U.S. Pat. No. 9,814,362, the contents of which are fully incorporated herein by reference, is directed to a wet/dry vacuum device that uses a negative pressure in a canister to pick up viscous and non-viscous substances. The device of the '362 Patent is a hand held shop vacuum that includes a handle, a canister, a vacuum tube, and a pick-up device. The canister holds an enclosure that generates a negative pressure by forcing compressed, high velocity air through multiple nozzles and through an outlet orifice/muffler to create a high flow vacuum in the enclosure. The vacuum in the enclosure is transferred to the vacuum tube and the pick-up device to pick up liquid or debris on a shop floor. The enclosure inside the canister includes a flow control valve such as a ball in cage device to prevent substances from entering the vacuum generating enclosure. An evacuation spout is located at the bottom of the canister for draining the vacuum when the canister becomes full.
While the vacuum device of the '362 Patent has been commercially successful, it has been discovered that the exit to the vacuum tube inside the canister is proximal the vacuum source (canister 60), causing a violent turbulent flow at the exit of the vacuum tube that causes splashing and portions of the vacuumed liquid to be entrained into the rapidly moving airflow. This is undesirable and can lead to malfunction of the unit. Moreover, a single outlet to the canister has been determined to be inefficient in maximizing substance extraction. The present invention is directed at improving the deficiencies and inefficiencies of the prior art.
The present invention is a shop vacuum with wet/dry capability that uses a vacuum tube that terminates in a space above the vacuum generator opening such that the air exiting from the vacuum interior tube outlet is not submerged in the substance directly opposed the negative pressure source. This allows the substance to drain into the canister in a more controlled and less volatile condition, reducing splashing and entrainment of the substance. Moreover, a second air nozzle and orifice/muffler has been added to the vacuum generator for improving air flow and vacuum level in the device.
These and other benefits of the present invention will best be understood with reference to the drawings and the detailed description of the present invention below.
The handle 12 is a hollow elongate tube that passes through the upper plate 17 of the canister 16. With reference to
The passage of the high pressure air into and through the canister creates a low pressure region (via the “venturi effect”) in the volume defined by compartment formed by enclosure 60 that is secured to the upper plate 17. For typical shop compressed air supplies, the pressure is approximately ninety (90) psi directed through the compartment 60. The enclosure 60 has an opening 64 at the bottom that is connected to a positive ball-in-cage shut-off device 66. When a substance level in the canister 16 rises to a volume where it enters the shut-off device 66 and lifts the ball 72, the substance lifts the ball 72 up until the vacuum in the enclosure 60 pulls the ball 72 against the seal 65 (
In operation, the adapter 13 is connected at jack 14 to a supply of high pressure air (not shown). The high pressure air is forced through the handle 12 and into between the plates 30, and out the nozzles 32. The high pressure, high velocity air then enters respective orifice plugs 59 and through the mufflers 58. The passage of the high velocity air creates a low pressure condition in the compartment 60. This continuous low pressure condition is communicated to the portion of the canister 16 outside of the compartment 60. Vacuum tube 18, which has a first end 78 that is open to this region of the canister 16, communicates the low pressure condition to the pick-up device 20. Wet or dry substances, dust, debris, and other materials are sucked through the pick-up device and the vacuum tube 18, which it exits the vacuum tube and collects on the floor of the canister 16 in a collection area 100. When the canister is full, the air supply is disconnected and the drain port 29 is opened via knob 21 to allow the contents of the canister to flow through to a waste bin or the like. The knob 21 can then be returned to the closed position and further vacuuming can commence.
As shown in
The present invention shows two mufflers 58 above two nozzles 32 to improve the efficiency in which the air is removed from the compartment 60. A single muffler can lead to choking of the flow, but additional mufflers reduce the opportunity for choked flow and improve the operation of the vacuum.
The foregoing descriptions and illustrations are intended to be exemplary and not limiting. That is, one of ordinary skill in the art would readily appreciate that modifications and substitutions are available without departing from the scope and spirit of the invention, and that the present invention is intended to include all such modifications and substitutions. Accordingly, the proper construction of the scope of the invention is the words of the appended claims, using their plain and ordinary meaning, in view of but not limited by the preceding descriptions and the illustrations included herewith.
Number | Name | Date | Kind |
---|---|---|---|
3971096 | Renholt | Jul 1976 | A |
4845802 | Miller | Jul 1989 | A |
5142730 | Braks | Sep 1992 | A |
6826799 | Smith | Dec 2004 | B2 |
7299522 | Smith | Nov 2007 | B1 |
8153001 | Peters | Apr 2012 | B2 |
9814362 | Romero | Nov 2017 | B2 |
9863441 | Eidmohammadi | Jan 2018 | B2 |
20060032014 | Smith | Feb 2006 | A1 |
20150335217 | Fritsche | Nov 2015 | A1 |
20170280954 | Romero | Oct 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20200375422 A1 | Dec 2020 | US |