This disclosure relates to seal assemblies and in particular a wet seal system for use with light weight exterior wall panels that include panel joint seals.
There are two commonly used light weight exterior wall panel systems used in the construction industry today, namely aluminium framed curtain walls and exterior insulated finish system (EIFS).
Aluminium framed curtain wall panels are the most common method for providing exterior walls on multi-story buildings. They have extruded dry-seal systems that protect the building against air and water infiltration and provide superior longevity. A dry seal system can be designed to incorporate the rain screen principle, so the joint can be pressure equalized to help keep moisture away from the seals. The panels can incorporate windows, stone finish or a metal finish. The downside of unitized curtain wall panels is that they perform quite poorly regarding thermal protection of the building.
Exterior insulated panels (sometimes referred to as EIFS) are becoming more commonly used today for multi-story curtain wall construction. When these panels are properly designed and installed, they provide optimum thermal protection for the building. Unfortunately, this type of construction typically requires the joints between the panels to be caulked after the panels are erected. Caulking is what is known as a wet-seal system, they are subject to human error and inclement weather. Caulked joints do not provide the same level of quality and endurance as dry-seal systems and incorporating the rain screen principle is difficult to do with caulked joints. Unfortunately, caulking the joints needs to be done using scaffolding or swing stages located on the outside of the building, this can be costly and makes the work more dangerous to do. The latter is expensive and adds time required to complete the installation. Caulking is also problematic when the proximity of the adjacent building is too close to the new wall to allow access. Additionally, caulking requires skilled labourers and detailed inspection to ensure that the caulked joints are sealed properly.
Dry seal systems for EIFS exist, however they are only capable of sealing relatively small gaps between wall panels with small construction tolerances. This is a problem because aluminium framed curtain wall panels and EIFS typically have large construction tolerances. This means that one cannot use a rigid dry seal because the gap between two panels may vary along the shared length of the panels.
Therefore, it would be advantageous to provide a wet seal system which is easy for unskilled labourers to install.
The present disclosure relates to a wet seal system for use with vertically adjacent and horizontally adjacent exterior insulated wall panels. The wet seal system includes a vertical seal, a horizontal seal, an upper plug and a lower plug. The vertical seal has a top and a bottom positioned between the horizontally adjacent exterior insulated wall panels. The horizontal seal has a top and a base positioned between the vertically adjacent exterior insulated wall panels. The upper plug assembly is positioned between the top of the horizontal seal and the bottom of the vertical seal. The lower plug assembly is positioned between the bottom of the horizontal seal and the top of the vertical seal. The vertical seal, the upper plug assembly and the lower plug assembly are configured to be filled with caulking such that a wet seal is formed between the horizontally adjacent exterior insulated wall panels. The wet seal system is configured to seal at least a 3-way joint between at least three exterior insulated wall panels.
The wet seal system may be configured to seal a 4-way joint between four exterior insulated wall panels. The vertical seal of the 4-way joint is configured to receive caulking.
The vertical seal may include a caulking inspection hole such that when the vertical seal is filled with caulking, caulking exits the caulking inspection hole.
The vertical seal may be a generally tubular member having a caulking cavity configured to receive caulking.
The vertical seal may include a pair of opposed spaced apart sealing sides, a deformable exterior side connected between the pair of sealing sides, a deformable interior side connected between the sealing sides and spaced from the deformable exterior side and the sealing sides, the deformable exterior side and the deformable interior side defining the caulking cavity.
The vertical seal may include a vertical plug configured to be placed in the caulking cavity adjacent the deformable exterior side. The deformable exterior side, the vertical plug and deformable interior side are configured such that the caulking cavity has a generally hourglass shaped cross section. The hourglass shaped cross section has a width to throat ratio of 2:1. The deformable interior side may have at least one caulking hole for receiving the caulking.
The vertical seal may include a caulking inspection hole such that when the vertical seal is filled with caulking, caulking exits the caulking inspection hole.
The deformable exterior side may have a triangular shape and the deformable interior side has a trapezoidal shape.
The deformable exterior side may have a round shape and the deformable interior side has a round shape.
The vertical seal further may include a rain screen.
The upper plug assembly and the lower plug assembly each may include a rain screen.
A vertical seal is for use with vertically adjacent exterior insulated wall panels. The vertical seal includes a pair of opposed spaced apart sealing sides, a deformable exterior side and a deformable interior side. The deformable exterior side is connected between the pair of sealing sides. The deformable interior side is connected between the sealing sides and spaced from the deformable exterior side and the sealing sides. The deformable exterior side and the deformable interior side define a caulking cavity.
The vertical seal may include a vertical plug configured to be placed in the caulking cavity adjacent the deformable exterior side and the deformable exterior side, and the plug and deformable interior side are configured such that the caulking cavity has a generally hourglass shaped cross section. The hourglass shaped cross section has a width to throat ratio of 2:1.
The vertical plug may be an elongate foam element.
The deformable interior side may have at least one caulking hole for receiving the caulking.
The vertical seal further may include a caulking inspection hole such that when the vertical seal is filled with caulking, caulking exits the caulking inspection hole.
The vertical seal may include a rain screen.
The deformable exterior side may have a triangular shape and the deformable interior side may have a trapezoidal shape. Alternatively, the deformable exterior side may have a round shape and the deformable interior side may have a round shape.
A horizontal seal is for use with horizontally adjacent exterior insulated wall panels. The horizontal seal includes a base, a top, an exterior wall and an interior wall. The base has at least a pair of spaced apart base feet extending downwardly therefrom. The top is spaced apart from the base and has at least a pair of spaced apart top feet extending upwardly therefrom. The exterior wall extends between the base and the top and the exterior wall has a bend therein. The interior wall extends between the base and the top and the interior wall has a bend therein. The base, the top, the exterior wall and the interior wall define a tubular member. The bend in the exterior wall and the bend in the interior wall facilitates movement of the base relative to the top.
The base feet may be aligned with exterior wall and the interior wall.
The top feet may be aligned with the exterior wall and the interior wall.
The horizontal seal may include a chamber wall positioned between the exterior wall and the interior wall and extending between the base and the top, thereby forming two chambers.
The horizontal seal may include a hole formed in the exterior wall to provide pressure equalization.
The horizontal seal may include a plurality of chamber walls positioned between the exterior wall and the interior wall and extending between the base and the top, thereby forming a plurality of chambers.
The horizontal seal may include a front extension.
The horizontal seal may include a hole formed in the exterior wall to provide pressure equalization.
A method for splicing two horizontal seals comprising the steps of: positioning a first horizontal seal such that an end of the first horizontal seal is adjacent to an end of a second horizontal seal and there is a gap between the end of the first horizontal seal and the end of the second horizontal seal; cutting a section of a top of the first horizontal seal and cutting a section of a top of the second horizontal seal such that the sections are adjacent and form a splice cavity; inserting horizontal seal stoppers into the first horizontal seal and inserting horizontal seal stoppers into the second horizontal seal such that the caulking cannot flow from the splice cavity through the first horizontal seal or the second horizontal seal; positioning an exterior formation block in contact with an exterior wall of the first horizontal seal and an exterior wall of the second horizontal seal, and further positioning an interior formation block in contact with an interior wall of the first horizontal seal and an interior wall of the second horizontal seal such that caulking cannot flow through the gap between the first horizontal seal and the second horizontal seal; applying a volume of caulking to a bottom of the splice cavity such that the volume of caulking forms a caulking layer; placing a splice core on top of the caulking layer; filling the splice cavity with caulking such that a continuous volume of caulking is formed from the bottom of the splice cavity to the top of the first horizontal seal and the top of the second horizontal seal; and removing the exterior formation block and the interior formation block.
A segment of dual-sided foam tape may be fixed to a surface prior to the positioning a first horizontal seal step such that the dual-sided foam tape can fix the first horizontal seal and the second horizontal seal to the surface and align the first horizontal seal and the second horizontal seal. The gap between the first horizontal seal and the second horizontal seal may be ¼″.
A method for forming a wet seal system between adjacent insulated wall panels, comprising the steps of: placing an upper plug assembly; placing a vertical seal having two sealing sides on top of the upper plug assembly such that a bottom opening of the vertical seal is in contact with a top side of the upper plug assembly and one of the two sealing sides is in contact with the side edge of a first exterior insulated wall panel; placing a lower plug assembly onto a top opening of the vertical seal such that a bottom side of the lower plug assembly is in contact with the top opening and a side of the lower plug assembly is in contact with the side edge of the first exterior insulated wall panel; positioning a second exterior insulated wall panel such that a bottom edge of the second exterior insulated wall panel contacts the top of the first horizontal seal and a side edge of the second exterior insulated wall panel contacts the upper plug assembly, the vertical seal and the lower plug assembly; and filling a caulking cavity in the upper plug assembly, filling a caulking cavity in the vertical seal and filling a caulking cavity in the lower plug assembly such that a continuous wet seal between the side edge of the first exterior insulated panel and the side edge of the second exterior insulated panel.
The method of forming a wet seal system further may include the steps of: applying caulking to a base of a first horizontal seal and positioning the first horizontal seal such that the base contacts a top edge of a third exterior insulated wall panel; applying caulking to a top of the first horizontal seal; wherein the first exterior insulated wall panel is positioned such that a bottom edge of the first exterior insulated wall panel contacts the top of the first horizontal seal and the upper plug assembly is placed onto the top of the first horizontal seal such that one side of the upper plug assembly contacts a side edge of the first exterior insulated wall panel; and wherein the first horizontal seal, the vertical seal, first exterior insulated wall panel, second exterior insulated wall panel and third insulated wall panel form a 3-way joint.
The method of forming a wet seal system may include repeating the defined steps using a plurality of horizontal seals and a plurality of vertical seals to connect a plurality of horizontally adjacent exterior insulated wall panels and a plurality of vertically adjacent exterior insulated wall panels to form a plurality of joints.
Further features will be described or will become apparent in the course of the following detailed description.
The invention will now be described by way of example only, with reference to the accompanying drawings, in which:
The systems described herein are directed, in general, to systems for forming a combination wet seal/gasket (dry) seal between adjacent exterior insulated wall panels (EIFS) or any other type of exterior panel and more specifically to systems for forming 3-way and 4-way joints between horizontally adjacent and vertically adjacent exterior insulated wall panels, wherein the sealing systems facilitate the formation of wet seals between exterior insulated wall panels with a variety of tolerance issues that need to be dealt with in order to provide an enduring and reliable panel joint system. The disclosed embodiments are merely exemplary, and it should be understood that the system may be embodied in many various and alternative forms.
The Figures are not to scale and some features may be exaggerated or minimized to show details of particular elements while related elements may have been eliminated to prevent obscuring novel aspects. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention. For purposes of teaching and not limitation, the illustrated embodiments are directed to wet seal systems.
As used herein, the terms “comprises” and “comprising” are to be construed as being inclusive and opened rather than exclusive. Specifically, when used in this specification including the claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or components are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The wet seal system of the present disclosure generally comprises vertical seal, horizontal seal, upper wet core plugs and lower wet core plugs. A segment of vertical seal provides a seal between horizontally adjacent exterior insulated wall panels and a segment of horizontal seal provides a seal between vertically adjacent exterior insulated wall panels. The lower wet core plug is positioned between the bottom of a horizontal seal and the top of a vertical seal. The upper wet core plug is positioned between the top of a horizontal seal and the bottom of a vertical seal. The vertical seal, lower and upper wet core plugs have caulking cavities which provide a continuous cavity for material to flow to create a continuous seal between the vertical seal and the lower and upper wet core plugs, this forms one continuous caulking cavity where caulking is injected into said vertical seals, lower and upper wet core plugs to allow bonding between the caulking and the exterior insulated panels. It will be appreciated by those skilled in the art that the vertical seal extends along the whole length of the panel 12. Similarly, the horizontal seal extends along the whole width of the panel 12.
A 4-way joint sealed using an embodiment of the wet seal system of the present disclosure is shown in
The vertical seal 18, shown in detail in
The top and bottom ends of the vertical seal 18 each have a plug which decreases the cross-sectional area of the caulking cavity 30 so that caulking can flow between the vertical seal 18 and the lower 22 and upper 24 wet core plugs without leaking. In the embodiment of
In an alternative embodiment of the elongate foam elements 48, elongate foam elements are one foam plug which has the same length as the vertical seal 18 and, when installed, runs from one end of the vertical seal 18 to the other.
One of ordinary skill in the art will also appreciate that the vertical seal may alternatively have plugs which are incorporated into the vertical seal.
The exterior side 34 of the embodiment of the vertical seal 18 shown in
In the embodiment of the vertical seal 18 shown in
One of ordinary skill in the art will appreciate that the vertical seal 18 does not need caulking injections holes 52 and that the caulking cavity 30 may be filled using an alternative method which fills the caulking cavity 30 with caulking 26 such as injecting the caulking through the plug tubes 116.
In a further embodiment of the vertical seal, the vertical seal may have an optional caulking inspection hole with tube 120, which is positioned in the interior side 36 such that caulking may flow through the caulking inspection hole 120 from the caulking cavity 30 when the caulking cavity 30 is full of caulking. The caulking inspection hole 120 enables one to easily inspect a wet seal formed using the system of the present disclosure to confirm that the wet seal has been formed properly. In a preferred embodiment of the vertical seal, the caulking injection holes 52 are used as caulking inspection holes.
In an alternate embodiment of the vertical seal, at least one strip of tape may be fixed to the vertical seal such that each caulking injection hole is covered by tape. When the nozzle of a caulking gun is inserted into a caulking injection hole, the tape is punched out such that caulking can be injected into the caulking cavity.
The vertical seal 18 can be made from any suitable material. In a preferred embodiment the vertical seal is made of cold formed steel. In an alternate preferred embodiment, the vertical seal is made of plastic.
In the embodiment of the horizontal seal 20 shown in
The horizontal seal 20 is made of resilient deformable material such that the horizontal seal 20 has a memory of its original shape. In a preferred embodiment, the horizontal seal 20 is made of a silicone rubber. In a more preferred embodiment, the silicone rubber displays elastic properties between a temperature range of −50° C. and +80° C.
The plug base 80 has an exterior stopper section 86, a caulking cavity 88, and an interior stopper section 90. The exterior stopper section 86 has open sides and the top and bottom are closed surfaces such that the exterior stopper 82 extends beyond the sides of the plug base 80 but is contained within the top and bottom. The interior stopper section 90 also has open sides and the top and bottom are also closed surfaces. The exterior side of the exterior stopper section 86 has a hinge 92 which connects the top and bottom portions of the plug base 80 such that the plug base can be opened and the exterior stopper 82 can be placed within the exterior stopper section 86 and the interior stopper 84 can be placed within the interior stopper section 90. The exterior stopper section 86 has a wall 94 which separates it from the caulking cavity 88, the interior stopper section 90 has a wall 96 which separates it from the caulking cavity 88 and the interior stopper section 90 also has an interior wall 98. Each of the walls 94, 96 and 98 have a slot 100, 102 and 104 respectively which separates the top and bottom portions of the plug base 80. The caulking cavity 88 is open on the four sides between the exterior stopper section 86 and the interior stopper section 90. The caulking cavity 88 has four thin beams 106 which connect the wall 94 to the wall 96 and has two thick beams 108 which connect the wall 94 to the wall 96. One of ordinary skill in the art will appreciate that the plug base 80 may have any number of thin beams or thick beams such that the exterior stopper section 86 cannot move relative to the interior stopper section 90.
The plug base 80 has an exterior locator stub 109 and an interior locator stub 110 where the exterior locator stub 109 is located on the bottom of the exterior stopper section 86 and the interior locator stub 110 is located on the bottom of the interior stopper section 90. The exterior 109 and interior 110 locator stubs are spaced apart by the same distance that separates the feet 70 and 71 of the horizontal seal 20. Thus, the upper wet core plug 22 can be positioned on the top 62 of the horizontal seal 20 such that the exterior 109 and interior 110 locator stubs prevent the upper wet core plug 22 from moving relative to the horizontal seal 20. In the embodiment of the upper wet core plug of
The plug base 80 also has a handle 111 which extends from the interior stopper section 90 such that one can insert the upper wet core plug 22 between two horizontally adjacent exterior insulated panels. One of ordinary skill in the art will appreciate that the upper wet core plug 22 can be inserted with a separate tool or by hand.
In a preferred embodiment, the plug base 80 is produced using injection moulding. In a further preferred embodiment the plug base is produced using plastic injection moulding where the plug base is made of a plastic. In a further preferred embodiment, the plastic is PVC.
The exterior stopper 82 is shaped such that it fits within the exterior stopper section 86 and has two lateral sealing sections 112 where one lateral sealing section 112 extends through each of the open sides of the exterior stopper section 86.
The interior stopper 84 is shaped such that it fits within the interior stopper section 90 and has two lateral sealing sections 114 where one lateral sealing section 114 extends through each of the open sides of the interior sealing section 90.
The exterior stopper 82 and the interior stopper 84 are both made of an elastic material such that the stoppers 82 and 84 decrease in height when a compressive force is applied to the top and bottom of the plug base 80. Additionally, the elastic material enables the lateral sealing sections 112 and 114 to decrease in width when a compressive force is applied to the sides of the plug base 80. In a preferred embodiment, the exterior stopper 82 and the interior stopper 84 are made of EPDM or other foam type materials.
In the embodiment of the upper wet core plug of
In the embodiment of the upper wet core plug of
The lower wet core plug 24 is the same as the upper wet core plug 22, as shown in
In an alternative embodiment of the wet seal system shown in
The vertical seal 134 of
The horizontal seal of
The upper wet core plug 142 of
The round vertical seal 220 is shown in detail in
The round vertical seal 220 has an elongate round foam elements 244 which are similar to elongate foam elements 48 except that they are cylindrical as opposed to arrow shaped. The round foam shapes 244 may be two foam shapes where one is positioned at the top of the round vertical seal 220 and one is positioned at the bottom of the round vertical seal 220. In an alternate embodiment the round foam shape 244 is a long foam cylinder which is installed such that it runs the length of the round vertical seal 220. In a preferred embodiment, the round elongate foam elements 244 is backing rod which is currently used with caulking to seal horizontally adjacent wall panels.
The round vertical seal 220 differs from the vertical seal 134 in that the round vertical seal further has elongate foam element restraining tabs 246 which are located between the web segments 242 and extend from the side of the sealing sides 234 which is proximate to the exterior side 236. The elongate foam elements restraining tabs 246 are shaped such that they can deform and prevent an air space from forming if the exterior side 236 deforms in order to decrease the width of the round vertical seal 220.
In the embodiment of the vertical seal of
In a further embodiment of the round vertical seal, the staggered web segments 242 have fastening holes 248 such that one can position one sealing side 236 adjacent to the edge of the wall panel and insert fasteners (e.g. screws, nails, etc.) through the caulking holes 240 of the open sealing side 236 into the fastening holes 248 into the edge of the wall panel. Then one can insert a fastening device through each caulking hole 240 to fasten the fasteners from the inside of the round vertical seal 220.
The wet seal system of the present disclosure can be used to seal a 4-way joint using the following iterative method. For exemplary purposes the sealing of the 4-way joint is described in terms of the wet seal system of
In order to prepare the upper 22 and lower 24 wet core plugs for use, the caulking injection tube is inserted through the caulking injection tube channel 118 and the caulking inspection tube 120 is inserted through the caulking inspection tube channel 122. Then the plug bases 80 of each plug 22 and 24 are deformed and the exterior stopper 82 is positioned within the exterior stopper section 86 and the interior stopper 84 is positioned within the interior stopper section 90.
In order to prepare the vertical seal 18 for use, the elongate foam elements 48 are inserted into the top and bottom of the vertical seal 18. Also, two strips of thermal break 42 are fixed to each sealing side 32 where one strip 42 is fixed to on each side of the caulking holes 38.
First, one positions two wall panels 12 such that they are horizontally adjacent to one another and seals the gap between the two panels. Caulking is applied to the base 60 of a segment of horizontal seal 20 and the base 60 is pressed firmly against the top edges of the two panels 12 such that the horizontal seal at least runs along the combined length of two wall panels 12 and the exterior wall 64 faces the exterior of the wall panels 12. Next caulking is applied to the top 62 of the horizontal seal 20 and one wall panel 12 is positioned on top of the horizontal seal 20 such that the caulking on the top 62 bonds and cures to the bottom edge of the wall panel 12.
Then caulking is applied to the top 62 at the location beside the vertical edge of the wall panel 12 which is being sealed such that caulking pre-fills up to the feet 70 and 71 of the top 62, shown in
Then, a segment of vertical seal 18 is positioned along the vertical edge of the wall panel 12 such that one the thermal break strips 42 on one of the sealing sides 32 is in contact with the edge of the wall panel 12, its exterior side faces the exterior of the wall panels 12, its bottom is in direct contact with the top of the exterior stopper section 86, caulking cavity 88 and interior stopper section 90 of the upper wet core plug 22 and the caulking cavity 30 is generally overlapping the caulking cavity 88. The fasteners are inserted through the caulking holes 38 on the open side of the vertical seal 18 into the fastening holes 46 in the web segments 40. The fasteners are tightened through the caulking holes 38 such that the fasteners pass into the wall panel 12 and fix the vertical seal 18 to the edge of the wall panel 12.
Then a lower wet core stopper 24 is placed on top of the top opening of the vertical seal 18 such that the bottom of the caulking cavity 88 generally overlaps the caulking cavity 30 and the exterior stopper section 86 faces the exterior of the wall panels 12.
Then a wall panel 12 is positioned on top of the horizontal seal 20 such that it is horizontally adjacent to the wall panel 12 and is in contact with the thermal break strips 42 of the other sealing side 32. If the gap between the two wall panels 12 is smaller than the width of the exterior stopper 82 and the interior stopper 84 of the upper wet core plug 22. Then the lateral sealing section 112 of the exterior stopper 82 and the lateral sealing section 114 of the interior stopper 84 will compress to decrease the width of the upper wet core plug 22. If the gap between the panels is smaller than the width of the vertical seal 18 then the exterior side 34 and interior side 36 will deform and decrease the width 50 of the vertical seal 18 as shown in
Then caulking 26 is injected into the caulking injection tube 116 of the upper wet core plug 22 such that the caulking cavity 88 fills with caulking and the caulking flows through the sides of the caulking cavity 88 and bonds to the edges of the panels 12. The caulking is prevented from flowing out through the bottom of the caulking cavity 88 by the pre-filled portion of the horizontal seal 20. When caulking begins flowing out of the caulking inspection tube 120 caulking 26 ceases being injected through the caulking injection tube 50. Then caulking 26 is injected into the caulking cavity 30 of the caulking injection hole 52 of the vertical seal 18 closest to the upper wet core plug 22 and the caulking 26 flows through the caulking holes 38 and fills both of the seal spaces 44. When caulking 26 begins flowing out of the caulking inspection hole 54 the caulker ceases injecting caulking 26 through the caulking injection hole 52. Then this process is repeated through each of the caulking injection holes 52. Then caulking 26 is injected into the caulking injection tube 116 of the lower wet core plug 24 such that the caulking cavity 88 fills with caulking and the caulking flows through the sides of the caulking cavity 88 and bonds to the edges of the panels 12. When caulking begins flowing out of the caulking inspection tube 120 caulking 26 ceases being injected through the caulking injection tube 50. Some caulking 26 will overflow out of the top of the caulking cavity 88. The horizontally adjacent wall panels 12 are continuously sealed after the caulking injection process because the caulking cavity 30 is open to the top of the caulking cavity 88 of the upper wet core plug 22 and the bottom of the caulking cavity 88 of the lower wet core plug 24. One of ordinary skill in the art will appreciate that the caulking cavities 30 and 88 may be completely filled using only the caulking injection hole 52 or one of the caulking injection tubes 116.
Next caulking is applied to the base 60 of a second segment of horizontal seal 20 which has a length that is at least the combined length of the two horizontally adjacent wall panels 12. The second segment of horizontal seal 20 is pressed firmly against the top edge of the wall panels such that its exterior wall 64 faces the exterior of the wall panels 12 and its feet 70 and 71 align with the exterior locator stub 109 and the interior locator stub 110 on the top of the lower wet core plug 24.
During this process, the caulking 26 cures to seal the joints between the wall panels 12. The process can be repeated as many times as necessary for additional joints.
It will be appreciated by those skilled in the art that the wet seal system described therein could also be used in 3-way joints, as shown in
The wet seal system of the present disclosure can form seals between adjacent wall panels which are separated by a distance greater than 1.5″ and the seals comply with the ATSM E330 standard.
In order to overcome the limitations that come with the horizontal seal 20 having a finite length, the horizontal seal 20 is configured to be spliced easily on site to join two segments of horizontal seal 20 in a straight line or at an angle.
The two segments of horizontal seal 20 are fixed to the top of a wall panel by extruding caulking along the feet 70 and 71 of the base 60 and the bases 60 of each segment 20 are pressed against the wall panel edge such that there is a gap between the two horizontal seals 20. In a preferred embodiment, the gap is ¼″. Then the top 62 of each adjacent horizontal seal 20 is cut and removed such that there is an opening into the chambers 74 and the chamber wall 72 which separates the chambers 74 is also removed to form a splice cavity 200. The splice cavity 200 is sealed from the chambers 74 by inserting horizontal seal stoppers 202 into the chambers 74 at the position where the splice cavity 200 starts. The horizontal seal stoppers 202 allow the splice cavity 200 to be filled with caulking without the caulking 204 from filling the rest of the horizontal seal 24 as shown in
In a further embodiment of the method for splicing horizontal seals 20, a segment of dual-sided foam tape is fixed to the top of the wall panel before the horizontal seals 20 are attached. Then caulking is extruded to the interior side of the dual-sided foam tape such that the height of the caulking is slightly higher than that of the dual-sided foam tape. The film protecting the adhesive on the opposite side of the dual-sided foam tape is removed and each segment of horizontal seal 20 is positioned such that the feet 70 and 71 proximate to the exterior wall 64 are in contact with the edge of the dual-sided foam tape. The dual-sided foam tape provides an additional seal between the horizontal seal 20 and the wall panel, helps to align the segments of horizontal seal 20 and fixes the segments of horizontal seal 20 in position while the caulking is curing.
One of ordinary skill in the art will appreciate that the above-mentioned splicing method is suitable with straight and angled splices. For example,
It will be appreciated by those skilled in the art that there are a number of advantages realized by the embodiments shown and described herein. For example it will be appreciated that the wet seal system may be compliant with large construction tolerances with regard to the spacing and orientation of wall panels relative to each other. More specifically this can be seen in reference to
Number | Date | Country | |
---|---|---|---|
62556861 | Sep 2017 | US | |
62648754 | Mar 2018 | US | |
62714022 | Aug 2018 | US |