide body 78 in the direction of arrow D (see
As best shown in
As best shown in
When upper lock 68 is in the locked position, slide lock 70 is biased in the direction of arrow D (see
Although the upper lock 68 described herein with reference to
As will now be described in detail, operating handle 14 is moveable between an extended position for operation of device 10 (as shown in
Referring to
Referring now to
When lower lock 54 and upper lock 68 are both in the released position, operating handle 14 may be moved to the fully collapsed position by folding lower handle 34 downwardly and forwardly to a position atop lower housing 18 (see
When operating handle 14 is in the collapsed position, it can be seen that lower arms 36 and 38 of lower handle 34 rest on support ledges 30 and 32 of lower housing 18 and straddle upper housing 20. Preferably, the front surfaces of lower arms 36 and 38 are in substantially continuous contact with support ledges 30 and 32, and the inner side surfaces of lower arms 36 and 38 are in close proximity to the side surfaces of upper housing 20. In this manner, lower arms 36 and 38 substantially conform in shape to the space provided above support ledges 30 and 32 and to the sides of upper housing 20 so that lower arms 36 and 38 may solidly rest on support ledges 30 and 32. However, if support ledges 30 and 32 do not extend along the entire length of lower housing 18, then lower arms 36 and 38 may instead rest only partially on support ledges 30 and 32. In another embodiment, the support ledges may also be omitted entirely, and the lower arms may rest on other parts of the base assembly 12.
It can also be seen that yoke 46 of upper handle 40 rests on upper housing 20 when operating handle 14 is in the collapsed position. Preferably, the back surface of yoke 46 is in substantially continuous contact with the sloped top surface of upper housing 20. In this manner, yoke 46 substantially conforms in shape to the sloped top surface of upper housing 20 so that yoke 46 may solidly rest thereon.
In addition, when operating handle 14 is in the collapsed position, it can be seen that lower and upper handles 34 and 40 do not extend laterally from the outer periphery of base assembly 12 by any significant distance. For example, in a preferred embodiment, lower and upper handles 34 and 40 extend less than about 4 inches, and more preferably less than about 1 inch, from the outer periphery of base assembly 12. This provides a minimal footprint, as viewed from above, which facilitates storage in tight closets and other small spaces. This sizing also allows the device 10 to be shipped with corner or edge shipping supports—which increase the overall size of the base assembly's periphery—without making special accommodations for the handle, because any overhanging portions of the lower and upper handles 34 and 40 can be fitted between the shipping supports. Furthermore, in order to obtain the greatest degree of compactness for purposes of shipping and transporting the device 10, it is preferred that the overall length, width and height of the collapsed device 10 do not significantly exceed the overall length, width and height, respectively, of the base assembly 12. In these embodiments, operating handle 14 collapses so that it occupies a minimal amount of horizontal and vertical space to facilitate compact storage, shipping, and/or transportation of device 10, but can still be extended to a height and length that is comfortable for the operator during use.
It can be appreciated that device 10 offers several advantages over traditional floor cleaning devices. For example, device 10 may be compactly stored in a closet or other small space. Also, the compact design of device 10 allows it to be easily transported from one location to another (e.g., up or down a flight of stairs) by grasping a carrying handle 118 positioned on top of upper housing 20 between upper arms 42 and 44. Device 10 may also be easily transported in the trunk compartment or other area within a vehicle without having to tip the device on its side or disassemble it. In addition, device 10 may be compactly packed in a single carton for shipment to a user, whereby operating handle 14 is pre-assembled to base assembly 12 upon delivery and can be used immediately upon unpacking. Further, the compact nature of device 10 when collapsed provides better protection against damage that could be caused to device 10 during transport or shipment.
Device 10 also may be conveniently used as a canister-type cleaning device by providing an accessory outlet 119 that is accessible and usable when the device 10 is in the collapsed position. Accessory outlet 119 may comprise, for example, a simple vacuum hose connection, or a wet extractor spot cleaning attachment point. This outlet 119 may also be used when the operating handle is in the extended position.
Referring to
Base assembly 212 includes a base housing 216 that surrounds or holds the various internal components of device 210, as is known in the art. Base housing 216 includes a lower housing 218 positioned adjacent the floor, and an upper housing 220 projecting above lower housing 218 that slopes upwardly from the front side to the rear side thereof. The outer periphery of lower housing 218 is formed by a front side 222, a rear side 224, a right side 226 and a left side 228, which together define the floor space occupied by base assembly 212. A first support ledge 230 extends generally horizontally along the top surface of lower housing 218 adjacent the right side 226 thereof, and a second support ledge 232 (not shown in the view of
Operating handle 214 includes a lower handle 234 having a pair of spaced lower arms 236 and 238 disposed generally parallel to each other, which are pivotally connected at their lower ends to opposite sides of upper housing 220 at the rear of base assembly 212. Operating handle 214 also includes an upper handle 240 having a pair of spaced upper arms 242 and 244 disposed generally parallel to each other, which are pivotally connected at their lower ends to the upper ends of lower arms 236 and 238. Upper arms 242 and 244 may taper outwardly at their upper ends and are connected together to form a transversely extending hand grip 248, which may be grasped by a user during operation of device 210.
As shown in
As shown in
When operating handle 214 is in the collapsed position, it can be seen that lower arms 236 and 238 of lower handle 234 rest on support ledges 230 and 232 of lower housing 218 and straddle upper housing 220. Preferably, the front surfaces of lower arms 236 and 238 are in substantially continuous contact with support ledges 230 and 232, and the inner side surfaces of lower arms 236 and 238 are in close proximity to the side surfaces of upper housing 220. In this manner, lower arms 236 and 238 substantially conform in shape to the space provided above support ledges 230 and 232 and to the sides of upper housing 220 so that lower arms 236 and 238 may solidly rest on support ledges 230 and 232.
It can also be seen that upper arms 242 and 244 of upper handle 240 are stacked on lower arms 236 and 238 and straddle upper housing 220 when operating handle 214 is in the collapsed position. Preferably, the back surfaces of upper arms 242 and 244 are in substantially continuous contact with the back surfaces of lower arms 236 and 238 so that upper arms 242 and 244 may solidly rest on lower arms 236 and 238.
In addition, when operating handle 214 is in the collapsed position, it can be seen that lower and upper handles 234 and 240 are substantially contained within the outer periphery of base assembly 212. As such, operating handle 214 occupies a minimal amount of horizontal and vertical space to facilitate compact storage, shipping, and/or transportation of device 210. Furthermore, handle 219 may be readily grasped to convey the device 210 while it is in the collapsed configuration.
Referring to
Base assembly 312 includes a base housing 316 that surrounds or otherwise holds the various internal components of device 310, as is known in the art. Base housing 316 includes a lower housing 318 positioned adjacent the floor, and an upper housing 320 projecting above lower housing 318 that slopes upwardly from the front side to the rear side thereof. The outer periphery of lower housing 318 is formed by a front side 322, a rear side 324, a right side 326 and a left side 328, which together define the floor space occupied by base assembly 312. A first support ledge 330 (not shown in the view of
Operating handle 314 includes a lower handle 334 having a pair of spaced lower arms 336 and 338 disposed generally parallel to each other, which are pivotally connected at their lower ends to opposite sides of upper housing 320 at the rear of base assembly 312. Operating handle 314 also includes an upper handle 340 having a pair of spaced upper arms 342 and 344 disposed generally parallel to each other, which are telescopically connected at their lower ends to the upper ends of lower arms 336 and 338. The outer diameter of upper arms 342 and 344 is slightly smaller than the inner diameter of lower arms 336 and 338 such that upper arms 342 and 344 may be telescoped within lower arms 336 and 338. Upper arms 342 and 344 taper outwardly at their upper ends and are connected together to form a transversely extending hand grip 348, which may be grasped by a user during operation of device 310.
As shown in
As shown in
When operating handle 314 is in the collapsed position, it can be seen that lower arms 336 and 338 (with upper arms 342 and 344 telescoped therein) rest on support ledges 330 and 332 of lower housing 318 and straddle upper housing 320. Preferably, the front surfaces of lower arms 336 and 338 are in substantially continuous contact with support ledges 330 and 332, and the inner side surfaces of lower arms 336 and 338 are in close proximity to the side surfaces of upper housing 320. In this manner, lower arms 336 and 338 substantially conform in shape to the space provided above support ledges 330 and 332 and to the sides of upper housing 320 so that lower arms 336 and 338 may solidly rest on support ledges 330 and 332.
In addition, when operating handle 314 is in the collapsed position, it can be seen that lower and upper handles 334 and 340 are substantially contained within the outer periphery of base assembly 312. As such, operating handle 314 occupies a minimal amount of horizontal and vertical space to facilitate compact storage, shipping, and/or transportation of device 310. Furthermore, handle 319 is readily accessible to use to transport device 310 when it is in the collapsed position. It will be apparent from
Referring to
Base assembly 412 includes a base housing 416 that surrounds of carries the various internal components of device 410, as is known in the art. Base housing 416 includes a lower housing 418 positioned adjacent the floor, and an upper housing 420 projecting above lower housing 418 that slopes upwardly from the front side to the rear side thereof. The outer periphery of lower housing 418 is formed by a front side 422, a rear side 424, a right side 426 and a left side 428, which together define the floor space occupied by base assembly 412. A first support ledge 430 extends generally horizontally along the top surface of lower housing 418 adjacent the right side 426 thereof, and a second support ledge 432 (not shown in the view of
Operating handle 414 includes a lower handle 434 having a pair of spaced lower arms 436 and 438 that taper inwardly to a pivot point 440. Lower arms 436 and 438 are pivotally connected at their lower ends to opposite sides of upper housing 420 at the rear of base assembly 412. Operating handle 414 also includes an upper handle 442 having a single upper arm 444, which is pivotally connected at its lower end to pivot point 440. Upper arm 444 has a hand grip 446 formed at its distal end, which may be grasped by a user during operation of device 410.
As shown in
As shown in
When operating handle 414 is in the collapsed position, it can be seen that lower arms 436 and 438 of lower handle 434 rest on support ledges 430 and 432 of lower housing 418 and straddle upper housing 420. Preferably, the front surfaces of lower arms 436 and 438 are in substantially continuous contact with support ledges 430 and 432, and the inner side surfaces of lower arms 436 and 438 are in close proximity to the side surfaces of upper housing 420. In this manner, lower arms 436 and 438 substantially conform in shape to the space provided above support ledges 430 and 432 and to the sides of upper housing 420 so that lower arms 436 and 438 (or ledges (not shown) on the inward-facing sides thereof) may solidly rest on support ledges 430 and 432. It can also be seen that hand grip 446 of upper handle 440 rests on upper housing 420 when operating handle 414 is in the collapsed position. Preferably, upper arm 444 has a slight curvature that allows it to conform in shape to the sloped top surface of upper housing 420.
In addition, when operating handle 414 is in the collapsed position, it can be seen that lower and upper handles 434 and 442 do not extend laterally from the outer periphery of base assembly 412. As such, operating handle 414 occupies a minimal amount of horizontal and vertical space to facilitate compact storage, shipping, and/or transportation of device 410. Furthermore, hand grip 446 provides a convenient carrying handle that can be used when device 410 is collapsed, provided upper and lower handles 442, 434 can be fixed in the folded position by the upper and lower locks.
Referring to
Base assembly 512 includes a base housing 516 that surrounds or holds the various internal components of device 510, as is known in the art. Base housing 516 includes a lower housing 518 positioned adjacent the floor, and an upper housing 520 projecting above lower housing 518 that slopes upwardly from the front side to the rear side thereof. The outer periphery of lower housing 518 is formed by a front side 522, a rear side 524, a right side 526 and a left side 528, which together define the floor space occupied by base assembly 512. A recess 530 is formed in upper housing 520, and a support surface 532 is formed on the top surface of lower housing 518 within recess 530. It will be seen that support surface 532 is positioned and configured to support the lower arm of operating handle 514 when moved to the collapsed position.
Operating handle 514 includes a lower handle 534 having a single lower arm 536, which is pivotally connected at its lower end to upper housing 520 at the rear of base assembly 512. Operating handle 514 also includes an upper handle 538 having a single upper arm 540, which is pivotally connected at its lower end to the upper end of lower arm 536. Upper arm 540 has a hand grip 542 formed at its distal end, which may be grasped by a user during operation of device 510.
As shown in
As shown in
When operating handle 514 is in the collapsed position, it can be seen that lower arm 536 rests on support surface 532 of lower housing 518 within recess 530 of upper housing 520. Preferably, the front surface of lower arm 536 is in substantially continuous contact with support surface 532, and the outer side surfaces of lower arm 536 are in close proximity to the side surfaces of recess 530. In this manner, lower arm 536 substantially conforms in shape to the space provided above support surface 532 within recess 530 so that lower arm 536 may solidly rest on support surface 532. It can also be seen that hand grip 542 of upper handle 538 rests on lower arm 536 when operating handle 514 is in the collapsed position.
In addition, when operating handle 514 is in the collapsed position, it can be seen that lower and upper handles 534 and 538 do not extend laterally from the outer periphery of base assembly 512. As such, operating handle 514 occupies a minimal amount of horizontal and vertical space to facilitate compact storage, shipping, and/or transportation of device 510. Furthermore, hand grip 542 provides a convenient lifting handle, provided upper and lower handles 540, 536 are lockable in the collapsed position.
Another aspect of the present invention is directed towards a novel arrangement of supply and recovery tanks in a wet extractor. In a preferred embodiment, the present invention provides a recovery tank having a tank inlet for receiving air and waste water, a tank outlet for evacuating air, interior wall surfaces defining a waste water reservoir, exterior wall surfaces defining an outer periphery of the recovery tank, and a generally downward sloped inlet conduit having an upper wall, a lower wall and side walls. The exterior wall surfaces may be adapted to slidably engage with an extractor housing. The recovery tank may also have a unique float assembly, filter chamber, airflow and baffling systems, and other features, as described herein. In other preferred embodiments, the invention also provides a supply tank that is shaped to increase its ease of use and is slidably received in the extractor housing. The supply and recovery tanks may beneficially be located laterally relative to one another to provide a compact and functional design that maintains the overall weight of the device in approximately the same location throughout use of the device.
A wet extractor employing one embodiment of the novel tank configuration is shown in
Supply tank 2414 and recovery tank 2416 are slidably engageable with housing 2412. Preferably, supply tank 2414 and recovery tank 2416 are individually removable, but they may be joined together to be removable as a unit, either by integrally forming the tanks or by attaching a common handle to both. In the embodiment of
In the embodiment of
In a preferred embodiment, supply tank 2414 and recovery tank 2416 are located in front of the pivot axis 2401 of handle 2402 and are laterally juxtaposed relative to the longitudinal axis of housing 2412. In this embodiment, tanks 2414 and 2416 are also preferably generally positioned between inlet slit 2440 and wheels 2434 to distribute their weight approximately between them. Housing 2412 forms a vertical rib 2430 that extends between tanks 2414 and 2416, and may be provided with a carry handle 2444 that can be used to lift and move wet extractor 2410. Inlet nozzle 2432 extends backwards and is located, at least in part, atop vertical rib 2430. Inlet nozzle terminates at a nozzle outlet 2442, and outlet 2442 is positioned adjacent a corresponding recovery tank inlet 2712 (
Wet extractor 2410 is also provided with a fluid deposition assembly (not shown in
The preferred configuration of
In the pocketed configuration of the present invention, tanks 2414 and 2416 are retained in the housing, at least in part, by their own weight. The security of the tanks' engagement with the pockets can be increased by shaping them such that tanks 2414 and 2416 fit snugly into their respective pockets 2422 and 2424. Another way to improve the engagement between tanks 2414 and 2416 with pockets 2422 and 2424 is to form them to “snap” into one another. For example, each opening may be provided with a slight protrusion that fits into a corresponding snap detent 2830 on the side of the part that fits therein, or vice-versa. Of course, snap engagement can be provided by any other structure that causes one part to have a slight interference fit, at least during engagement, with the part with which it is being engaged. The interfering structures may be positioned to firmly hold the parts together when they are fully engaged, or may allow some play between the parts, depending on the desired design and the tolerances of the parts.
The use of sliding and snap engagement in the present invention provides numerous advantages. For example, this configuration is simple and intuitive to operate and eliminates the need for mechanical fasteners, such as locking levers or latches. Such mechanical fasteners increase the cost of manufacture, can be difficult to understand and operate and are subject to breaking. In addition, supply tank 2414 and recovery tank 2416 are preferably positioned in housing 2412 to be removable when the operating handle 2402 (or the lower portion thereof, if operating handle 2402 is collapsible) is in the upright resting position, as shown in
Detergent tank 2418 and removable float assembly 2420, if provided, may be adapted to slidably engage with housing 2412 in a manner similar to that described with respect to tanks 2414 and 2416. Alternatively, detergent tank 2418 and/or removable float assembly 2420 may be adapted to slidably engage with supply tank 2414 and recovery tank 2416, respectively, in which case detergent tank 2418 may be removable with supply tank 2414 as a unit and removable float assembly 2420 may be removable with recovery tank 2416 as a unit. In the embodiment of
Supply tank 2414 and detergent tank 2418 have fill caps 2415 and 2419, respectively, that are removable to fill the tanks with fluid. In order to provide fluid passages between supply tank 2414 and detergent tank 2418 and the device 2410, opening 2422 and the detergent tank opening have dry-break valve assemblies (such as shown as supply tank receptacle 3060 in
Supply tank 2414 and recovery tank 2416 each have an integrally formed handle 2436 and 2438, respectively, to facilitate their removal, carrying and installation. Integral handles 2436 and 2438 are formed directly in the exterior walls of the tanks 2414 and 2416, and require no additional parts or assemblies. As such, integral handles 2436 and 2438 are substantially stronger than attached handles, less expensive to produce, and more convenient to use. The additional strength of integral handles 2436 and 2438 is particularly advantageous when tanks 2414 and 2416 are held in firm snap engagement with housing 2412, because there is no risk that handles 2436 and 2438 will separate from tanks 2414 and 2416 during removal from housing 2412. Handles 2436 and 2438 also may be provided with a textured or rubberized grip surface. While the handles 2436, 2438 are preferably deep enough that a typical user's fingers can nest in them to facilitate lifting and holding each tank solely by the handle, one or both of tanks 2414 and 2416 also may have grip detents 2437 and 2764 (
Referring now to
Referring now to
Recovery tank 2416 includes an inlet 2712 that is positioned to align with inlet nozzle outlet 2442 (
In the embodiment of
Recovery tank outlet 2429 doubles as a drain opening for emptying recovery tank 2419 when removable float assembly 2420 is removed. In a preferred embodiment, at least a portion of integral handle 2438 is positioned, with respect to a plane parallel to the surface to be cleaned, between the center of gravity of recovery tank 2416, as measured with waste water therein, and recovery tank outlet 2429. This measurement is shown representatively in
As best shown in
Removable float assembly inlet 2722 is adapted to engage with tank outlet 2429, and float assembly outlet 2724 is adapted to engage with filter chamber inlet 2716. A gasket 2725 may optionally be provided between removable float assembly 2420 and recovery tank 2416 to improve the vacuum seal between them. It is preferred that removable float assembly 2420 be engageable with recovery tank 2416 by snap engagement. In the embodiment shown in
Removable float assembly 2420 has a float device 2728 incorporated therein or attached thereto. Generally speaking, the float device can be any device that detects the level of waste water in recovery tank 2416 and blocks or impedes the flow of air to the vacuum source when the level of waste water rises to a predetermined level. In the embodiment of
The float device 2728 described herein comprises a simple sliding float having a sealing surface positioned directly on the float, however, other float devices may be used with the present invention. For example, the float device may instead comprise a door attached to a float by way of a linkage, post or pushrod. Furthermore, although the float device 2728 is shown being located outside plenum 2726, it could instead be located therein. Still further, removable float assembly 2420 may be provided as a separate float device 2728 and housing 2727. In other embodiments, recovery tank 2416 may be provided with an integral float assembly and filter (or the filter may be omitted), in which case, removable float assembly 2420 is not used.
Recovery tank 2416 is configured with various internal passages that have been found to provide efficient water separation and operation characteristics. The inlet of recovery tank 2416 comprises a downward-sloped inlet conduit 2740, that is formed between an upper exterior wall 2742 of recovery tank 2416, and a sloped internal wall 2744. The sides of inlet passage 2740 are formed by exterior side walls of recovery tank 2416. Inlet passage 2740 extends downward into recovery tank 2416 and terminates at a conduit exit 2746 proximal to the main portion of waste water reservoir 2711. The downward slope of inlet passage 2740 prevents waste water that might cling to the interior surfaces of recovery tank 2416 from flowing backwards out of the inlet nozzle 2432 and soiling the floor when the vacuum source is off, and also moves the entrance into the reservoir 2711 as far from the suction source as possible to maximize the amount of time available to separate fluid from the airflow.
A rib 2748 is preferably provided at conduit exit 2746 to extend into inlet conduit 2740 to reduce the conduit's cross-sectional area. This reduction in area throttles the airflow and accelerates the air/fluid mixture as it exits inlet conduit 2740. The abrupt area change before and after rib 2748 also may initiate a swirling movement in the air/fluid mixture. In various embodiments of the invention, inlet conduit 2740 is sloped downward at an angle of about 5 degrees to about 50 degrees, and more preferably about 20 degrees to about 30 degrees, as measured from the center of the conduit at the beginning of the downward slope to the center of the conduit at the conduit exit (not including the rib 2748, if present).
Integral handle 2438 also may be formed such that the internal surfaces of the walls defining integral handle 2438 extend into inlet conduit 2740. This also decreases the cross-sectional area of inlet conduit 2740 and throttles the air/fluid mixture as it passes therethrough. The location of integral handle 2438 between upper exterior wall 2742 and sloped interior wall 2744 also increases the strength of integral handle 2438.
In the embodiment shown in
It is preferable, but not necessary, to orient the inlet conduit so that it extends generally away from recovery tank outlet 2429. This helps prevent the incoming air/fluid mixture from immediately traveling to outlet 2429, thereby “short-circuiting” the waste water reservoir 2711. In this embodiment, a flow reversing pocket 2750, preferably is positioned at conduit exit 2746 to cause the air/fluid mixture to rapidly negotiate a tight change in direction, as shown by arrow “B.” Flow reversing pocket 2750 is preferably formed by internal wall 2752, but may be formed by other surfaces, such as an internal surface of an exterior wall. When the air/fluid mixture negotiates this turn, the relatively heavy water tends to become separated, by its own momentum, from the air in which it is entrained. Separated water may settle on internal wall 2752, and flow into waste water reservoir.
Inlet conduit 2740 preferably has a substantial length to thereby help prevent short-circuiting and to focus the flow of the incoming air/fluid mixture towards flow reversing pocket 2750. In a preferred embodiment, inlet conduit 2740 has a length of at least about 1 inch, and more preferably at least about 2 inches, and most preferably at least about 3.5 inches. The length of inlet conduit is measured generally from the center of conduit exit 2746 to the nearest edge of recovery tank inlet 2712.
After negotiating the turn created by flow reversing pocket 2750, the air/fluid mixture passes into waste water reservoir 2711, where it rapidly slows due to the abrupt increase in volume of reservoir 2711. The air/fluid mixture also may undertake a complex tumbling and recirculating flow pattern when it enters and navigates through waste water reservoir 2711, which increases the overall length of the air's flow path before it exits recovery tank 2416. This reduction in speed and increase in flow path length gives entrained water time to precipitate out of the air and settle in reservoir 2711.
The air, and any remaining entrained fluid, preferably exits recovery tank 2416 by way of a throttling passage 2754. Throttling passage is most conveniently formed on the top by the bottom side of sloped internal wall 2744, on the bottom by an additional internal wall 2756, and on the sides by the sides of recovery tank 2416. Of course, other wall configurations can be used instead. Throttling passage 2754 has a smaller cross section than waste water reservoir 2711, and therefore air in throttling passage 2754 tends to accelerate as it passes therethrough. This acceleration tends to remove water entrained in the air because the relatively heavy water does not accelerate as quickly as the air. Throttling passage 2754 exits proximal to recovery tank outlet 2429, where the air turns 90 degrees to exit recovery tank 2416. This abrupt turn also tends to remove entrained fluid from the air, as described previously herein with reference to flow reversing pocket 2750. In a preferred embodiment, throttling passage 2754 is located level with or above the lower wall of conduit exit 2746, which helps prevent the air/fluid mixture from short-circuiting, and forces the air/fluid mixture to turn upwards before exiting waste water reservoir 2711, to thereby use gravity to help pull entrained water out of the air.
Recovery tank 2416 preferably includes a baffle 2758 that extends upward from recovery tank floor 2766 and divides waste water reservoir 2711 into a main chamber 2760 and an isolation chamber 2762. Baffle 2758 generally extends across the entire width of recovery tank 2416, and vertically extends to at least about the location of float 2730. Baffle 2758 also preferably extends in a direction perpendicular, relative to a horizontal plane (i.e., as seen from above), to an imaginary line extending from the center of main chamber 2760 to tank outlet 2429 to thereby form a wall that obstructs liquid movement from the main chamber 2760 to the outlet 2429. Baffle 2758 preferably also comprises a splash baffle 2770 that extends over main chamber 2760 to impede fluid that might otherwise splash over baffle 2758. If recovery tank 2416 includes a throttling passage 2754, then the throttling passage's lower wall 2756 may form splash baffle 2770.
Fluid in main chamber 2760 can enter isolation chamber 2762 essentially only through a passage 2768 (or passages) formed near the bottom of baffle 2758, and preferably between baffle 2758 and floor 2766. Passage 2768 may extend across the entire width of baffle 2758, or only a portion or portions thereof. Float device 2728 preferably extends downward into isolation chamber 2762, and isolation chamber 2762 operates to prevent float device 2728 from being inundated with sloshing fluid whenever the wet extractor is moved backwards and forwards during operation.
Isolation chamber 2762 operates by restricting the flow rate of fluid from main chamber 2760 to isolation chamber 2762 during momentary forward and rearward longitudinal accelerations, such as those experienced when the wet extractor is moved back and forth to clean a surface. Such accelerations cause fluid in waste water reservoir 2711 (in both main chamber 2760 and isolation chamber 2762) to move backwards and forwards, creating sloshing waves. The vertical height of the wave depends on a number of factors, including the length of the chamber, the amount of fluid in the chamber, and the magnitude of the acceleration. Generally, longer chambers produce greater wave height. Baffle 2758 and passage 2768 operate to effectively reduce the length of waste water reservoir 2711 during wave-producing accelerations, without reducing its volume. During accelerations, the small passage 2768 prevents rapid movement of fluid between isolation chamber 2762 and main chamber 2760, and thereby effectively isolates them from one another, reducing their length and therefore the wave sizes generated in both chambers. By preventing these waves from striking float device 2728, the present invention prevents float device 2728 from unnecessarily blocking the vacuum source during cleaning, and prevents large sloshing waves from rapidly exiting recovery tank 2416 before float device 2728 has time to close.
It has been found that passage 2768 provides beneficial performance in an approximately 0.60 gallon to one-gallon waste water reservoir, and most preferably about a 0.80 gallon waste water reservoir, when passage 2768 has an area of about 2.50 in2 or less, and more preferably about 1.50 in2 or less, and most preferably about 0.75 in2 or less. These areas may vary, of course, depending on the particular shape and size of the recovery tank 2416. Preferably, the minimum width of passage 2768 is at least about 0.125 inches, and more preferably at least about 0.500 inches, to prevent clogging. In a most preferred embodiment, passage 2768 is about 3.75 inches wide, and about 0.500 inches high, and located at the bottom of baffle 2758.
While baffles such as those described herein are useful in many different shapes of any recovery tank, it has been found that such a baffle is particularly useful in a recovery tank, as shown in
The various external and internal walls that form the walls and baffles described herein may be fabricated by a number of different methods. However, it has been found that the walls can be inexpensively and efficiently constructed by forming recovery tank 2416 by two halves 2772 and 2774, as shown in
It will be appreciated by those of ordinary skill in the art that the various recovery tank features described herein may be used separately or in combination, and also may be used in combination with various recovery tank features known in the art.
Referring now to
Supply tank 2414 comprises a selectively sealable inlet 2816 having a cover or, more preferably, a screw-on cap 2415. Cap 2415 or inlet 2816 is also preferably provided with a gasket 2832 to help prevent fluid from leaking therethrough. A vent hole 2820 is located near the uppermost extent of supply tank 2414, and may be formed in cap 2415. Supply tank 2414 is provided with a dry-break outlet 2810, as are known in the art, which is positioned in the lowermost wall 2822 of fluid reservoir 2814 to allow the maximum amount of fluid to be extracted from supply tank 2414 during use. Dry-break outlet 2810 is positioned to engage with a corresponding inlet located in opening 2422 when supply tank 2414 is inserted therein (see
Dry-break outlet 2810 is shown in detail in
Supply tank 2414 is preferably shaped so that it has a low profile when it is oriented to be filled. This allows supply tank 2414 to be filled even when relatively little vertical room is available, as is often the case in bathroom sinks, in which the sink basin is typically shallower and the faucet is typically lower than in kitchen sinks. In order to accomplish this goal, the exterior walls of supply tank 2414 define a flattened outer periphery that has a first generally flat side 2824, and selectively sealable inlet 2816 is located on this flattened side 2824. The filling profile of supply tank 2414 may also be further flattened by providing another substantially flattened side 2826 opposite first flattened side 2824, as shown in the figures. Filling of supply tank 2414 may be even further facilitated by placing selectively sealable inlet 2816 in a funnel-shaped cavity 2828, as shown in
In this embodiment, supply tank 2414 is filled by removing it from housing 2412, removing cap 2415, turning housing 2414 on its side, and positioning inlet 2816 under a sink faucet. The narrow, flattened profile of supply tank 2414 provides substantially more clearance than typical supply tanks, and allows inlet 2816 to be positioned under faucets in sinks that have relatively shallow basins and low faucets.
Another aspect of the present invention is a unique liquid management assembly for a wet extractor. The liquid management assembly is adapted to perform one or more of various functions that control the flow of clean water, detergent and mixtures thereof in the wet extractor. Functions of the liquid management assembly may include, but are not limited to, priming, pumping, mixing and distribution of cleaning fluids such as water and detergents. It will be appreciated that any suitable fluid or fluids may be used with the present invention, and the term “detergent” includes any useful cleaning fluid, brightener, deodorant, perfume and other useful cleaning compounds. The present invention provides a compact and relatively inexpensive centralized liquid management assembly.
A first embodiment of the liquid management assembly is shown in
Primer outlet 3018 leads to a priming assembly 3019 that operates to prime pump 3002. Such priming is useful when pump 3002 does not self-prime, as is the case in typical centrifugal pumps. Priming assembly 3019 has a float chamber 3020 in which a float 3022 is captured such that it can freely slide from the bottom of the chamber to the top. It is preferred that float chamber 3020 be vertical to reduce any friction between float 3022 and the float chamber walls. Float 3022 may be any device that will rise on fluid in float chamber 3020, and may comprise a sealed air chamber, an inverted cup, or the like. The body of float 3022 is shaped and sized to allow air to pass between float 3022 and the walls of float chamber 3020. Float chamber 3020 has a vent hole 3026 at its upper end that, in one embodiment, is preferably placed in fluid communication with atmospheric air. Float 3022 is provided with a sealing structure 3028 that engages with vent hole 3026 when float 3022 reaches the upper extent of its travel to thereby seal float chamber 3020 and prevent the escape of fluid. Sealing structure 3028 preferably has a domed shape or a tapered point, but other shapes may be used. In another embodiment, an additional sealing structure (not shown) may be placed on the bottom of float 3022 to seal the entrance to float chamber 3020 when float 3022 is at the bottom thereof.
When fluid is provided to assembly 3000 the fluid enters float chamber 3020 and raises float 3022 until the float's sealing structure 3028 closes vent 3026 or until the hydrostatic head pressure of the fluid equalizes at some point below the full height of float 3022. Any air in the system escapes around float 3022 and exits through vent hole 3026. In this embodiment, it is preferred for the wet extractor's fluid supply tanks, such as supply tank 3004 and detergent tank 3006, to be positioned above pump 3002 so that fluid flows to and primes pump 3002 by gravity. In this case, priming assembly 3019 serves the useful function of venting any captured air out of the system to allow fluid to flow from tanks 3004 and 3006 to pump 3002. Also, using this configuration, the vent 3026 need not be connected to a vacuum source as in other systems, which reduces the cost of the device and eliminates the risk of damage that may occur when the vacuum source ingests fluids. Furthermore, if priming assembly 3019 is positioned above the tank attachment points (i.e., above the receptacles with which the tanks' valve assemblies 2810 mate), then one or more check valves (not shown) may be used to prevent fluid in float chamber 3020 from flowing backwards and out of the tank attachment points when the tanks are removed.
Flow valve 3016 is positioned in chamber 3014 to block the fluid communication path between inlet 3012 and outlet 3024 when valve 3016 is in a closed position, and allow fluid communication between inlet 3012 and outlet 3024 when valve 3016 is in an opened position.
Pump 3002 and spring 3030 are selected such that pressurized fluid from pump 3002 has sufficient pressure (usually about 7-10 psi) to overcome the spring bias and frictional resistance of the valve seal in the bore. When the bias and friction are overcome, the fluid moves valve 3016 into the open position, and forces its way into outlet 3024. When pump 3002 is turned off, spring 3030 forces flow valve 3016 back to prevent fluid communication to outlet 3024. This feature of the present invention allows the operator to control the flow of fluid to the surface to be cleaned by selectively activating and deactivating pump 3002, which automatically opens flow valve 3016. This is advantageous over systems that operate the pump constantly and control flow with a manually-operated mechanical or electric valve. One advantage is that it requires fewer parts because it does not require wiring or mechanical linkages to operate the valve, and instead simply uses the existing power wires to an electric motor driving the pump 3002. Another advantage of this feature of the invention is that pump 3002 and valve 3016 can be conveniently located virtually anywhere in the wet extractor, whereas systems that have manually operated valves either require the valve to be located in the wet extractor's handle (in the case of mechanically-operated valves) or require the use of expensive solenoid valves and additional wiring (in the case of electrically-operated valves). This configuration also eliminates “dead head” hydrostatic forces that occur when the pump is driven against a closed fluid passage.
In wet extractors having separate supply and detergent tanks, it is often desirable to allow the operator to control the amount of detergent that is mixed with the water from the supply tank. In such cases, it has been found to be desirable to prevent the fluid in the two tanks from intermingling when the wet extractor is not in use. It has been discovered that the flow valve 3016 can also be used to selectively stop the flow of detergent in a wet extractor, thereby isolating the detergent tank from the supply tank when the device is idle.
One embodiment of this feature of the invention is shown in
Referring now to
It will be understood that although the configuration described with reference to
Referring back to
The mixing manifold 3010 is shown in detail in
During operation, when flow valve 3016 moves to place outlet 3024 into fluid communication with inlet 3012, detergent valve 3032 simultaneously opens and places detergent inlet 3034 in fluid communication with detergent outlet 3036. Once valve 3032 is opened, detergent can flow into mixing manifold 3010, become mixed with water from supply tank 3004, and be pressurized by pump 3002 for deposition onto the surface to be cleaned. When pump 3002 is deactivated, flow valve 3016 closes, simultaneously closing detergent valve 3032. With detergent valve 3032 closed, detergent is prevented from flowing from detergent tank 3006 to mixing manifold 3010 and into supply tank 3004.
Using the present invention, the flow of detergent can be controlled by the pump, rather than requiring separate solenoids or other valves to connect and disconnect the detergent supply. The present invention also reduces or eliminates the problem in some prior art devices in which detergent was free to siphon into the flow path between the supply tank and the pump during idle periods, which resulted in the wet extractor providing an initially high concentration of detergent for a short period after each restart.
Another feature of the invention relates to a system for switching a wet extractor between a floor cleaning mode and an accessory cleaning mode. Many wet extractors are provided with two output modes—one for when the wet extractor is being used on a floor, and one for when an accessory tool is being used with the wet extractor to clean remote surfaces. During accessory tool mode, fluid and vacuum must be diverted away from the floor and to the accessory tool. The unique output valve arrangement of the present invention automatically switches from floor cleaning mode to accessory tool mode when an accessory tool is attached to the wet extractor.
Referring still to
The second output valve assembly outlet 3046 is adapted to be connected to a detachable accessory tool by way of the tool's attachment plug 3058. To facilitate this attachment, outlet 3046 preferably leads to a tool hose plug 3048 that attaches to a matching hose plug receptacle 3049 in the tool attachment plug 3058 when it is inserted into the wet extractor. Plug 3048 and receptacle 3049 may comprise any hose attachment system that provides a fluid communication path when connected. In a preferred embodiment, plug 3048 comprises a simple cylindrical plug and receptacle 3049 comprises a slightly larger cylindrical bore. One or both of plug 3048 and receptacle 3049 is preferably provided with a seal, such as an o-ring 3051, to make the connection fluid-tight.
The position of valve 3042 determines whether the incoming pressurized fluid it transmitted to the first outlet 3044 (and hence to the floor) or the second outlet 3046 (and hence to the accessory tool). Because wet extractors are typically operated primarily in the floor cleaning mode, and it is desirable to cut off fluid flow to the accessory tool when it is not installed, it is desirable to have the default position of valve 3042 be the floor cleaning mode. To this end, output valve assembly 3037 is provided with a resilient biasing member, such as spring 3050, that urges valve 3042 into a first position (as shown in
When it is desired to attach and operate an accessory tool, slide valve 3042 is moved against the bias of spring 3050, into its second position (i.e., tool mode) to divert the pressurized fluid to tool outlet 3046. A second seal blocks fluid communication to the first outlet 3044 in this position. As with the first seal, the second seal preferably comprises a pair of o-rings 3054 that form an anti-siphon seal that completely blocks fluid and air communication to first outlet 3044. By providing an o-ring 3054 on both sides of outlet 3044, rather than just placing a single seal between outlet 3044 and inlet 3038, the seal fully blocks outlet 3044 and prevents any fluid remaining between outlet 3044 and nozzle 3302 from siphoning out of the system and onto the floor. A single large seal or other sealing device that completely covers outlet 3044 could also be used in lieu of the shown double o-ring design.
In a preferred embodiment, valve 2042 is adapted to change from the floor mode to the tool mode simply by the act of installing the accessory tool plug 3058 into the wet extractor. In this embodiment, no additional steps need to be taken to interrupt the fluid communication path to the floor and open the fluid communication path to the tool. In order to provide this automatic switching feature, accessory tool plug 3058 is provided with a structure, such as plunger 3053, that acts as a valve actuator by pressing on valve 3034 and moving it against the bias of spring 3050 to place it into tool mode. Preferably, plunger 3053 presses against an upper surface 3052 of valve 3042, but it is also envisioned that plunger 3053 or another structure could press against a trigger protruding from the side of valve 3042, pull on valve 3042, or operate valve 3042 through a linkage. Plunger 3053 also may be replaced by a flat surface, in which case top surface 3052 may be shaped to protrude out of output valve assembly 3037 to meet with plug 3058 during engagement with the wet extractor. In an alternative embodiment, in which valve 3042 is actuated by an electrical device such as a solenoid, tool plug 3058 may operate an electrical switch to actuate valve 3042 rather than using a mechanical actuation system as just described.
In the embodiment shown in
Although the separated (i.e., not combined) hose attachment/output valve switching system described thus far is preferred, this does not preclude various embodiments of the present invention from using coaxial, concentric or otherwise combined hose attachment/output valve switching structures, as are known in the art and shown, for example, in the '098, '405 and 300 patents. Such alternative embodiments may include dry-break valves, and systems in which the hose attachment and output valve switching functions are performed either simultaneously or at different times or by different steps. For example, in one alternative embodiment, in which an electric switch is incorporated into the device to automatically operate pump 3002 (as described in more detail below), the device may have an accessory tool plug 3058 having a hose attachment structure that automatically switches the flow output to go to the accessory tool when it is attached. In this embodiment, part of the tool plug, or the fluid valve that is actuated by the tool plug, may be adapted to actuate the electric switch and turn on the pump when the tool plug is inserted into the wet extractor, as described elsewhere herein.
Another feature of the present invention is the inclusion of an electric switch in the liquid management assembly for controlling the operation of pump 3002 during the accessory tool mode. As shown in
Although this embodiment of the invention has numerous advantages with regard to operation in floor cleaning mode, in some embodiments switch 3003 may not be easily operated when the operator is using an accessory tool. Although this inconvenience may be overcome by incorporating an electric switch in the accessory tool, similar to the manner shown in U.S. Pat. No. 5,400,462, such a solution is undesirable because it increases the cost of the device and, more importantly, introduces an electrocution hazard. It has been discovered, however, that this inconvenience can be overcome by incorporating a separate automatic pump activating switch directly into the liquid management assembly 3000. In this embodiment of the invention, whenever the tool accessory plug 3058 is installed in the wet extractor and engaged with the liquid management assembly 3000, pump 3002 is automatically activated. Fluid flow is then controlled locally at the accessory tool by a trigger valve, such as a pinch valve, slide valve, or the like located in the accessory tool or tool handle. Referring now to FIGS. 32 and 33A-C, various additional embodiments of the invention having automatic pump switches will now be described.
Referring now to
Various steps can be taken to prevent switch 3212 from being contaminated with fluids or dirt. For example, switch 3212 is preferably encased in a housing 3214 that protects the switch from contact with fluids. While housing 3214 is designed to prevent most fluid from dripping or splashing onto switch 3212, housing 3214 need not be fluid-tight, and it may be sufficient to simply orient the openings in the housing downward to prevent contact with fluids. In addition, the switch wires 3220, which provide an electrical connection to pump 3002, may be looped as shown, to form a drip-stop that prevents fluid from flowing along wires 3220 to switch 3212. In order to further isolate switch 3214 from potential contact with fluids, switch 3212 may be operated by way of a switch lever 3218 that projects out of housing 3214 with its end positioned in the path of slide valve 3042.
When valve 3042 is actuated to divert pressurized water to the outlet 3046, as described above, the switch plunger 3216 engages with switch lever 3218 to activate switch 3212 and turn on pump 3002. In this embodiment of the invention, all of the necessary functions to activate a detachable accessory tool—such as attaching the fluid hose, switching the fluid valve to operate in tool mode, and activating the pump—can be integrated into a single step of inserting the accessory tool plug into the wet extractor. Furthermore, this embodiment provides a highly centralized liquid management assembly 3000 that can be formed as a unit and easily placed into the wet extractor during assembly.
As previously shown with reference to
As shown in
In order to hold the parts and hoses in their desired positions, one or both of shell halves 3308 and 3310 are formed with various pockets 3312 and 3316 that contain the parts. One or both of shell halves 3308 and 3310 also may be provided with locating pins 3324 to help hold the parts in their proper locations. In the embodiment of
Although the embodiment of
Referring now to
Another additional feature of the embodiment of
The present invention also overcomes the inconvenience of having to perform multiple operations on a device to attach and activate an accessory or spot cleaning tool. In a most preferred embodiment, the operator can attach the accessory tool fluid and vacuum hoses, shut off fluid and vacuum flow to the floor, divert these flows to the accessory tool, and activate the fluid pump to provide pressurized fluid to the accessory tool in a single action. A preferred embodiment of an accessory tool plug and tool plug outlet system that can be used to simultaneously provide these functions will now be described with reference to
A preferred embodiment of an accessory tool plug 3400 is depicted in
Plug 3400 may be manufactured or assembled in any way or by any method, but is preferably formed from two housing halves 3420 and 3422. Housing half 3420 forms vacuum diverter 3406 and has hollow vacuum passage therethrough, as shown by broken lines in
Although the embodiment of
Referring now to
Plug outlet 3502 is also provided with a cover 3516 having a sealing surface 3518 (preferably a foam or rubber pad or gasket) on the bottom side thereof. Cover 3516 may be hinged, slidably engaged, or otherwise attached to housing 3500. When cover 3516 is closed, sealing surface 3518 covers plug outlet 3502 and contains the vacuum within housing 3500. In one embodiment, cover 3516 (and sealing surface 3518) also seals first opening 3504 from second opening 3506 by abutting a dividing wall 3524 between the two, which eliminates the need to make first opening 3504 vacuum-tight to prevent unwanted vacuum leaks. Cover 3516 also may be equipped with tabs, hooks or fasteners (not shown) that engage with housing 3500 to hold it in engagement therewith (preferably snap engagement) when closed. Cover 3516 also may be provided with similar devices to engage with accessory plug 3400 to help retain plug 3400 when it is installed in housing 3500.
Another aspect of the present invention is directed towards an infinitely adjustable detergent concentration valve that may be used to control the amount of detergent that is mixed with the fresh water of a wet extractor. Various preferred embodiments of a detergent valve of the present invention will now be described with reference to
Referring specifically to
Detergent valve 3600 can be located, in a fluid flow sense, anywhere between the detergent tank and the mixing manifold 3010 where it mixes with water from the supply tank 2414. As noted before with reference to
Various alternative embodiments of this configuration are possible with the present invention. For example, a device other than valve 3032 may be used to control the flow of detergent, or valve 3032 can be omitted or placed between the detergent tank 3006 and the detergent valve assembly 3600. In another alternative embodiment, detergent outlet 3606 can lead directly to a mixing manifold to mix with water from a supply tank. In still another embodiment, one or more check valves (not shown) can be positioned in the detergent flow path to prevent backflow.
Detergent valve assembly 3600 has first and second bores 3608 and 3610 that are arranged in a substantially co-linear fashion. Bores 3608 and 3610 are also preferably generally concentric (i.e., sharing a common centerline), but this is not required. A plunger 3612 is inserted into detergent valve assembly 3600 through a plunger opening 3614 located at the end of first bore 3608 that is opposite second bore 3610. Plunger 3612 is slidably movable within detergent valve assembly 3600 in the direction shown by the double-headed reference arrow G. Plunger 3612 may also be shaped with a tang 3616 that engages with a slot 3618 in housing 3602, which prevents rotation of plunger 3612 relative to housing 3602, which may be particularly useful when bores 3608 and 3610 are made with a generally cylindrical shape. Rotation of plunger 3612 may also be prevented by making one or both of bores 3608 and 3610 generally non-circular in cross section, or by offsetting the centerline of the second bore 3610 relative to the centerline of the first bore 3608.
As shown in
Plunger 3612 is adapted to control the amount of detergent that passes from detergent inlet 3604 to detergent outlet 3606. To do so, plunger 3612 is equipped with a second fluid seal 3622, which is preferably an o-ring, that is positioned on a portion of plunger 3612 that extends into second bore 3610. Second bore 3610 has a tapered slot 3624 that is deepest proximal to the end of bore 3610 closest to first bore 3608, and eventually tapers to nonexistence as it extends along the length of second bore 3610 towards detergent outlet 3606. Tapered slot 3624 may have a true taper (i.e., a continuous gradual slope), which is preferred, or a stepped profile in which its depth decreases by discrete incremental amounts. The remaining walls of second bore 2610 (i.e., those that do not form tapered slot 3624) form a cross-sectional shape that is continuous along the length of second bore 3610, and generally coincides with the shape of second fluid seal 3622. In this manner, second bore 3610 is provided with a variable cross-sectional shape that increases in area as a function of distance from outlet 3606 along the second bore 3610, as the taper deepens.
The length of tapered slot 3624 is selected so that, when plunger 3612 is in a fully inserted position (all the way to the right, as seen in
It will be seen from this discussion that when tapered slot 3624 has a true taper, the amount of detergent allowed past second fluid seal 2622 is essentially infinitely variable between the fully-opened and off positions. When tapered slot 3624 has a stepped profile, discrete detergent passage amounts are provided. Either of these embodiments may be used with the present invention. In another embodiment, shown in
Although virtually any sealing device can be used as first and second seals 3620 and 3622, o-rings are inexpensive and perform adequately to prevent unwanted leaking. Furthermore, while the primary function of seals 3620 and 3622 is to control the flow of detergent, it should also be appreciated that seals 3620 and 3622 also provide a friction fit between plunger 3612 and bores 3608 and 3610 that prevents the gravity-induced head pressure of the detergent in the detergent tank from forcing the detergent valve assembly 3600 open. Again, it has been found that simple o-rings can provide a friction fit that prevents unwanted plunger movement, even when the detergent tank is raised substantially above the level of detergent valve assembly 3600.
Although the discussion herein identifies passage 3604 as a detergent inlet and passage 3606 as a detergent outlet, it will be readily appreciated that these may be reversed with respect to the direction of detergent flow. It will also be appreciated that detergent valve assembly 3600 can be oriented in any direction, although it is preferred that assembly 3600 be oriented vertically with plunger opening 3614 at the top. Furthermore, inlet 3604 and outlet 3606 may be positioned on different sides of housing 3602, rather than being on the same side as shown in the figures. Such variations are all within the realm of regular engineering design choice.
Referring now to
In a preferred embodiment, slider 3802 is located on a back face 3804 of wet extractor housing 3800, as shown in
Slider 3802 preferably is shaped to be easily operated by hand or by foot. Slider 3802 also may be marked with graphics 3816 to indicate the detergent-to-water mixture level, and it is preferred that graphics 2824 be clearly visible when the operator is standing upright. Using this configuration, a user can operate a simple sliding device to control the amount of detergent that is mixed with the fresh water of the extractor, rather than having to operate a rotating device. The user may even control the mixture without bending over by operating slide 3802 with his or her foot. Furthermore, the infinitely variable tapered slot-type device provided by the present invention allows the user to precisely tailor the amount of detergent used, without having to select from discrete concentration levels as required in conventional wet extractors. This provides the user with virtually unregulated control over the amount of detergent that can be mixed with the fresh water.
Still another aspect of the present invention relates to a unique agitation system that may be used in the main housing of a floor cleaning device or an accessory cleaning tool. Although the agitation system described herein is described in the context of a wet extractor, it will be apparent to those of ordinary skill in the art that it may also be used in other devices. In one embodiment, the cleaning device agitator has a mount, an agitator comb that is operatively attached to the mount and adapted to be vertically displaceable relative to the mount in a first linear direction perpendicular (or at least partly perpendicular) to a surface to be cleaned, and a drive assembly adapted to cyclically drive the agitator comb in a second linear direction substantially parallel to the surface to be cleaned without vertically driving the agitator comb. Preferably, the agitator comb is free to float on the surface being cleaned even when it is being driven.
Referring specifically to
It has been found that it is particularly desirable for the agitator comb 3904 to be mounted to the device such that is can “float” on the surface being cleaned without applying a significant vertical force thereto. Alternatively, it can be spring biased to provide a downward force when the housing is located at the desired distance for cleaning. In the present invention, one way of providing this desired “float” is to mount the agitator comb 3904 so that it is vertically displaceable relative to its mounting point on the device to which it is attached (the direction “vertical” being generally perpendicular to the surface being cleaned and shown by arrow B in
The agitator comb 3904 of
In the embodiment shown in herein, clips 3916 are made removable by shaping each clip 3916 as a pair of flexible posts 3916a having ramped protrusions 3916b at the end thereof. When agitator comb 3904 is pulled away from agitator drive bar 3912, ramped protrusions 3916b are pressed towards one another by contact with the inner edges of hole 3918, thereby flexing posts 3916a until protrusions 3916b move toward one another far enough to allow the clip's removal. The design of such releasable clips 3916 is within the ordinary skill of the art. It should also be understood that, while clips 3916 are shown as internal clips (i.e., clips that are inserted into a hole or opening in the part that they grip), clips 3916 may also be replaced by external clips that wrap around the part that they grip, or any other suitable type of sliding fastener. Any such variations are within the scope of the invention.
Two alternative embodiments for operatively attaching agitator comb 3904 so that it is displaceable relative to housing 3901 are shown in
Although the embodiments described herein use slideable engagement systems to provide displaceability between agitator comb 3904 and housing 3901, other systems and embodiments if isolation mounts also may be used to provide the desired relative movement between agitator comb 3904 and housing 3901. For example, one or both of drive assembly 3902 and the agitator comb 3904 may be mounted on a displaceable linkage or a pivoting swing arm (such as shown in U.S. Pat. No. 5,937,475) that allows agitator comb 3904 to freely move towards and away from housing 3901. These and other embodiments will be apparent to those of ordinary skill in the art in light of the present disclosure.
In still another embodiment, shown in
In a preferred embodiment, both mounting rail 3908 and agitator drive bar 3912 comprise a relatively rigid structure. Molded plastic, such as ABS plastic, or other lightweight rigid materials are most preferred. Agitator drive bar 3912 also includes one or more drive points 3926 that are adapted to be driven in a generally side-to-side motion by drive motor 3906 (the drive point or points may alternatively be located on flexible connector 3910 or agitator comb 3904). Motor 3906 is preferably attached to a switch to allow the user to selectively operate the agitator 3900 when desired. In embodiments using an electric motor, motor 3906 is preferably wired independently of the vacuum source, so that motor 3906 can operate either when the vacuum is operating or when it is not operating.
In the preferred embodiment of
Eccentric pin 3930 rotates about a drive axis 3932 that is offset from the centerline of eccentric pin 3930. As such, eccentric pin 3930 translates both laterally and vertically, in the directions of arrows A and B, respectively, as it rotates. The lateral movement of eccentric pin 3930 (in the direction of arrow A) is imparted to the vertical walls of slot 3928 to thereby drive agitator drive bar 3912, and the attached agitator comb 3904, in a cyclical lateral motion in direction A. The vertical length of slot 3928 is selected to be greater than the total vertical movement of eccentric pin 3930, and eccentric pin 3930 therefore slides up and down relative to agitator drive bar 3912 or agitator comb 3904 without imparting any substantial vertical force thereto. In this manner, motor 3906 imparts lateral driving forces to agitator comb 3904, while isolating agitator comb 3904 from vertical forces that could wear the surface being cleaned, or drive dirt deeper into the surface.
The eccentric pin/slot configuration of the embodiment of
Referring back to
It is also anticipated that drive speeds in the ultrasonic range (about 20,000+Hz), may be used with very low amplitudes to agitate the carpet and help remove dirt and debris. In this case, the entire agitator comb 3904 may be driven at ultrasonic frequencies or with ultrasonic overtones, or just parts of the agitator comb 3904 may be driven at ultrasonic frequencies or with ultrasonic overtones. When ultrasonic drive frequencies are desired, it is preferred to use an ultrasonic driver to drive the linear agitator 3900 rather than attempting to obtain such speeds from a conventional rotating drive motor. Ultrasonic drivers (or “horns”) are commercially available from a number of sources, and the adaptation of such devices to drive the agitator of the present invention will be within the ordinary skill in the art in light of the present disclosure.
In the embodiment of
The dimensions of the flexible ribs 3936 can be manipulated to achieve the desirable flexibility and fatigue resistance. In one embodiment, the thickness t of each rib 3936 is about 10% of the rib's height and depth. In another embodiment, the each rib 3936 has a thickness t (in direction A) of about 2 mm, a depth (in direction C) of about 32 mm, and a height (in direction B) of about 24 mm. In this embodiment, there may be six ribs 3936, and flexible connector 3910 comprises two separate pieces that are located on opposite sides of the drive point 3926. Also in this embodiment, the resilience of flexible connector 39810 provides a restoring force that reduces the amount of force required to change the agitator bar's and agitator comb's direction of movement, which helps reduce fatigue on drive point 3926 and eccentric pin 3930.
Although the shown and described embodiment of the flexible connector 3910 is preferred, other embodiments are also possible. For example, flexible connector 3910 may instead comprise one or more mechanical linkages that are affixed to agitator drive bar 3912 and housing 3901 by hinges or a sliding bar. As used herein, “flexible” includes any structure that allows movement, such as pivots, slides, deformable structures, and the like. Flexible connector 3910 also may be oriented horizontally or at an angle relative to the surface to be cleaned (see, e.g.,
A unique and beneficial feature of one embodiment of the present invention is that agitator comb 3904 can be easily removed and replaced with a variety of different agitator combs that are adapted to suit different surfaces (such as bare floors, rugs of different materials and constructions, and so on). For example, various agitator combs 3904 having the construction shown in
Referring to
While the linear agitator of the present invention may be mounted in the device housing in any suitable location, in a preferred embodiment the linear agitator is mounted as shown in
It is preferable that linear agitator 3900 be positioned between vacuum inlet nozzle 4202 and the wet extractor's wheels, and located vertically with respect to wet extractor 4200 in such a way that the weight of the wet extractor does not rest, at least in any large degree, upon agitator comb 3904. This is desirable to maintain the desired “float” that prevents agitator comb 3904 from being forced into hard contact with the surface being cleaned 4216. The agitator comb's vertical travel Y (
A grooming brush 4214 may also be provided, preferably between inlet nozzle 4202 and spray pattern 4212. The wet extractor is operated by moving it forwards and backwards in the direction shown by reference arrow C. When wet extractor 4200 is pulled backwards (to the right in
In a preferred embodiment, grooming brush 4214 may be removed by the operator for cleaning, replacement, and use without it. Grooming brush 4214 may also be replaced by other types of brushes or other devices to accommodate the different carpets and floors that may be treated with wet extractor 4200. For example, a squeegee may be used to replace grooming brush 4214 when wet extractor 4200 is used on tile or hardwood floors.
It should be appreciated by those of ordinary skill in the art that numerous variations on the drive system for the linear agitator are possible with the present invention, and any system that can drive agitator comb 3904 in a cyclical motion without applying a substantial vertical load to agitator comb 3904 will be suitable. Some examples of alternative drive systems are now described with reference to
The embodiments of
Still another embodiment of an alternative drive assembly is shown in
The linear agitator of the present invention has been found to be effective at cleaning carpets and bare floors, while also providing a number of benefits over conventional designs. For example, the linear agitator generally does not leave streaks of accumulated water on the floor, as often happens with vertically-oriented spinning brushes. Furthermore, the linear agitator can be made such that it is readily modified by a user to use different agitator combs to meet the needs of different surfaces. Also, the agitator comb can be adapted so that it “floats” on the surface being cleaned without applying significant vertical force thereto, which reduces wear on the surface. Still further, the linear agitator eliminates the need for expensive bearings, as required in “beater brush” agitators, and has been found to self-clean in operation because it doesn't tend to pick up, sling or retain dirt, string and hair, as rotating cleaners do. Other advantages and benefits of the invention are also available, as described in and evident from the discussion herein.
While the discussion herein has generally described embodiments of linear agitators that are mounted in the bases of cleaning devices, such as wet extractors, a linear agitator of the present invention can also be adapted for use in accessory cleaning tools that are used for remote and spot cleaning operations. As noted elsewhere herein, such accessory tools are useful to provide the ability to clean surfaces that are not readily accessible by the large floor-cleaning bases of cleaning devices. Similarly, the present invention can also be adapted for use in portable hand-held cleaning tools, canister-type tools, and other devices, as will be appreciated by those of ordinary skill in the art.
An embodiment of a compact, hand-held agitator assembly 4500 that is usable as an accessory tool (often called a “turbo-tool”) or as part of a self-contained hand-held cleaning device is shown in
Referring also to
Agitator assembly 4500 is preferably connectable with a handle 4501, but handle 4501 also may be integrally formed with agitator assembly 4500 or omitted. Handle 4501 preferably comprises a rigid structure that is connected or connectable to a flexible hose 4532 that leads to the main body of the cleaning device. Handle 4501 has a hollow grip 4514 having vacuum and fluid passages therethrough. Flexible hose 4532 includes a vacuum passage and a fluid hose (not shown), which is preferably located inside the vacuum passage. A trigger 4516 is provided on handle 4501 to operate a valve (not shown) that controls the flow of fluid through the fluid passage, or with an electric switch to activate a fluid pump to send fluid to the accessory tool. A handle interface 4518 mates with a corresponding agitator assembly interface 4520 to join the two parts. Handle interface 4518 includes a vacuum passage 4526 that engages with main vacuum passage 4512, and a fluid plug 4528 that mates with fluid hose receptacle 4530. Handle 4501 also has a latch 4524 that engages with a hook 4522 on agitator assembly 4500 to lock the two parts together. When the parts are engaged with one another, the air and fluid passages are preferably sealed together with little, if any, appreciable leakage of vacuum or fluid.
Turbine drive 4508 is housed in upper housing 4502b. Turbine drive 4508 includes a vaned air turbine 4542 that is sandwiched between a separate, two-piece housing 4544a and 4544b. Housing 4544a has a number of openings 4546 through which air enters to activate turbine drive 4508. When turbine drive 4508 is installed in upper agitator assembly housing 4502b, openings 4546 match with openings 4548 through upper housing 4502b to allow airflow to air turbine 4542. As shown in
A gearbox 4510 is preferably provided to convert the high-speed, low-torque movement of air turbine 4542 to a lower speed and higher torque drive output. Gearbox 4510 comprises a gear case 4554 that houses a set of gears 4552 of conventional construction. Fasteners 4555 pass through gear case 4554 and turbine housing 4544a and 4544b to retain gearbox 4510 and turbine drive 4508 in upper housing 4502b. Gears 4552 are driven by an air turbine axle 4556, and the gearbox output is an eccentric pin 4558 that, like the other eccentric pins described herein, rotates at an offset distance about a drive axis 4560. Eccentric pin 4558 exits gear case 4554 through an opening 4562 located opposite turbine drive 4508. In a preferred embodiment, in which air turbine 4550 is a conventional design having a diameter of about 3.375 inches and a speed reduction of about 11.75:1, has been found to be suitable to drive the agitator 4504 at a useful speed and torque. Of course, other gearing variations may be used depending on the turbine efficiency and speed, the vacuum level, the desired output speed and torque, and so on, and such variations are within the scope of routine experimentation.
Eccentric pin 4558 drives a drive plate 4564, which in turn drives an agitator comb 4566, preferably in a manner described elsewhere herein with reference to
Drive plate 4564 and agitator comb 4566 are contained in lower housing 4502a, which abuts upper housing 4502b when installed, and is affixed thereto by fasteners 4572 that engage with gear case 4554. In a preferred embodiment, drive plate 4564 is physically captured within lower housing 4502a, but is retained in such a manner that it is free to slide along a linear direction. Agitator comb 4566 may be similarly captured within lower housing 4502a, but it is also envisioned that agitator comb 4566 may instead be removable without having to remove lower housing 4502a. In such a removable embodiment, agitator comb 4566 may be easily removed for cleaning or for replacement with other combs to suit the surface being cleaned.
The agitator comb cleaning members 4568 extend through an opening 4574 through lower housing 4502a to reach the surface to be cleaned. Lower housing 4502a may also be equipped with a number of fixed bristles 4576 that extend parallel to cleaning members 4568. Fixed bristles 4576 are useful in one respect as additional scrubbing bristles during manual agitation. It is also envisioned that one or more rows of bristles may be provided on lower housing 4502a or on upper housing 4502b adjacent the inlet to vacuum inlet passage 4506 to act as a grooming brush. Fixed bristles 4576 support agitator assembly 4500 on the surface being cleaned to help obtain the preferred “floating” agitator comb action and prevent the operator from pressing the agitator assembly 4500 too firmly into the surface being cleaned. This aspect of the invention is described in more detail elsewhere herein. In a preferred embodiment, fixed bristles 4576 comprise about eighteen bristle tufts of 6/6 nylon bristle strands, wherein each bristle strand has a diameter of about 0.008 inches and a free length of about 0.4375 inches ( 7/16″). In this embodiment, fixed bristles 4576 are arranged in two rows of nine bristle tufts each, and the rows are disposed on opposite sides of agitator comb 4566, and preferably along the sides that are parallel to the direction of the agitator comb's reciprocating movement.
A preferred agitator 4504 for use in agitator assembly 4500 is shown in more detail in
Because agitator assembly 4500 is typically held in the operator's hand, rather than being affixed to a cleaning device base that is supported on the surface being cleaned, it has been found to be desirable to include fixed bristles 4576 (or other deformable support structures) on lower housing 4502a to help support agitator assembly 4500 and give the operator some indication of the proper height at which to operate the device relative to the surface being cleaned. As such, fixed bristles 4576 are selected to have a length that is somewhere between the minimum and maximum distances of the cleaning members, as shown in
It is anticipated that agitator assembly 4500 may be used in various orientations, and in some orientations (e.g., upside-down) agitator comb 4566 may not be pulled towards the surface being cleaned by gravity, and may retract to the contracted position. As such, in one embodiment one or more light springs (not shown) may be positioned between agitator comb 4566 and agitator comb 4566 to apply a light force to hold agitator comb 4566 away from the contracted position. Of course, such springs may also be used with an agitator of the invention that is installed in a base housing (such as the agitator of
The agitator drive plate 4564 is held by guide structures such that it is free to slide back and forth in a linear direction shown by reference arrow A in
In a preferred embodiment, best shown in
As noted before, agitator 4504 is driven by eccentric pin 4558 that rotates at an offset distance about drive axis 4560 (in the compact gear set shown, the eccentric pin's drive axis 4560 is coaxial with the air turbine's drive axis 4550). Eccentric pin 4558 slidably fits into a drive slot 4604 in drive plate 4564. Drive slot 4604 is preferably oriented such that it extends generally perpendicular to the desired drive direction. For example, drive slot 4604 extends generally in the direction shown by arrow C, which is perpendicular to the drive direction, which is shown by arrow A. As eccentric pin 4558 rotates, it alternately presses on the drive slot's side walls (the walls that extend along the slot's length) and moves drive plate 4564 in a reciprocating linear manner.
It will be appreciated that the circular rotation of eccentric pin 4558 in drive slot 4604 causes drive plate 4564 to move with a velocity profile that follows a sinusoidal pattern, with the maximum velocities being obtained when eccentric pin 4558 is at 0 degrees and 180 degrees along the longitudinal axis of drive slot 4604, and minimum velocities being obtained when eccentric pin 4558 is at 90 degrees and 270 degrees. This velocity profile can be varied be angling drive slot 4604 relative to the drive direction or providing drive slot 4604 with non-rectangular side walls. The effects of such variations can be readily calculated using simple geometric and dynamic principles, and such variations are within the ordinary skill in the art of machine design and within the scope of the invention. These principles are also applicable to driving an agitator that is affixed within a device's base, as described with reference to agitator 3900.
Although the shown embodiment in which eccentric pin 4558 is located in drive slot 4604 is preferred, it will be appreciated by those of ordinary skill in the art that other mechanisms (such as rocker arms, gears, linkages and the like) may be used to operate drive plate 4564 in a reciprocating motion, and such variations are within the scope of the present invention.
Referring now to
In the shown embodiment, modular agitator assembly 4800 comprises a main housing 4802 and an agitator module 4804 (which is shown in phantom in
Agitator module 4804 is preferably shaped to fit into a corresponding cavity 4836 in main housing 4802, but may simply be attached to a surface of main housing 4802. Inside agitator module 4804 are an agitator and a turbine adapted to drive the agitator. The agitator and turbine may be any conventional devices, but are preferably devices as described previously herein with reference to
When it is desired to clean with an agitator, agitator module 4804 is inserted into main housing 4802 by sliding pins 4806 at the front of agitator module 4804 into corresponding slots 4808 in main housing 4802, pivoting agitator module 4804 up into main housing 4802, and moving slide lock 4810 in place to retain the back end of agitator module 4804. As agitator module 4804 is moved up into main housing 4802, an upper surface 4844 of agitator module 4804 presses against and opens a spring-loaded door 4846 that normally blocks the flow of air into agitator vacuum port 4815. In this manner, the flow of air through agitator vacuum port 4815 is automatically enabled when agitator module 4804 is installed, and disabled when it is removed. Of course, other connection systems may be used to retain agitator module 4804 in main housing 4802 and to automatically or manually open the door 4846 or other closure covering agitator vacuum port 4815 (if such a closure is provided, which is not required), and the invention is not limited to the shown system.
Although it is desirable to have a connection system that automatically enables the airflow to agitator vacuum port 4816 whenever agitator module 4804 is installed, such a system is not necessary in an embodiment of the invention having a mode selector valve 4848. Mode selector valve 4848 controls the amount of air that passes into main vacuum passage 4816 from vacuum inlet passage 4814 and/or agitator vacuum port 4815. One embodiment of a mode selector valve 4848 is depicted in
In
When mode selector valve 4848 is provided on modular agitator assembly 4800, the operator can place it in the vacuuming position whenever agitator module 4804 is removed from main housing 4802 to prevent unwanted vacuum leakage through agitator vacuum port 4815. Of course, this is not required when the device has an automatic shutoff mechanism, such as spring-loaded door 4846. One advantage of not providing an automatic shutoff is that the user can adjust mode selector valve 4848 to bleed air in through agitator vacuum port 4815 when agitator module 4804 is removed, to thereby control the strength of the vacuum applied through vacuum inlet passage 4814.
In still another embodiment of the invention, agitator module 4804 may be adapted to automatically actuate mode selector valve 4848 when it is removed to move it to the vacuuming mode position and prevent airflow through agitator vacuum port 4815. For example, main housing 4802 may have a spring-actuated lever that presses mode selector valve 4848 into the vacuuming position, and agitator module 4804 may have a pin that moves this lever out of the way when agitator module 4804 is installed, thereby making it possible to move mode selector valve into the agitating position. When agitator module 4804 is removed, the pin is withdrawn and the lever is moved back into place by a spring to “lock out” the agitating position.
Mode selector valves are also beneficially used with non-modular agitator assemblies. For example, the non-modular agitator assembly 4500 of
The operation of mode selector valve 4540 is shown in
In the vacuuming position, shown in
Although the mode selector valves described with reference to
The mode selector valve 4540 of
While the mode selector valves described herein have comprised slide valve-type structures, it is also envisioned that embodiments of the present invention may have different types of mode selector valves, and any type of valve that blocks airflow can be used. For example, the mode selector valve may comprise a rotary valve that draws air through a rotatable tube. The tube is fitted into a hole having a vacuum inlet passage and an agitator vacuum passage located at different locations about the hole's circumference, and the tube can be rotated through various positions about its circumference to receive air from either or both of the vacuum inlet passage and the agitator vacuum port. In another embodiment, the mode selector valve may comprise a simple damper door that can be pivoted to obstruct the air flow from either the vacuum inlet passage or the agitator vacuum port. In addition, in another embodiment of the invention, the mode selector valve may be bifurcated into two separate and individually-operable valves that each control one of the vacuum inlet passage and the agitator vacuum port. Other variations will be readily apparent to those of ordinary skill in the art.
Still another aspect of the present invention is a unique surface cleaning tool that can be attached to the vacuum inlet nozzle of a wet extractor or other cleaning device to provide improved cleaning performance on particular surfaces. In general terms, the surface cleaning tool of the present invention comprises a main body that is selectively positioned adjacent an elongated inlet nozzle or slit of a cleaning device. A forward inlet extends along the inlet nozzle and provides a first passage through the main body into the inlet nozzle, and a rearward inlet extends along the inlet nozzle and provides a second passage to the inlet nozzle. A wiper is attached to the main body and extends along the inlet nozzle. The wiper is positioned between the first inlet and the second inlet, and can move into positions where it blocks either the forward or rearward inlet. As the device is moved on a floor or other surface being cleaned, the wiper moves to block the inlet located opposite the direction of movement. For example, when the cleaning device is moved forward, the wiper moves backwards (relative to the rest of the device) and covers the rearward inlet, and vice versa. This applies the vacuum provided from the vacuum inlet nozzle in front of the wiper (with respect to the device's direction of travel), regardless of whether the device is moved forward or backward. The present invention is particularly suited for cleaning bare surfaces, such as tile and hardwood floors, windows, linoleum, countertops and the like, but may also be used on other surfaces.
Referring now to
Inlet nozzle 5106 eventually leads to a vacuum source that draws air up through main body 5102. Although the present invention may be used with any type of cleaning device, it is preferably used with a wet extractor, and in this embodiment, inlet nozzle 5106 leads to the vacuum source by way of a recovery tank, as described elsewhere herein, that is adapted to remove debris and water entrained in the air. Inlet nozzle 5106 is positionable proximal to the surface that is desired to be cleaned, and may either be part of a cleaning device's lower housing, such as a housing that is adapted to be moved across a floor, or part of an accessory cleaning tool or portable device that is intended to clean raised or remote surfaces and surfaces that are inaccessible to large floor cleaning devices.
In the embodiment of
Wiper 5104 may comprise any resilient flexible material, and preferably comprises a natural or synthetic rubber or polymeric compound having good durability and chemical stability. When used with wet extractors that apply a chemical solution to the surface being cleaned, wiper 5104 should be made from a material that resists chemical attack by any anticipated cleaning solutions.
Wiper 5104 extends through an opening 5124 through the bottom of main body 5102, and effectively divides the open space within main body 5102 into a forward inlet 5126 and a rearward inlet 5128. The lengths of the wiper blades 5104a and 5104b are selected such that they contact the surface being cleaned 5130 when main body 5102 is placed on surface 5130.
During use, surface cleaning tool 5100 and the device to which it is attached are moved in a back-and-forth motion, generally along reference arrow A of
The direction-sensitive vacuum-blocking wiper 5104 of the present invention provides distinct advantages over conventional designs that use separate wipers located on opposite sides of the inlet nozzle. For example, the single, central wiper performs the water-capturing “squeegee” function in both directions of travel, and selectively applies the vacuum to whichever inlet is located above the operating side of the wiper to recover the accumulated fluid and debris. Consequently the vacuum is always applied in the proper location relative to the movement of the device. As such, it is unnecessary to provide two separate wipers, and it is further unnecessary to modify the wipers, as required in the prior art, to allow them to pass fluid when going in one direction, while capturing fluid when going in the other direction.
Of course, various other embodiments of the invention are possible. For example, floor cleaning device 5100 (or inlet nozzle 5106, or the device to which inlet nozzle 5106 is connected) may be equipped with wheels 5132 (shown in phantom) that hold opening 5124 a predetermined distance above the surface being cleaned 5130. Wheels 5132 also may be placed on user-adjustable mounts so that the user can change the predetermined height of opening 5124 to tailor the cleaning performance to particular surfaces. When wheels 5132 are not provided, the height of opening 5124 may be dictated by the overall geometries and shape of the cleaning device to which surface cleaning tool 5100 is attached, or surface cleaning tool 5100 may have extended skids 5134 at either end upon which it rests to hold opening 5124 above the surface 5130. Skids 5134 are shown here as the lower edge of plugs 5122, but may be made integrally with other parts of the device.
Another embodiment, shown in
In still other embodiments, the type and number of wipers and the manner in which the wipers operate can be varied. Five exemplary alternative embodiments are now described with reference to
In the surface cleaning tool 5300 of
While the pivoting wiper 5302 of surface cleaning tool 5300 is shown having a single blade, it is also envisioned that such a wiper may also be constructed with multiple conjoined blades. For example, the surface cleaning tool 5400 of
In still another embodiment, shown in
While the embodiments provided heretofore have described the wiper as pivoting within the main body of the surface cleaning tool, it is also envisioned that other types of wiper movement may be successfully employed with the present invention. For example, the surface cleaning tool 5600 of
Referring now to
Referring now to
Lower shell 5804 comprises, at its back end, wheels 5810, a motor opening 5812, and handle supports 5814. Wheels 5810 support the back end of the device, as described elsewhere herein. The handle supports 5814 are shaped to receive pivoting bushings 5816 on the lower part of a handle assembly 5818, which may be a handle as described elsewhere herein or a conventional handle. Motor opening 5812 is shaped to receive a portion of a motor/fan assembly 5820, shown in
The forward end of lower shell 5804 comprises a pair of laterally juxtaposed pockets 5826 with a hollow central rib 5828 positioned therebetween. At the front of lower shell 5804 is an inverted pocket 5830 for receiving an agitator assembly (not shown) and having one or more nozzle mounts 5832 for mounting fluid spray nozzles, as described previously herein. An opening 5834 may be provided to view the interior of inverted pocket 5830. A fluid pump 5836 and agitator drive 5838 are located in the underside of lower shell 5804 in the hollow central rib 5828 thereof. These parts are captured in place by a lower cover 5808, which fits over the bottom of lower shell 5804. Also captured between lower shell 5804 and lower cover 5808 is a mixing manifold 5840, which extends from the central rib 5828 into one of the pockets 5826, where a portion of the mixing manifold 5840 is exposed to receive a fluid supply tank valve assembly (not shown). The mixing manifold 5840, agitator drive 5838 and pump 5836 may be as described previously herein or of other design. Lower cover 5808 also comprises a motor shroud 5842, which at least partially surrounds motor 5824 when installed to contain and direct the flow of cooling air that passes over motor 5824 out vents 5844 to help cool the device. While the foregoing parts (and any other parts described herein) are described as being captured in place, it will be understood that the parts may alternatively or additionally be held by fasteners, adhesives, or otherwise held in place.
An upper shell 5802 is provided, preferably as a single piece, to cover the upper surface of lower shell 5804. At the back, upper shell 5802 comprises a shroud that fits over fan 5822 to control the flow of air into and out of the fan. Shroud 5846 generally comprises a flat, cylindrical chamber that surrounds the peripheral edge of fan 5822, which is where air exits fan 5822. This chamber cooperates with a corresponding surface of lower shell 5804 to form an air passage that directs air exiting fan 5822 downward through a vent (not shown) through the bottom of lower shell 5804. Shroud 5846 also comprises an inlet opening 5848 through which air can be sucked into the central opening of fan 5822. The forward end of upper shell 5802 comprises a pair of laterally juxtaposed pockets 5850 that surround an upper hollow central rib 5852. Pockets 5850 fit into the corresponding pockets 5826 when the upper and lower shells are assembled. Pockets 5850 are preferably formed to receive supply and recovery tanks, as described previously herein, and do not have bottom walls, so that the supply and recovery tanks rest directly on the lower shell 5804.
Upper shell 5802 also has formed thereon a nozzle conduit 5854, which, in conjunction with a nozzle cover 5856, forms an inlet nozzle that extends from an inlet slit at the surface being cleaned, to a recovery tank located in one of the pockets 5850. A pair of seals 5858 are provided to help seal the junction between nozzle cover 5856 and nozzle conduit 5854, and tabs 5857 are provided to hold nozzle cover 5856 in place. The construction and operation of nozzle cover 5856 and nozzle conduit 5854 are described in greater detail below. A portion of nozzle conduit 5854 may comprise a window 5860, which is located adjacent opening 5834 when assembled, through which the interior of agitator chamber 5830 can be viewed.
Upper shell 5802 and lower shell 5804 are assembled together to capture fan 5822 and a liquid management assembly 5862 between the shells. Liquid management assembly 5862 fits within upper hollow central rib 5852, and preferably is constructed in accordance with the teachings herein to allow the overall size of hollow central rib 5852 to be reduced.
An upper cover 5806 is provided to cover the rear portion of upper shell 5802, capture the handle assembly 5818 in place, and provide a location for a detergent bottle, if desired (not shown). The rear portion of upper cover 5806 comprises a curved surface that forms an upper bearing retainer 5864 for both handle bushings 5816. While bearing retainer 5864 is shown as a single continuous surface, it may also be divided into separate bearing retaining surfaces. At its front, upper cover 5806 comprises, on one side, a vacuum passage 5866, which is adapted to receive the air outlet of a recovery tank, such as those described elsewhere herein. Upper cover 5806 is formed such that it provides a closed fluid passage between vacuum passage 5866 and inlet opening 5848 through upper shell 5802, and one or more seals (not shown) may be provided at the junction between upper cover 5806 and upper shell 5802 to seal this passage. Upper cover 5806 may also be provided with a pocket 5868 that is adapted to receive a detergent bottle (not shown). Such a pocket may alternatively be provided in upper shell 5802 or elsewhere. When pocket 5868 is provided in upper cover 5806, the assembly may further comprise a detergent flow valve assembly 5870, such as those described elsewhere herein, that is captured in place between upper cover 5806 and either upper shell 5802 or lower shell 5804.
The lower housing of
An upper handle housing 5880 is provided to slide over lower handle housing 5872 to form the upper portion of a handle that can be used to lift the device. Upper handle housing 5880 also includes a second access port cover retainer 5882 that, when assembled, cooperates with first access port cover retainer 5878 to pivotally capture an access port cover 5884 in place at its hinge 5886. Access port cover 5884 can thus be pivoted to cover or uncover the access ports 5876.
The lower housing also includes a rear cover 5888. This part fits over the rear portion of the lower housing to provide a cosmetically pleasing surface. The rear cover 5888 also comprises a pair of horizontally juxtaposed electrical cord retainers 5890. The electrical cord retainers 5890 each comprise a post having a cantilevered arm at the end, which are adapted to receive and hold a wound electrical cord (not shown). Preferably, the cantilevered arm of at least one of the electrical cord retainers 5890 is adapted to pivot about the axis of the post to facilitate the removal of the wound electrical cord.
The various parts of the lower housing of
The present invention also addresses a common inconvenience relating to wet extractors, which is that it is often difficult or impossible to access the interior of the inlet nozzle, which is typically a narrow slit, for routine cleaning and obstruction removal. In some previously known wet extractors, the inlet nozzle is fabricated either as a monolithic piece that can not be opened, in which case cleaning can only be accomplished by using pipe cleaners and other narrow implements. In other known extractors, the inlet nozzle comprises a nozzle cover, which forms half of the nozzle passage, that may be removed by unfastening screws or other fasteners using tools. While such extractors are more readily cleaned than those with monolithic inlet nozzles, it is not uncommon for the threaded fastener holes in the device to become stripped or broken after repeated cleanings. Users also must keep tools at the ready to in case the inlet nozzle becomes clogged during use. The present invention addresses these problems by providing an improved nozzle cover removal system that allows quick and simple access to the interior of the inlet nozzle for cleaning. An embodiment of this feature will now be described with reference to
The nozzle cover assembly generally comprises a nozzle cover 5914, a nozzle conduit 5916, and one or more mounting tabs 5918. As shown in
When attached, nozzle cover 5914 is held in place at the front by tabs 5918, which slide over and engage flanges 5920 that are integrally formed with and laterally extend from either side of the front of nozzle cover 5914. Alternatively, tabs 5918 may simply slide over portions of the nozzle cover 5914 itself (i.e. extending flanges are not required). Tabs 5918 can be made in any suitable manner, but are preferably formed, as shown in
Referring now also to
As shown in
The above configuration can be varied in numerous ways without leaving the scope of the invention. For example, in one variation, shown in
Both of the foregoing embodiments of nozzle cover assemblies provide a quick and simple system for cleaning the inlet nozzle for wet extractors, and overcomes numerous deficiencies of the prior art. While the foregoing embodiments are preferred, other variations within the scope of the invention will be readily apparent to those of skill in the art based on the teachings herein, and with experience derived from practicing the invention.
Still another feature of the present invention is an improved inlet nozzle slit construction that provides improved performance over conventional designs. Conventional inlet slits for wet extractors comprise an elongated slit formed between two a generally flat lips of material (typically plastic). A typical prior art configuration is shown in
The present invention reduces the incidence of inlet nozzle chatter by providing a series of protrusions along the leading edge of the forward nozzle lip. Referring now to
Without being limited to any theory of operation, it is believed that the chatter experienced by conventional extractors occurs when one or both of the nozzle lips becomes aligned parallel with the grain of the carpet fibers, at which point the lip is located between adjacent rows of fibers. When this occurs, the lip receives less support from the carpet fibers and tends to drop down between them and become lodged there such that it resists further forward or rearward movement. As such, it is further believed that protrusions 6306 improve chatter resistance of the nozzle by deforming the rows of carpet fibers ahead of the nozzle inlet 6300 out of their normal linear shape. By doing so, the protrusions help prevent the nozzle lips from ever being positioned entirely or primarily between adjacent fiber rows.
As shown in
While the foregoing embodiment is preferred, it is envisioned that various modifications can be made to the design without leaving the scope of the invention. For example, the protrusions of just one size may be used, and they may be arranged in different patterns. Furthermore, the protrusions may be located on the rear nozzle lip of the nozzle inlet, rather than the forward nozzle lip. The protrusions also may extend downward below the plane of either the front or rear nozzle lip, or may be positioned to extend partially or fully into the nozzle inlet itself. Other variations will be apparent to those of ordinary skill in the art in view of the teachings herein.
While the present invention has been described and illustrated herein with reference to various preferred embodiments it should be understood that these embodiments are exemplary only, and other embodiments will be apparent to those of ordinary skill in the art in light of the teachings provided herein. Furthermore, to the extent that the features of the claims are subject to manufacturing variances or variations caused by practical considerations, it will be understood that the present claims are intended to cover such claims. It will also be understood that while the present disclosure identifies and discusses numerous different inventions in relation to the preferred embodiments, the inventions recited in the following claims are not intended to be limited to being used in conjunction with any other inventions described herein unless specifically recited as having such limitations.
This application claims priority to U.S. Provisional Application Nos. 60/506,180, filed on Sep. 29, 2003, and 60/528,187, filed on Dec. 10, 2003, and is a continuation of U.S. patent application Ser. No. 12/123,117, filed May 19, 2008, now U.S. Pat. No. 7,945,989, Ser. No. 11/564,671, filed Nov. 29, 2006, now U.S. Pat. No. 7,373,690, and Ser. No. 10/952,061, filed Sep. 29, 2004, now U.S. Pat. No. 7,159,271, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1268962 | Gray | Jun 1918 | A |
1982345 | Kirby | Nov 1934 | A |
2109621 | Kirby | Mar 1938 | A |
2123813 | Stiles | Jul 1938 | A |
2178003 | Smellie | Oct 1939 | A |
2416417 | Taylor | Feb 1947 | A |
2524928 | Platz | Oct 1950 | A |
2954576 | Helm | Oct 1960 | A |
3203707 | Anderson | Aug 1965 | A |
3204272 | Greene et al. | Sep 1965 | A |
3316579 | Smith | May 1967 | A |
3357716 | Musichuk | Dec 1967 | A |
3410295 | Malott | Nov 1968 | A |
3485017 | Beares et al. | Dec 1969 | A |
3527469 | Gobin | Sep 1970 | A |
3631559 | Gaudry et al. | Jan 1972 | A |
3673628 | Gaudry et al. | Jul 1972 | A |
3685081 | Wesemann | Aug 1972 | A |
3855763 | Seifert et al. | Dec 1974 | A |
3867071 | Hartley | Feb 1975 | A |
3897607 | Schaffer et al. | Aug 1975 | A |
3950817 | McKaig | Apr 1976 | A |
3959844 | Cyphert | Jun 1976 | A |
4019218 | Cyphert | Apr 1977 | A |
4020526 | Johansson | May 1977 | A |
4071920 | Block | Feb 1978 | A |
4071922 | Davies et al. | Feb 1978 | A |
4200951 | Burgoon et al. | May 1980 | A |
4216563 | Cyphert | Aug 1980 | A |
4245371 | Satterfield | Jan 1981 | A |
4272861 | Notta et al. | Jun 1981 | A |
4295243 | King | Oct 1981 | A |
4458377 | Frohbieter | Jul 1984 | A |
4475265 | Berfield | Oct 1984 | A |
4534083 | Hampson | Aug 1985 | A |
4558484 | Groth | Dec 1985 | A |
4570856 | Groth et al. | Feb 1986 | A |
4586208 | Trevarthen | May 1986 | A |
4595420 | Williams, III et al. | Jun 1986 | A |
4596061 | Henning | Jun 1986 | A |
4660246 | Duncan et al. | Apr 1987 | A |
4662026 | Sumerau et al. | May 1987 | A |
4670937 | Sumerau et al. | Jun 1987 | A |
4724573 | Ostergaard | Feb 1988 | A |
4763382 | Sumerau et al. | Aug 1988 | A |
4809396 | Houser | Mar 1989 | A |
4809397 | Jacobs et al. | Mar 1989 | A |
4817233 | Waldhauser | Apr 1989 | A |
4864680 | Blase et al. | Sep 1989 | A |
4910828 | Blase et al. | Mar 1990 | A |
4951346 | Salmon | Aug 1990 | A |
D310438 | Burns | Sep 1990 | S |
4956891 | Wulff | Sep 1990 | A |
4976003 | Williams | Dec 1990 | A |
5088149 | Berg et al. | Feb 1992 | A |
5146647 | Blase et al. | Sep 1992 | A |
5169445 | Yonehara et al. | Dec 1992 | A |
5208940 | London, Charles A. et al. | May 1993 | A |
5261215 | Hartz et al. | Nov 1993 | A |
5287590 | Yonkers et al. | Feb 1994 | A |
5299608 | Bosyj | Apr 1994 | A |
5301386 | Thomas et al. | Apr 1994 | A |
5311638 | Furcron et al. | May 1994 | A |
5326116 | Flax | Jul 1994 | A |
5330037 | Wang | Jul 1994 | A |
5331715 | Johnson et al. | Jul 1994 | A |
D354593 | Koike | Jan 1995 | S |
5392491 | Hwang et al. | Feb 1995 | A |
5398567 | Specht | Mar 1995 | A |
5400462 | Amoretti | Mar 1995 | A |
5406673 | Bradd et al. | Apr 1995 | A |
5455982 | Armstrong et al. | Oct 1995 | A |
5459901 | Blase et al. | Oct 1995 | A |
5473792 | Kent et al. | Dec 1995 | A |
5493752 | Crouser et al. | Feb 1996 | A |
5500977 | McAllise et al. | Mar 1996 | A |
5513415 | Kent et al. | May 1996 | A |
5548866 | Reed et al. | Aug 1996 | A |
D374017 | Chunn et al. | Sep 1996 | S |
5613272 | Huffman | Mar 1997 | A |
5636504 | Kaley et al. | Jun 1997 | A |
5640738 | Williams et al. | Jun 1997 | A |
D384083 | Hinklin | Sep 1997 | S |
5669098 | Tono | Sep 1997 | A |
5676405 | Reed | Oct 1997 | A |
5687442 | McLain | Nov 1997 | A |
D394526 | Strandell | May 1998 | S |
5765250 | Lee | Jun 1998 | A |
5782262 | Kim | Jul 1998 | A |
5784755 | Karr et al. | Jul 1998 | A |
5797163 | Whitaker et al. | Aug 1998 | A |
5799362 | Huffman | Sep 1998 | A |
5819364 | Sham | Oct 1998 | A |
5819365 | Huffman et al. | Oct 1998 | A |
5836046 | Huffman et al. | Nov 1998 | A |
5839159 | Karr et al. | Nov 1998 | A |
5860188 | Maurer et al. | Jan 1999 | A |
5864921 | Chou | Feb 1999 | A |
5867857 | Crouser et al. | Feb 1999 | A |
5867864 | Miller et al. | Feb 1999 | A |
5870798 | Crouser et al. | Feb 1999 | A |
5887313 | Hanold et al. | Mar 1999 | A |
5896617 | Kasen et al. | Apr 1999 | A |
5901406 | Mueller et al. | May 1999 | A |
5933912 | Karr et al. | Aug 1999 | A |
5937475 | Kasen et al. | Aug 1999 | A |
5983442 | Louis et al. | Nov 1999 | A |
6009593 | Crouser et al. | Jan 2000 | A |
6012200 | Murphy et al. | Jan 2000 | A |
6041472 | Kasen et al. | Mar 2000 | A |
6073300 | Zahuranec et al. | Jun 2000 | A |
6081962 | Kasen et al. | Jul 2000 | A |
6082376 | Karr et al. | Jul 2000 | A |
6088873 | Pacchini et al. | Jul 2000 | A |
6101671 | Wright et al. | Aug 2000 | A |
6125498 | Roberts et al. | Oct 2000 | A |
6131237 | Kasper et al. | Oct 2000 | A |
6145159 | Zahuranec et al. | Nov 2000 | A |
6154917 | Zahuranec et al. | Dec 2000 | A |
6158081 | Kasen et al. | Dec 2000 | A |
6167586 | Reed, Jr. et al. | Jan 2001 | B1 |
6167587 | Kasper et al. | Jan 2001 | B1 |
D437666 | Park | Feb 2001 | S |
6185781 | Miller et al. | Feb 2001 | B1 |
6192548 | Huffman | Feb 2001 | B1 |
6247202 | Lesco et al. | Jun 2001 | B1 |
6286180 | Kasper et al. | Sep 2001 | B1 |
6311366 | Sepke et al. | Nov 2001 | B1 |
6325864 | Zahuranec et al. | Dec 2001 | B1 |
6353964 | Andrisin, Jr. et al. | Mar 2002 | B1 |
6363570 | Kasper et al. | Apr 2002 | B2 |
6368373 | Mueller | Apr 2002 | B1 |
D456961 | Ng | May 2002 | S |
D460973 | Jong | Jul 2002 | S |
6438793 | Miner et al. | Aug 2002 | B1 |
6467122 | Lenkiewicz et al. | Oct 2002 | B2 |
6513188 | Zahuranec et al. | Feb 2003 | B2 |
6533871 | Zahuranec et al. | Mar 2003 | B2 |
6550098 | Roberts et al. | Apr 2003 | B2 |
6564423 | Sergyeyenko et al. | May 2003 | B2 |
6629332 | Morgan et al. | Oct 2003 | B2 |
7310852 | Sham | Dec 2007 | B2 |
7814612 | Sepke et al. | Oct 2010 | B2 |
20030021698 | Umemura et al. | Jan 2003 | A1 |
20030051310 | Morgan et al. | Mar 2003 | A1 |
20030226230 | Hertrick et al. | Dec 2003 | A1 |
20050060837 | Johnson et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
1179898 | Feb 1970 | GB |
2072496 | Oct 1981 | GB |
2304031 | Mar 1997 | GB |
Entry |
---|
Bissell User's Guide Models 1690 and 1695, 14 pages, Copyright 1997. |
Bissell User's Guide Model 16981 Series, 18 pages, Copyright 1998. |
Hoover Steamvac V2 Deep Cleaner Manual, 15 pages, Copyright 2002. |
Regina Steemer Carpet Cleaner Owner's Manual, 12 pages, undated. |
Number | Date | Country | |
---|---|---|---|
20110219565 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
60506180 | Sep 2003 | US | |
60528187 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12123117 | May 2008 | US |
Child | 13114490 | US | |
Parent | 11564671 | Nov 2006 | US |
Child | 12123117 | US | |
Parent | 10952061 | Sep 2004 | US |
Child | 11564671 | US |