In press printing, a liquid agent such as an ink, a coating or a primer is applied to a wettable surface of a roller, for example an anilox or gravure roller. An auxiliary roller may be provided to selectively wet portions of the roller. For example, the auxiliary roller may have radially-extending rubber portions that engage and wet selected portions of the roller.
Examples will now be described, by way of non-limiting example, with reference to the accompanying drawings, in which:
The example wetting apparatus 10 comprises an applicator unit 20 which is generally elongate along a lateral axis 2 defined by a transfer lip 22 of the applicator unit for transferring liquid agent to a roller. In this example, the applicator unit 20 extends from a liquid agent chamber 24 at a rear side towards the transfer lip 22 at a front side along an application direction 4 substantially perpendicular to the lateral direction 2, corresponding to flow of liquid agent through the applicator unit 20 for transfer to a roller.
Upper and lower walls 26, 28 extend from the liquid agent chamber 24 to define a slit 30 between them for conveying liquid agent from the liquid agent chamber 24 to the transfer lip 22. In this particular example, the upper and lower walls 26, 28 are continuous with and extend from walls of the liquid agent chamber 24. For example, as shown in the side view, in this example the upper wall 26 extends from a lower end of an upright front wall of the liquid agent chamber 24 so that there is a curved join between them. Similarly, in this example the lower wall 28 extends from a lower end of an upright rear wall of the liquid agent chamber 24 so that there is a curved join between them.
By way of example, a height of the slit 30 (i.e. along a direction perpendicular to the upper wall 26 and towards the opposing lower wall 28) may be small as compared with its width (i.e. along the lateral direction 2) and depth (i.e. along the application direction 4). For example, the height of the slit 30 may be between 0.2-1 mm, for example 0.5 mm. The width of the slit may be between 500 mm and 1 m for example. The depth of the slit 30 may be 10 mm or more, such as 15 mm or more or 20 mm or more.
In this example, the upper wall 26 extends beyond a lip of the lower wall (i.e. it extends from the liquid agent chamber along the application direction 4) and terminates at the laterally extending transfer lip 22. In this particular example, the upper lip extends approximately 5 mm beyond the lip of the lower wall 28. The term lip is intended to denote the terminal edge of a wall that defines the slit 30.
In use, the applicator unit 20 receives a liquid agent, such as a primer or coating for a press print operation, in the liquid agent chamber 24. The liquid agent is provided to the slit under pressure so that it flows through the slit 30 along the application direction 4. In the absence of a blockage in the slit 30, the liquid agent may flow at a velocity such that it exits an aperture of the slit corresponding to the lip of the lower wall 28 and continues to flow along the upper wall 26 to reach the transfer lip 22, under action of surface tension forces. For example, the liquid agent may flow at a speed of approximately 1 m/s. From the transfer lip 22, the liquid agent may be transferred to an adjacent laterally-oriented roller rotating past the transfer lip 22 by forming a liquid bridge with a roller surface of the roller, as will be described below.
As shown in
In this particular example, the flow restrictor 50 is in the form of a cuboidal strip inserted into the slit 30 in an orientation so that it has a length along the application direction 4 greater than its width along the lateral direction 2. The flow restrictor 50 has a height along a direction corresponding to the height of the slit 30, and is dimensioned so that there is a clearance (i.e. in the height direction) between the flow restrictor 50 and the walls of the slit 30 when the flow restrictor 50 is received in the slit 30. For example, the clearance may be between 0.01 and 0.1 mm, for example between 0.01 and 0.03 mm. In the present disclosure a lateral portion of the slit 30 in which a flow restrictor is received is referred to as a restricted portion of the slit, as the presence of the flow restrictor restricts flow through the slit. In contrast, a lateral portion of the slit which is free of any flow restrictor is referred to as an unrestricted portion. The clearance between the flow restrictor 50 and the slit 30 permits liquid agent to flow along the respective restricted portion of the slit. The clearance may be such that flow of liquid agent is permitted along the restricted portion at a reduced rate relative a flow of liquid agent through an adjacent unrestricted portion. Accordingly, liquid agent flowing along the restricted portion is discharged from the lip of the lower wall 28, whereas liquid agent flowing along the unrestricted portion continues to flow along the upper wall 26 to reach the transfer lip 22 and be transferred to a roller. Accordingly, the flow restrictor 50 prevents flow of liquid agent to a respective lateral portion of the transfer lip 22, and therefore prevents liquid agent being transferred to a corresponding lateral portion of a roller.
Inserting a flow restrictor into the slit (i.e. along the application direction 4 through an aperture of the slit) may provide a particularly simple and convenient way of installing a flow restrictor. The length along which the slit 30 extends from the liquid agent chamber 24 along the application direction may be such that a flow restrictor installed therein may be securely retained. For example, in an apparatus having a slit height of approximately 0.5 mm, the slit 30 may extend at least 10 mm along the application direction, for example at least 15 mm or at least 20. In previously considered arrangements, a slit of an applicator may be insufficiently deep (i.e. along an application direction) to securely retain a flow restrictor inserted therein.
In some examples, a flow restrictor may be received in a slit so that a proximal end of the flow restrictor (i.e. the end farthest into the slit) abuts a wall, partition or other formation within the slit or liquid agent chamber. This may prevent a piston pressure being applied by pressurised liquid agent in the chamber onto the flow restrictor which may otherwise drive the flow restrictor out of the slit. An example such partition 25 is shown in dashed lines in the side cross-sectional view of
A portion of an example roller surface 60 of a roller is shown in dashed lines in the plan view of
In some examples, a flow restrictor may be provided with a boundary guide adjacent the transfer lip (i.e. when the flow restrictor is installed/received in the slit) to define a lateral boundary of a wetted zone on a roller.
An example flow restrictor 250 including an insert portion 252 and a boundary guide 260 is shown in
The boundary surface 262 may terminate at a boundary edge 264 extending perpendicular to the lateral direction 2 (e.g. along the guide direction 6) to prevent lateral migration of liquid agent on the boundary surface 262 beyond the boundary edge 264, and thereby define a lateral boundary of a wetted zone on the roller as will be described below. In particular, surface tension forces at the boundary edge 264 may be such that liquid agent received there is more readily transferred to an adjacent roller surface than laterally migrated over the boundary edge 264. Accordingly, the boundary edge 264 may thereby define a boundary between an un-wetted zone and a wetted zone on a roller.
A portion of the boundary guide 260 may extend in front of the transfer lip 22 so that in use it is disposed between the transfer lip 22 and a roller surface as shown in
The boundary guide 260 may be integral with an insert portion 252 of the flow restrictor 250, or may be provided as a discrete element fixedly attached to the insert portion 252. In the example shown in
In the example shown in
In the example boundary guide 250 shown in
In this example, the boundary guide 360 has chamfered forward edges 363 to guide liquid agent along side surfaces of the boundary guide 360 towards forward boundary surfaces 362 that are to oppose a roller. In this example, the boundary guide 360 comprises two parallel boundary surfaces 362 extending along a guide direction 6 perpendicular to the lateral direction 2, and terminating at boundary edges 364 laterally spaced apart by a void 366 as described above. The boundary guide 360 further comprises an upper boundary surface 374 which is to extend above and in front of the transfer lip 22 when the flow restrictor 350 is received in the slit of an applicator unit. The upper boundary surface 374 is to prevent lateral migration of liquid agent along a pathway extending above the transfer lip, for example an overflow pathway as described above. In this particular example, the upper boundary surface 374 extends laterally to bridge the two parallel boundary surfaces 362 at its lower side, and extends upwardly away from the transfer lip 22 to provide a barrier to liquid agent that may otherwise flow from the upper wall 26 up and over a portion of the boundary guide 350. In this example, the upper boundary surface 374 is generally rectangular. The upper boundary surface 374 has a greater lateral extent than the two parallel boundary surfaces 362 together to prevent overflow from adjacent lateral portions of the upper wall 26.
As with the flow restrictor 250 of
In this example, the insert portion 452 is biased away from a planar configuration for retention in a slit. In particular, as shown in
The boundary guide 460 comprises two rails 461 defining respective boundary surfaces 462 which extend along a lateral direction 2 parallel with the transfer lip 22 and a guide direction 6 which is perpendicular to the lateral direction. The two rails 461 extend along the guide direction 6 from a lip portion 480 of the boundary guide 460 adjacent the lip 22 (e.g. at the junction between the boundary guide 460 and the insert portion) to a distal support portion 482. The distal support portion 482 is to rest against a support structure of the apparatus of
In this example, the distal support portion 482 comprises a laterally extending member which has a greater lateral extent than the rails 461 (when considered together). Increasing the lateral extent of the support portion 482 may provide increased stability to the location of the flow restrictor 450 in the slot, as it may provide increased resistance to rotation of the flow restrictor 450 within the slot.
In this particular example, the boundary guide 460 further comprises an intermediate portion 468 laterally between the rails 461 and recessed relative the rails 461 with respect to the application direction, so that in use the intermediate portion 468 is spaced further from a roller than the rails 461. The intermediate portion 468 may extend between the lip portion 480 of the boundary guide 460 adjacent to the transfer lip 22 to the distal support portion 482. In some examples, the intermediate portion 468 may be integrally attached to the distal support portion and may be affixed to the lip portion 480, for example by being received in a slot in the lip portion 481 and optionally secured therein (for example by welding, by deformation of a protruding part of the intermediate portion beyond the slot, or by a mechanical fastener). Providing the rails forward of the intermediate of the intermediate portion may provide structural rigidity to the boundary guide 460.
In this particular example, the intermediate portion 468 comprises a locating formation 470 to cooperate with a corresponding locating feature of an apparatus for placement of the flow restrictor 450. The example locating formation 470 comprises a circular hole in the intermediate portion 468 which may receive a locating pin as will be described below.
The insert portion 452 may be integrally formed with the boundary guide 460. In the particular example shown in
As shown, the insert portion 452 is received in the slot 30 and the boundary guide 460 is disposed outside of the slot. The flow restrictor 450 is bent at the lip portion 480 so that the rails 461 extend below the transfer lip 22 of the upper wall 26 along a guide direction 6 so that the boundary surfaces 462 may oppose a roller. A roller surface 60 of an example roller is depicted in dashed lines by way of example only. In this example, the guide direction 6 is perpendicular to the lateral direction and approximately perpendicular to the application direction 4.
As shown in
In other examples, an apparatus may comprise a flow limiter 610 with no lane inserts 620, and similarly an apparatus may comprise a lane insert 620 with no flow limiters.
Any suitable form of a flow restrictor may be used for each of the flow limiters 610 and lane inserts 620, for example, the flow limiters and lane inserts may be in accordance with any of the example flow restrictors 250, 350, 450 as described herein.
In this particular example, each of the flow limiters 610 and lane inserts 620 comprise flow restrictors in accordance with the example flow restrictor 350 described above with respect to
A flow limiter 610 may be moveable along the lateral direction to vary a lateral position of a boundary of the total wetted zone 636. A flow limiter 610 may comprise or be provided with any suitable actuation arrangement for moving the flow limiter 610 along the lateral direction.
In the particular example apparatus 600 of
In this particular example, the arm portion 612 and the tab portion 614 are received in the slot 30 with a clearance so that they define a corresponding restricted portion of the slit as described above. The arm portion 612 extends through a seal 618 and outside of the slit 30 to engage a drive 616 for driving lateral movement of the flow limiter 610. For example, the drive 616 and arm portion 612 may engage by a rack and pinion arrangement or any other suitable actuation arrangement. For example, when a rack and pinion arrangement is used, the arm portion 612 may comprise an array of drive holes along its length and the drive 616 may comprise a drive wheel provided with drive projections for engaging the drive holes. The drive may comprise a worm screw. The drive 616 may comprise a stepper motor or other suitable actuation device. The drive arrangement may comprise a linear encoder, which may be to provide a signal indicating an absolute lateral position of the flow limiter. Accordingly, the lateral position may be derived and controlled irrespective of any intervening power down of the apparatus.
In this example, each drive 616 is disposed outside of the liquid agent chamber 24 and outside of the slit 30. Accordingly, each drive 616 may be separate from and not immersed in the liquid agent in use. In previously considered arrangements, a drive may be disposed in a liquid agent chamber or otherwise exposed to it. Liquid agent may be damaging to components of a drive.
In use, the drive 616 may be operated to move the flow limiter 610 along the lateral direction to thereby move the lateral location of a respective boundary of a total wetted zone 636 on the roller surface 632. In use, liquid agent is caused to flow through the slot 30 along the application direction 4. In a restricted portion of the slot 30 corresponding to the location of the arm portion 612 and tab portion 614, the liquid agent flows at a reduced velocity relative a flow of liquid agent through an adjacent unrestricted portion between the flow limiter 610 and any corresponding flow restrictor (e.g. a flow limiter 610 or lane insert 620). The reduced velocity is such that the liquid agent is discharged from the lip of the lower wall of the slit, rather than flowing along the upper wall to reach the transfer lip 22 for transfer to the roller 630. For example, the reduced velocity may be XXm/s, whereas a velocity through an unrestricted portion of the slit may be approximately 1 m/s. Accordingly, a lateral end portion of the roller 630 from an extreme end of the roller up to the boundary of the wetted zone 636 does not receive liquid agent in use, and is thereby referred to as an un-wetted end zone 637 herein. In contrast, liquid agent flowing along an unrestricted portion of the slit reaches a corresponding lateral portion of the transfer lip 22 and is thereby transferred to a wetted zone of the roller surface 632.
Similarly, in use each lane insert 620 defines a corresponding restricted portion of the slot 30 which prevents a flow of liquid agent to a corresponding lateral portion of the transfer lip 22 in the same way.
In this particular example, the flow restrictors are in accordance with the example flow restrictor described above with respect to
The insert jig 700 further comprises a restrictor guide 710. In the example shown in
Each restrictor guide 710 is to slide laterally along the insert jig to drive corresponding sliding movement of the respective flow restrictor within the slot 30. In this particular example, the insert jig comprises a rail 707 on which each of the restrictor guides 710 are slidably mounted.
In this particular example, the insert jig 700 further comprises a laterally-extending marking scale 708, such as ruler markings. The marking scale 708 may indicate alignment positions for a flow restrictor with respect to the slit 30 when the insert jig is aligned with the applicator unit.
In block 802, a flow restrictor is installed in the slit to prevent flow of liquid agent to a respective lateral portion of the transfer lip, thereby defining a restricted portion of the slit and an adjacent unrestricted portion of the slit. The flow restrictor is installed so that there is a clearance between the flow restrictor and the slit which permits liquid agent to flow along the restricted portion at a reduced velocity relative a flow of liquid agent through the unrestricted portion, such that liquid agent flowing along the restricted portion is discharged from the lip of the lower wall.
The present disclosure is described with reference to flow charts and/or block diagrams of the method, devices and systems according to examples of the present disclosure. Although the flow diagrams described above show a specific order of execution, the order of execution may differ from that which is depicted. Blocks described in relation to one flow chart may be combined with those of another flow chart.
While the method, apparatus and related aspects have been described with reference to certain examples, various modifications, changes, omissions, and substitutions can be made without departing from the spirit of the present disclosure. It is intended, therefore, that the method, apparatus and related aspects be limited only by the scope of the following claims and their equivalents. It should be noted that the above-mentioned examples illustrate rather than limit what is described herein, and that those skilled in the art will be able to design many alternative implementations without departing from the scope of the appended claims. Features described in relation to one example may be combined with features of another example.
The word “comprising” does not exclude the presence of elements other than those listed in a claim, “a” or “an” does not exclude a plurality, and a single processor or other unit may fulfil the functions of several units recited in the claims.
The features of any dependent claim may be combined with the features of any of the independent claims or other dependent claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/066369 | 12/14/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/117914 | 6/20/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3976004 | England, III | Aug 1976 | A |
4625643 | Davis | Dec 1986 | A |
6109746 | Jeanmaire et al. | Aug 2000 | A |
7033644 | Tokimasa | Apr 2006 | B2 |
7169229 | Gibson et al. | Jan 2007 | B2 |
9468946 | Inamasu et al. | Oct 2016 | B2 |
20020134263 | Metrope | Sep 2002 | A1 |
20040107852 | Tafel | Jun 2004 | A1 |
20150283829 | Gazit | Oct 2015 | A1 |
20160354800 | Birecki | Dec 2016 | A1 |
20170036235 | Feygelman et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1167680 | Dec 1997 | CN |
101242906 | Aug 2008 | CN |
103419484 | Dec 2013 | CN |
102529334 | Oct 2014 | CN |
102011103804 | Jan 2012 | DE |
H05200346 | Aug 1993 | JP |
WO2016119857 | Aug 2016 | WO |
WO2016165740 | Oct 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20210283897 A1 | Sep 2021 | US |