This invention relates to a wet paper web transfer belt, and especially to a transfer belt for transferring a wet paper web at high speed.
In recent years, closed draw papermaking machines have been developed for achieving improvements in the speed of operation of a papermaking machine. The closed draw papermaking machine does not have an open draw, a part wherein a wet paper web is transferred without being supported in the papermaking process. The closed draw structure solves problems encountered in open draw machines, such as running out of paper. Thus, higher speed operation can be achieved.
A typical closed draw papermaking machine is shown schematically in
As is generally known, these press felts PF1, PF2, the wet paper web transfer belt TB, and the dryer fabric DF are endless belts, and are supported by guide rollers GR.
A press roll PR, a shoe PS, a shoe press belt SB, and a suction roll SR have structures which are generally known. The shoe PS has a concave shape which conforms with the press roll PR. The shoe PS, the shoe press belt SB, and the press roll PR, form the press part PP.
The wet paper web WW passes successively through a wire part and a first press part, which are not shown, and is then transferred from the press felt PF1 to the press felt PF2. The press felt PF2 transfers the wet paper web to the press part PP. The wet paper web WW, pinched between the press felt PF2 and the wet paper web transfer belt TB, is compressed by the shoe PS, and the press roll PR, having the shoe press belt SB therebetween. The press felt PF2 has high water permeability, and the wet paper web transfer belt TB has little or no water permeability. Therefore, the water in the wet paper web WW moves to the press felt PF2 at the press part PP. Immediately after the press felt PF2, the wet paper web WW, and the wet paper web transfer belt TB, move out of the press part, the pressure is suddenly released and their volume expands. This expansion, and the capillary phenomenon exhibited by the pulp fibers forming the wet paper web WW, cause rewetting of the web WW, in which part of the water in the press felt PF2 moves to the wet paper web WW.
Since the wet paper web transfer belt TB has very low permeability, it does not hold water. Therefore, rewetting does not occur in the wet paper web transfer belt TB, and thus, the wet paper web transfer belt TB contributes to improvement in the efficiency of water removal from the wet paper web.
After the wet paper web WW moves out of the press part PP, it is transferred by the wet paper web transfer belt TB, and is sucked onto the suction roll SR and transferred to a drying process by a dryer fabric DF.
The wet paper web transfer belt TB is required to transfer a wet paper web WW while the web is attached to the belt after moving out of the press part PP, and to allow smooth removal the wet paper web from the transfer belt when he wet paper web is transferred to the next stage of the process. Conventionally, various structures have been proposed for realizing these functions. For example, U.S. Pat. No. 4,529,643 discloses a structure where a needle felt, comprising a woven fabric and a batt fiber intertwiningly integrated with the woven fabric by needle punching, is impregnated with a high molecular weight elastic material and cured. U.S. Pat. No. 4,500,588 discloses another structure which is shown in
Japanese Patent No. 3264461 discloses a further structure as shown in
The surface of the wet paper web side layer TB21 is made rough, for example, by grinding. This surface has a structure wherein its surface roughness, according to JIS-B0601, a ten-point average roughness Rz, is in the range from, 0 to 20 microns when the belt is in the press part, and in the range of 2 to 80 microns after the belt moves out of the press part.
The ten-point average roughness Rz, in the range of 0 to 20 micron when the belt is in the press part, is maintained immediately after the belt moves out of the press part. In other words, the surface of the wet paper web side layer TB21 is smooth at this point. Therefore, a thin water film can be formed between the wet paper web and the surface of the wet paper web side layer TB21. The wet paper web is suitably attached to the surface of the wet paper web side layer TB21 due to the adhesion of the thin water film.
When the wet paper web transfer belt TB20 travels further, the ten-point average roughness Rz is in the range of 2 to 80 micron. Thus, the thin water film between the wet paper web and the surface of the wet paper web side layer TB21 is broken, and the adhesion is reduced. Therefore, the transfer of the wet paper web to the next stage of the process becomes easy. In other words, the wet paper web transfer belt TB20 shown in
In the case of the wet paper web transfer belt of U.S. Pat. No. 4,529,643, voids between the batt fibers are not always filled up with the high molecular weight elastic section. On the other hand, in the case of the structure of the U.S. Pat. No. 4,500,588, the wet paper web side layer is formed only by the batt layer. In both cases, the wet paper web side layer is formed by the batt layer. Therefore, in the case of these wet paper web transfer belts, a large amount of water is absorbed in the wet paper web side layer and thus, rewetting occurs occasionally. In addition, the function of transferring a wet paper web by attaching it to a transfer belt, and the function of removing the wet paper web from the transfer belt smoothly when the wet paper web is transferred to the next stage of the process, cannot be fully realized.
The wet paper web transfer belt of Japanese Patent No. 3264461 is intended to utilize the change in surface roughness caused by compression, and release of compression, of the wet paper web side layer, so that a filler breaks the water film between the wet paper and the surface of the transfer belt, web. However we have determined from testing that the filler has a reverse effect. Because of capillary action, the rough surface has a high ability to hold water between the wet paper web transfer belt and the wet paper web. Consequently, the function of smoothly transferring the wet paper to the next stage of the papermaking process is not fully realized, and thus problems are encountered in the papermaking process.
In view of the above problems, it is an object of the invention to provide a wet paper web transfer belt, in which a wet paper web is reliably transferred by attachment to a transfer belt, and the wet paper web is smoothly and reliably removed from the transfer belt for transfer to a next stage of the papermaking process.
The wet paper web transfer belt according to the invention comprises a base body, a wet paper web side layer, and a machine side layer. Fibers are exposed as islands on the surface of the wet paper web side layer, and filler particles are exposed at areas of the surface of the wet paper web side layer where the fibers are not exposed. Preferably, the ratio of the areas of the surface of the wet paper web side layer where the fibers are exposed, to the area of the surface where fibers are not exposed, is in the range of 20:80 to 80:20.
The wet paper web side layer preferably has a high molecular weight elastic section in which fibers and filler particles are mixed, and fibers and filler particles are exposed by processing the surface of the high molecular weight elastic section. The fibers and the filler particle are preferably hydrophilic.
According to the invention, the filler particles and the fibers, exposed at the surface of a wet paper web side layer, hold water with a time lag. Thus, the wet paper web can attach to the transfer belt but can be transferred smoothly to a next stage in the papermaking process.
The wet paper web transfer belt 10, shown in
In
As the wet paper web and transfer belt continue to move out of the press part of the machine, the surface roughness of the islands where the fibers 20a are exposed fully recovers. Then, as a result of capillary action and/or hydrophilicity of the fibers, the water held in the sea section comprising the filler particle 20b, moves to the islands where the fibers 20a are exposed, as shown in
In other words, the sea section plays an important role in keeping the wet paper web WW attached to the wet belt 10 during the short period of time while the surface roughness of the islands, is recovering. Thereafter, as the water moves to the islands, the water on the islands keeps the wet paper web attached to the belt.
The wet paper web transfer belt 10 and the wet paper web WW continue to travel, and the wet paper web WW is transferred to the next stage of the papermaking process. Since the water between the wet paper web transfer belt 10 and the wet paper web WW is held by the islands where the fiber 20a are exposed, the water is not in the form of a film, and does not cause strong adhesion of the wet paper web to the transfer belt. Consequently, the wet paper web can be transferred smoothly to the next stage.
The ratio of the areas of the islands and the sea section on the surface of the transfer belt has a significant effect on the transfer of water between the sea section and the islands. It has been determined that the best results are achieved when the area ratio is between 20:80 and 80:20.
The area ratio of the islands, where the fibers are exposed at the surface, to the sea section, which consists of all portions of the wet paper web-facing surface of the belt other than the islands, is measured by using an electron microscope. An electron microscope is especially suitable for taking a photograph of the surface of a wet paper web side layer of a sample, since it has some focal depth, and is not affected by the reflection of light in the case of a transparent high molecular weight material. First, the surface of a wet paper web side layer of a sample of a belt is photographed with an electron microscope. Then, the picture is scanned into a computer and clarified using software such as “Photoshop 5” from Adobe System Incorporated. The areas of the islands where fibers are exposed and the sea section are calculated using image processing software, such as “NIH image,” from National Institutes of Health.
When the ratio of the area the islands to the area of the sea section is outside the range from 20:80 to 80:20, the transfer of the wet paper web while attached to the transfer belt and the smoothness of removal of the wet paper web from the belt become unsatisfactory.
The preferred fibers in the belt, for exposure at the islands, are hydrophilic rayon fibers, having a fineness in the range of about 2-15 dtex. The filler particles may be minute particles of metal powder or powdery inorganic compounds such as kaolin, clay, talc, diatomaceous earth, and bentonite. Among these materials, hydrophilic kaolin clay is preferred, especially a kaolin clay having an average particle diameter (measured by a laser measurement method) in the range from 5 micrometer to 500 micrometers, preferably 10 micrometer.
As explained above, wet paper web is attached to the sea section as a result of the wettability of the filler particles 20b. The islands where the fibers 20a are exposed, absorb water from the sea section and function to release the wet paper web, so that it can be transferred to the next stage in the papermaking process. When the area ratio of the islands to the sea section is less than 20:80, even though part of water moves from the sea section to the islands as shown in
When the area ratio of the islands relative to the sea section is greater than 80:20, the surface of the transfer belt has insufficient ability to hold water between the wet paper web WW and the belt surface, as shown in
In
In
In both cases, the island-sea structure comprising the island section where fibers 20a are exposed and the sea section comprising filler particle 20b, are obtained by grinding the surface of the wet paper web side layer 11 comprising a high molecular weight elastic section 50. Therefore, the wet paper web side layer 11 of the wet paper web transfer belt according to the invention contributes to the formation of an excellent paper surface since the smoothness of the surface of the transfer belt becomes greater than that of the wet paper web contacting surface of a press felt PF.
Organic fibers such as nylon, polyester, aramid, rayon, wool, cotton, hemp, acrylic, etc., and inorganic fibers such as glass fibers, are suitable for use as the fibers of the transfer belt. It is desirable that the islands where the fibers 20a are exposed be hydrophilic, i.e. that they attract and/or hold water. A hydrophilic fiber, for example, can be hygroscopic. In such a case, the fiber has an affinity for water since the fiber absorbs water. It has been determined that excellent results can be obtained when the official moisture regain is 4.0% or more, and preferably 5.0% or more. Official moisture regain is a numerical value calculated by using a formula for “official moisture regain” specified in JIS L 0105 (general principles of physical testing methods for textiles).
Specifically, nylon, having an official moisture regain figure of 4.5%, vinylon having an official moisture regain figure of 5.0%, rayon having an official moisture regain figure of 11.0%, cotton having an official moisture regain figure of 8.5%, and wool having an official moisture regain figure of 15.0%, and the like can be used as fibers in the wet paper web side layer material for said fiber body.
On the other hand, fiber to which hydrophilic properties are imparted by chemical or physical treatment can also be used. Suitable treatments, well-known among those skilled in the art, include mercerizing, resin processing, sputtering by ionizing radiation, glow discharge processing, etc. In the case of hydrophilic processing, excellent results can be obtained where the moisture of a processed monofilament or a spun yarn is adjusted to be between 30% and 50% (water/total weight)×100), and the contact angle with water is below 30 degrees.
Various resins, including both thermosetting resins and thermoplastic resins, can be used as the material for a high molecular weight elastic section. Hydrophobic or hydrophilic materials can be used, fibers and filler particles can be optionally mixed into the resin as mentioned previously.
The wet paper web transfer belt according to the invention can have zero permeability. However, if the papermaking machine requires a belt having some permeability, the belt can be so constructed. In this case, a desired structure can be obtained by reducing the amount of an impregnated high molecular weight elastic material, increasing the amount of grinding, or using a high molecular weight elastic material having open cells. However, even in the case of a permeable belt, the permeability should be 5 cc/cm2/sec or less. Permeability is measured by “A method (a fragile type testing machine)” specified in JIS L 1096 (a test method of a general woven fabric).
The principal function of the base body 30 is to impart strength to the wet paper web transfer belt. While a woven fabric, woven from machine direction yarns and cross machine direction yarns, is shown in
Although
Ten examples of a wet paper web transfer belt were produced.
In the first five examples (examples 1-5), an endless woven fabric was impregnated with urethane resin and cured. The urethane resin coated the inner surface of the woven fabric and was impregnated into the woven fabric and furthermore, laminated over the outer surface of the woven fabric. Before curing of the resin, a rayon pile having a thickness of 6 dtex, and a fiber length of 3 mm, and kaolin clay with an average particle diameter of 10 microns, used as filler particles, were scattered over the uncured urethane resin which was laminated on the outer surface of the woven fabric. The resin was cured while the fibers were slightly buried under the surface of the uncured resin. The surface of the cured urethane resin was then ground with sandpaper. The above process produced an island-sea structure on the outer surface (of the wet paper web side layer). This island-sea structure comprised islands where the fibers 20a were exposed, and a sea section comprising filler particles 20b. The area ratios of the island section to the sea section in examples 1-5 were 10:90, 20:80, 50:50, 80:20, and 90:10 respectively.
In the next group of five examples (examples 6-10), a needle felt was obtained by intertwiningly integrating fiber mats with the outer and inner surfaces of an endless woven fabric by needle punching respectively. A fiber mat comprising nylon-6 staple fibers with a thickness of 6 dtex was used. The density of the needle felt was increased by heat-pressing. The area ratio of the islands was adjusted by controlling the density of the needle felt. Resin was coated over the needle felt from its outer surface, and then filler was scattered over the uncured needle felt. (Alternatively, resin containing filler can be coated over the needle felt from its outer surface.) The urethane resin was then cured, and the surface of the cured urethane resin was ground with sandpaper. An island-sea structure comprising islands where the fibers 20a were exposed, and a sea section comprising filler particle 20b, was formed on the outer surface of the wet paper web side layer by the above process. The area ratios of the islands to the sea section in examples 6-10 were 10:90, 20:80, 40:60, 60:40, and 80:20 respectively.
Tests of the ten examples of e wet paper web transfer belt were conducted, using the apparatus shown in
A wet paper web WW is placed on the wet paper web transfer belt 10 of this apparatus, upstream relative to the press part. The wet paper web WW passes through the press part, and is transferred to the dryer fabric DR by the suction applied by a suction roll SR.
Tests were conducted by using this apparatus and performance of the wet paper web transfer belts was evaluated, first for stability of the wet paper web WW on the wet paper web transfer belt 10 immediately after the wet paper web moves out of a press part, and secondly for transfer stability of the wet paper web WW to the dryer fabric DF. Evaluations were conducted by visual observation.
The tests were conducted at a driving speed of 150 m/min, and applied pressure in the press part of 40 kg/cm, and a vacuum, at the suction roll SR, of 150 mm Hg. A wet paper web WW comprising kraft pulp, with a basis weight of 80 g/m2, and a dryness of 38%, was used. The press felt PF had a conventional structure, comprising a woven fabric and a batt layer intertwiningly integrated with the woven fabric by needle punching. The press felt PF had basis weight of 1200 g/m2 and its batt fiber had a fineness of 10 dtex.
The results of the tests are shown in the following table.
It was determined as a result of the tests, that adhesion of a wet paper web immediately after the wet paper web moved out of the press part, and removal of the wet paper web, were good in the case of examples 2-4 and 7-9. On the other hand, in the case of examples 1 and 6, the wet paper web WW was not smoothly transferred to the next stage of the papermaking process (the dryer process), since adhesion of the wet paper web WW was excessively high immediately after the wet paper web moved out of the press part. In addition, in the case of examples 5 and 10, adhesion of the wet paper web dropped immediately after the wet paper web moved out of the press part, and some oscillation occurred.
As explained above, according to the invention, the fibers and filler particles, exposed on the surface of a wet paper web side layer, hold water from a wet paper web, and therefore, the transfer of the web by attachment to a transfer belt, and the removal of web from the transfer belt when the web is transferred to the next stage of the process, take place smoothly.
Number | Date | Country | Kind |
---|---|---|---|
2003-383674 | Nov 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4251928 | Rotar et al. | Feb 1981 | A |
4500588 | Lundstrom | Feb 1985 | A |
4529643 | Lundstrom | Jul 1985 | A |
4981745 | Lefkowitz | Jan 1991 | A |
5077116 | Lefkowitz | Dec 1991 | A |
5965208 | Fagerholm et al. | Oct 1999 | A |
6197158 | Steiner | Mar 2001 | B1 |
6276420 | Lanthier | Aug 2001 | B1 |
6531033 | Kawashima | Mar 2003 | B1 |
6547924 | Klerelid et al. | Apr 2003 | B2 |
6605188 | Hagfors et al. | Aug 2003 | B2 |
20040154776 | Inoue | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
3264461 | Dec 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050098293 A1 | May 2005 | US |