The present application and the resultant patent relate generally to wet gas compression systems and more particularly relate to a wet gas compression system using a thermoacoustic resonator to break up water droplets in a gas stream before reaching a compressor.
Natural gas and other types of fuels may include a liquid component therein. Such “wet” gases may have a significant liquid volume. In conventional compressors, liquid droplets in such wet gases may cause erosion or embrittlement of the impellers or other components. Moreover, rotor unbalance may result from such erosion. Specifically, the negative interaction between the liquid droplets and the compressor surfaces, such as the impellers, end walls, seals, and the like, may be significant. Erosion is known to be a function essentially of a combination of the relative velocity of the droplets during impact, droplet mass size, and impact angle. Erosion may lead to performance degradation, reduced compressor and component lifetime, and an overall increase in maintenance requirements.
Current wet gas compressors may use an upstream liquid-gas separator to separate the liquid droplets from the gas stream so as to limit or at least localize the impact of erosion and other damage caused by the liquid droplets. The equipment required for separation, however, generally requires additional power consumption. Another approach is to use a convergent-divergent nozzle such as a de Laval nozzle and the like so as to accelerate the gas flow to a supersonic velocity. The resulting supersonic shock may break up the liquid droplets. The supersonic shock, however, also may lead to a pressure drop upstream of the compressor and therefore an increase in overall compressor duty.
There is thus a desire for improved wet gas compression systems and methods of avoiding erosion. Preferably, such systems and methods may minimize the impact of erosion and other damage caused by large liquid droplets in a wet gas flow while avoiding or at least reducing the need for liquid-gas separators, supersonic shocks, and the like.
The present application and the resultant patent thus provide a wet gas compression system for a wet gas flow having a number of liquid droplets therein. The wet gas compression system may include a pipe, a compressor in communication with the pipe, and a thermoacoustic resonator in communication with the pipe so as to break up the liquid droplets in the wet gas flow.
The present application and the resultant patent further provide a method of breaking up a number of large liquid droplets in a wet gas flow upstream of a compressor. The method may include the steps of flowing the wet gas flow through a pipe, creating a number of acoustic waves about the wet gas flow with a thermoacoustic resonator, reducing a relative velocity of a gaseous phase to a liquid phase of the wet gas flow, and overcoming a surface tension of the number of large liquid droplets to break the large liquid droplets into a number of small liquid droplets. Other methods also may be described herein.
The present application and the resultant patent further provide a wet gas compression system for a wet gas flow having a number of liquid droplets therein. The wet gas compression system may include a pipe, a compressor in communication with the pipe, and a thermoacoustic resonator in communication with the pipe and positioned upstream of the compressor. The thermoacoustic resonator may include a hot heat exchanger, a cold heat exchanger, and a regenerator therebetween so as to produce a number of acoustic waves into the wet gas flow. Other systems also may be described herein.
These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
Referring now to the drawings, in which like numerals refer to like elements throughout the several views,
The wet gas compression system 100 also may include a thermoacoustic resonator 160. Generally described, the thermoacoustic resonator 160 uses an internal temperature differential to induce high amplitude acoustic waves in an efficient manner. The thermoacoustic resonator 160 may be coupled to the pipe 120 downstream of the well head 130 and upstream of the compressor 110. Any number of thermoacoustic resonators 160 may be used herein.
The thermoacoustic resonator 160 may include acoustic chamber 170. The acoustic chamber 170 may be in direct communication with the pipe 120 such that the wet gas flow 140 floods the acoustic chamber 170. Subject to the fact that the configuration of the acoustic chamber 170 may have an impact on the nature and the wavelength of the acoustic waves produced therein, the acoustic chamber 170 may have any size, shape, or configuration.
The thermoacoustic resonator 160 may include a hot heat exchanger 180, a cold heat exchanger 190, and a passive heat regenerator 200 positioned therebetween. At the hot heat exchanger 180, a heat source 210 rejects heat to the wet gas flow 140 thereabout. The heat source 210 may include any type of heat and any type of heat source. For example, waste heat from the compressor 110 or elsewhere may be used. At the cold heat exchanger 190, heat may be accepted from the wet gas 140 and transferred to a cooling stream or a heat sink 220 for disposal or use elsewhere. The passive heat regenerator 200 may include a stack of plates 230 and the like. Any type of regenerator with good thermal efficiency may be used herein.
The temperature gradient between the hot heat exchanger 180 and the cold heat exchanger 190 across the passive heat exchanger 200 of the thermoacoustic resonator may lead to the formation of a number of acoustic waves 240. The acoustic waves 240 act as pressure waves that propagate through the acoustic chamber 170 and into the pipe 120. The wavelengths and other characteristics of the acoustic waves 240 may be varied herein. Other types of thermoacoustic resonators and other means for producing the acoustic waves 240 also may be used herein. Other components and other configurations also may be used herein.
As is shown in
Droplet break up may be largely a function of the relative velocity between the gaseous phase 145 and the liquid phase 155. The potential for droplet break up may be evaluated based upon the Weber number of the wet gas flow 140. Specifically, the Weber number may be calculated in the context of the wet gas flow 140 herein as follows:
Weber=PgVR2d/σ.
In this equation, Pg is the density of the fluid (kg/m3), VR is the relative velocity (m/s), d is the droplet diameter (in), and σ is the surface tension (n/m). Generally described, the Weber number is a non-dimensional measure of the relative importance of the inertia of the fluid as compared to the droplet surface tension. The large liquid droplets 150 thus may be broken down into the smaller liquid droplets 250 if the Weber number indicates that the kinetic energy of the gaseous phase 145 may overcome the surface tension of the droplets 150. Other types of droplet evaluation and other types of protocols may be used herein.
The energy of the acoustic waves 240 may be partially transferred into droplet break up and partially transferred into dissipation in the wet gas flow 140. Dissipation means a deposition of heat into the wet gas flow 140. This heat leads largely to liquid evaporation as opposed to a temperature increase and therefore may be beneficial to overall compressor performance. After passing through the acoustic waves 240, the wet gas flow 140 continues towards the compressor inlet section 40 with the smaller liquid droplets 250 therein so as to reduce harmful erosion on the impellers 20 and the like.
The wet gas compression system 100 with the thermoacoustic resonator 160 thus should improve overall lifetime and efficiency of the compressor 110. Specifically, removal of the large liquid droplets 150 may improve erosion damage while higher compressor efficiency may be achieved due to evaporation. Moreover, because the thermoacoustic resonator 160 uses no moving parts, the thermoacoustic resonator 160 should have a long lifetime with low maintenance requirements. Further, because the thermoacoustic resonator 160 may use waste heat from the compressor 110 or elsewhere, the thermoacoustic resonator 160 may not result in parasitic energy loses. The thermoacoustic resonator 160 also may avoid a pressure drop therethrough such that the main compressor duty may not be increased.
Although the wet gas compression system 100 described above has been discussed in the context of the thermoacoustic resonator 160 positioned about the pipe 120, the thermoacoustic resonator 160 also may be positioned elsewhere. For example,
In the example of
As an alternative to the thermoacoustic resonator 160 being in direct fluid communication with the wet gas flow 140 within the pipe 120, the thermoacoustic resonator 160 also may be physically separated from the wet gas flow 140 in the pipe 120. As is shown in
It should be apparent that the foregoing relates only to certain embodiments of the present application and the resultant patent. Numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3923415 | Benedict | Dec 1975 | A |
3966120 | Furgalus et al. | Jun 1976 | A |
4205966 | Horikawa | Jun 1980 | A |
4398925 | Trinh et al. | Aug 1983 | A |
5369625 | Gabrielson | Nov 1994 | A |
6230420 | Lawrenson et al. | May 2001 | B1 |
6273674 | Charron | Aug 2001 | B1 |
7143586 | Smith et al. | Dec 2006 | B2 |
20050220711 | Katz | Oct 2005 | A1 |
20060130506 | Tain et al. | Jun 2006 | A1 |
20080053097 | Han et al. | Mar 2008 | A1 |
20090282838 | Thurnau | Nov 2009 | A1 |
20100054503 | Jiang et al. | Mar 2010 | A1 |
20100212311 | McQuary et al. | Aug 2010 | A1 |
20100236724 | Duesel et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1392380 | Jan 2003 | CN |
101054960 | Oct 2007 | CN |
101619713 | Jan 2010 | CN |
101751916 | Jun 2010 | CN |
201935319 | Aug 2011 | CN |
1529927 | May 2005 | EP |
2010062252 | Jun 2010 | WO |
2011081528 | Jul 2011 | WO |
Entry |
---|
U.S. Appl. No. 13/020,873, filed Feb. 4, 2011, Aalburg. |
Search Report and Written Opinion from corresponding PCT Application No. PCT/US2012/064490 dated Feb. 14, 2013. |
Hiller et al., “Condensation in a Steady-Flow Thermoacoustic Refrigerator”, Journal of the Acoustical Society of America, vol. No. 108, Issue No. 4, pp. 1521-1527, 2000. |
Zeoli et al., “Numerical Modelling of Droplet Break-up for Gas Atomisation”, Computational Materials Science, vol. No. 38, Issue No. 2, pp. 282-292, Dec. 2006. |
Kuan, “CFD Modelling of Liquid Jet and Cascade Breakup in Crossflows”, 7th International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia, pp. 6, Dec. 9-11, 2009. |
Chinese Office Action issued in connection with corresponding CN Application No. 201280055785.1 on Oct. 20, 2015. |
Number | Date | Country | |
---|---|---|---|
20130121812 A1 | May 2013 | US |