The present invention relates to a wet wheel cutter, in particular a wet wheel cutter suitable for cutting ceramic tiles.
A general aim of a preferred embodiment of the present invention is to provide a wet wheel cutter which has a cutter blade mounted for angular movement relative to a table top between a first angular position whereat the plane of the blade is preferably perpendicular to the table top and another angular position whereat the plane of the blade is at an angle less than 90° to the table top.
According to one aspect of the present invention there is provided a wet wheel cutter including a table top mounted upon a support body, a cutter blade projecting above the table top and being movably mounted for movement between a first angular position and a second angular position relative to the table top, the first and second angular positions being different, the table top being maintained at the same orientation relative to the support body when the blade is at its first and second angular positions.
Various aspects of the present invention are hereinafter described with reference to the accompanying drawings, in which:—
a, 9b illustrates, schematically, mounting of the table top upon the support body of the cutter.
The cutter 10 shown in the drawings includes a table top 12 which is supported upon a support body 14.
The cutter 10 further includes a cutter blade 20, preferably a diamond wet wheel cutter blade, which is mounted on the drive shaft 22 of an electric motor 26 housed in a casing 27.
As indicated by comparing
In the normal upright position the plane of the blade 20 subtends an angle of 90° with the upper surface of the table top (i.e. it is perpendicular to the upper surface 13). In its tipped position, the plane of the blade 20 subtends an angle of less than 90° with the upper surface 13. This angle may be 45° to thereby enable a 45° mitre cut to be made in a tile being cut on the cutter. Preferably, as schematically illustrated in
In the preferred embodiment 10 illustrated in
In
Preferably as illustrated in
The support body 14 shown in the cutter 10 of
The upper and central housing parts 44, 46 serve to connect the front and rear housing parts 40, 42 and so provide integrity for the support body 14. Preferably the housing parts 40, 42, 44 and 46 are formed as plastics mouldings.
The lower central housing part 46 preferably defines a foot on the right hand side of the support body 14 (as seen in
The left hand side of the support body 14 preferably includes a foot member 50 secured to the front and rear housing parts 40, 42. Preferably the foot member 50 is formed by a metal casting.
The motor casing 27, as more clearly seen in
The motor casing 27 has a side wall 56 located adjacent to the cutter blade 20 to provide a shield to restrain ingress of water towards the motor 26.
A pair of mounting brackets 58, 59 are provided on the casing 27 adjacent side wall 56, the brackets 58, 59 having a stub shaft 60 upon which the table 12 is mounted. The table 12 has co-operating recesses for pivotally receiving the respective stub shafts 60 in order to define the F1 pivot of the four bar linkage.
A mounting bar 128 is provided which is of general U shape and having a pair of shaft projections 129 at its terminal ends. The shaft projections 129 are co-axial and are each pivotally received in a bore 57 formed in a respective front and rear housing 40, 42 thereby co-operate to define pivot F3 of the four bar linkage.
The central portion 130 of the bar 128 extends in a generally rectilinear manner parallel to the shaft projections 129.
The central portion 130 is pivotally received in a recess formed on the underside of the table top 12 and co-operates therewith to define pivot F4 of the four bar linkage.
Adjustment of the four bar linkage for moving the cutter blade 20 between its normal upright position (
The adjustment mechanism 70 preferably includes a drive shaft 71 (
Preferably a positional lock is provided for retaining the cutter blade 20 in its normal and inclined positions.
Preferably the positional lock acts upon the drive shaft 71 in order to retain the cutter blade 20 in its normal or inclined position. In this respect, the handle 76 is preferably adopted to co-operate with the housing part 40 in order to define the positional lock.
Accordingly, as seen in
The shaft 71 is mounted in the housing part 40 so as to be axially movable and is biased in the axial direction B by a spring 83 such that the handle 76 is biased to an axial position to maintain projection 80 within recess 81. To adjust the inclination of the cutter blade 20, the handle 76 is manually pulled in an axial direction opposite to direction B in order to move the projection 80 out of recess 81. The handle 76 is then rotated to cause rotation of shaft 71.
Preferably the gearing ratio between the pinion gear 72 and rack 73 is such that one complete revolution of shaft 71 moves the cutter blade 20 from its normal upright position to its maximum inclined position (which in the illustrated embodiment is preferably 45°). Accordingly, this enables the projection 80 and recess 81 to lock the cutter blade 20 at both its normal and fully inclined positions.
It is envisaged that the cutter blade 20 may be retained at an inclined position intermediate it's normal and fully inclined positions, say at an angle of 30° and/or 22½°. This can be conveniently achieved by providing the housing part 40 with additional recesses 81 angularly spaced about the axis of rotation of the handle 76.
A gauge assembly 90 may be provided for indicating the inclined position of the cutter blade 20. The gauge assembly 90 may conveniently be in the form of a hollow cylindrical member 91 having a closed end 92. The member 91 is seated within the front sleeve 52 of the motor casing 27 so as to rotate therewith and rotatably extends through the hollow trunnion of the front housing part 40.
The closed end 92 carries a marker 93 which moves along an angular scale 94 on the housing part 40 (it will be appreciated that the marker 93 may be provided on the housing part 40 and the angular scale 94 be provided on the closed end 92).
It is preferred that the motor 26 is positioned so as to be located inbetween the pivot points F1, F4 and for the links L1, L3 to be inclined to the right of pivot points F2, F3 respectively (
As more clearly seen in
The cutter blade 20 is preferably a diamond wet wheel cutter blade and so requires to be immersed, at its lower portion, in a bath of water.
The bath of water is preferably provided by an open topped tray 600 which in use is partially filled with water to cover the lower portion of the blade 20 by a desired amount.
Preferably the lower half of the blade 20 is housed in a cowling 65 which is preferably defined by a curved wall portion 66 formed on the side wall 56 of the motor casing 27 and a cover 68 secured to the curved wall portion 66.
Apertures 69 are provided in the lower region of the curved wall portion 66 to enable water to enter internally of the cowling 65 from the tray 600 to be picked up by the rotating blade 20. The cowling 65 provides the advantage of preventing splashing or creation of a mist caused by the rotating blade 20 and thereby reduces spillage of water.
The tray 600 is preferably removably mounted in a cradle 160 to thereby enable the tray 600 to be removed for filling and/or cleaning.
The cradle 160 is preferably movably mounted in order to ensure that the cowling 65 remains immersed in the bath of water contained in the tray 600 irrespective of whether the blade 20 is at its normal position or at one of its inclined positions.
Preferably the cradle 160 is movably mounted by means of a four bar linkage so that it maintains the tray 600 horizontally throughout the range of adjustment of the blade 20 and also maintains the required height relationship between the blade 20 and tray 600 to ensure that the blade 20 remains immersed in the bath of water in the tray 600.
The pivot points for the cradle four bar linkage which mounts cradle 160 is illustrated most clearly in
The pivot point F2 of the four bar linkage which connects the motor casing 27 and table top 12 also forms the second pivot point SF2 for the cradle four bar linkage.
A link 170 is pivotally attached to each of the front and rear housing parts by a pivotal connection 171. The pivotal connection 171 defines the third pivot point SF3 of the cradle four bar linkage.
The front and rear sides of the cradle 160 are each provided with depending link arms 165 which are each pivotally attached to links 170 via a pivotal connection 167. Pivotal connections 167 define the fourth pivot point SF4 of the cradle four bar linkage.
Since the pivot point F2, SF2 is common to both four bar linkages, and since the motor casing 27 forms a link within each four bar linkage, it will be appreciated that adjustment of the four bar linkage connecting the table top 12 and motor casing 27 will cause a simultaneous adjustment (which is always in synchronism) of the cradle four bar linkage.
The table top 12 is preferably provided with a water drainage channel 112 which preferably extends completely round the periphery of the table top 12. Preferably the channel 112 feeds into a funnel 114 located beneath the table top 12. The funnel 114 is located above the tray 600 throughout the entire range of movement of the table top 12 and serves to permit water to drain from the table top 12 via channels 112 and into the tray 600.
Number | Date | Country | Kind |
---|---|---|---|
0415682.4 | Jul 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB05/02702 | 7/7/2005 | WO | 00 | 3/13/2008 |