Whale concept-folding mesh for TIPP procedure for inguinal hernia

Information

  • Patent Grant
  • 11291536
  • Patent Number
    11,291,536
  • Date Filed
    Tuesday, May 28, 2019
    5 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
Abstract
The present invention relates to a device (1) for introducing a flexible prosthesis into a surgical incision, comprising a globally tubular body (2) having a proximal end (2a) and a distal end (2b), said tubular body being designed for receiving the prosthesis in a folded configuration in a sliding way,
Description

The present invention provides a device for introducing a flexible prosthesis, for example for repairing hernias, in an incision of small size. The present invention further relates to a kit comprising such a device and a flexible prosthesis intended to be introduced in a patient via said device.


In this application, the “medial” end or part of an element of a prosthesis is to be understood as meaning the end or part of the element located in the direction of the median plane of the body when the prosthesis is implanted in the body. The “lateral” end or part of an element of a prosthesis is to be understood as meaning the end or part of the element located in the direction of the outwards lateral plane of the body when the prosthesis is implanted in the body. Likewise, in this application, the “medial direction” is to be understood as meaning the direction towards said median plane and the “lateral direction” is opposite the “medial direction”, the medial and lateral directions being aligned on the same axis, the medial-lateral axis. In this application, the “cranial” end or part of an element of a prosthesis is to be understood as meaning the end or part of the element located substantially in the direction of the head of the body when the prosthesis is implanted in the body. The “caudal” end or part of an element of a prosthesis is to be understood as meaning the end or part of the element located in the direction of the feet of the body when the prosthesis is implanted in the body. Likewise, in this application, the “cranial direction” is to be understood as meaning the direction towards said head and the “caudal direction” is opposite the “cranial direction”, the cranial and caudal directions being aligned on the same axis, the cranial-caudal axis.


In humans the abdominal wall consists of fat and muscles interconnected by aponeuroses. A break in continuity may occur at the level of the aponeuroses, allowing part of the peritoneum to pass through and form a sac, known as a hernia, containing either fat or a portion of the intestine. Hernias or ventral ruptures (hernias occurring on a parietal surgical scar) are manifested by a protrusion on the surface of the skin and are called umbilical or inguinal hernias or ventral ruptures, for example, as a function of their location.


To repair a hernia, surgeons often fit a synthetic mesh prosthesis that replaces or reinforces the weakened anatomical tissue.


In the case of umbilical or inguinal hernias, for example, or when the aim of treatment is to repair trocar holes or preventive, the size of the defect to be treated is small, for example from 1 to 4 cm diameter, and open surgery may be envisaged without widening the defect. However, in this type of surgery, the surgeon has little working space and little visibility. It would be desirable to have in possession a device suitable for introducing the prosthesis into such a small incision without having to grasp the prosthesis with an additional instrument. It would also be desirable that the prosthesis does not touch the incision edges during the introduction step.


Some flexible prostheses, such as textile based prostheses, may be adapted to occupy a small volume in a first configuration in which they are folded up on themselves and to be deployed and spread out in a second configuration corresponding to an implantation configuration.


Various prostheses that may be folded up and then deployed are available. Some of them are provided with a resilient reinforcing element capable of automatically restoring its initial shape to the prosthesis after said prosthesis has been folded up on itself.


Inguinal hernias relate to defects to be treated in the inguinal anatomical region. The inguinal region comprises the intersection of a parietal plane comprising the orifice of the inguinal canal and of a vascular plane comprising the iliac vessels and the spermatic cord when the patient is a man. The shape of a prosthesis intended to be used for treating an inguinal hernia will be asymmetric and dependent on the side (right or left) of the body that is to be treated. In this view, the shape of a prosthesis for treating an inguinal hernia may be defined in relation with the position of the prosthesis once implanted in the body of a patient. For example, in an implanted configuration, a prosthesis for treating an inguinal hernia comprises a medial part, a lateral part, a caudal part, and a cranial part as defined above. A prosthesis intended to be used in the treatment of an inguinal hernia will generally have an elongate shape with a longitudinal axis substantially aligned on the medial-lateral axis of the body.


A first aspect of the present invention is a device for introducing a flexible textile based prosthesis into a surgical incision, comprising a globally tubular body having a proximal end and a distal end, said tubular body being designed for receiving the prosthesis in a folded configuration in a sliding way, wherein the tubular body has a substantially oblong cross-section and is provided with an open longitudinal slit extending from said proximal end to said distal end.


In this application, the distal end of a component or of a device is to be understood as meaning the end furthest from the surgeon's body and the proximal end is to be understood as meaning the end closest to the surgeon's body when the surgeon is completing the surgical operation. Likewise, in this application, the “distal direction” is to be understood as meaning the direction of implantation, namely towards the patient body, and the “proximal direction” is to be understood as meaning the opposite direction to said direction of implantation.


Thanks to the shape of the device and of the presence of the longitudinal slit, the prosthesis may be easily folded up and introduced into the device without having to use an additional tool. The oblong cross section of the tubular body is particularly adapted for a facilitated progression of a folded prosthesis inside the device. Furthermore, the walls of the tubular body of the device allow the prosthesis to avoid touching the incision edges in an open surgery method, even if the incision is of very small size, for example is less than 4 cm or 3 cm long.


The presence of the longitudinal slit in the device of the invention also allows compression of the walls of the tubular body and therefore reduction of the cross sectional area of the device, thereby facilitating the insertion of the device into the incision. The presence of the longitudinal slit further allows a direct access to the prosthesis by a hand of the surgeon for example or by a tool, for maintaining the prosthesis into the body of the patient at the time the device of the invention is removed from the incision.


As will appear from the description below, the device of the invention allows a standardized gesture of the surgeon. The device of the invention guarantees the surgeon that the incision he has made is sufficient and that the prosthesis will be delivered at the right place. The device of the invention further allows the surgeon to confirm and or redesign the dissection he has made at the implantation site.


In embodiments, said distal end is provided with a distal semi-tubular rounded extension. The distal semi-tubular rounded extension may for example have the global shape of a spatula. The distal semi-tubular rounded extension of the distal end of the device allows an easy introduction of the device into a small incision, for example an incision of 3 or 4 cm long. The rounded shape of the distal semi-tubular extension will not damage the surrounding biological tissues, such as the peritoneum. In addition, the distal semi-tubular rounded extension may be used for further dissection if the dissection pocket completed by the surgeon in the first place proves to be too small in the end.


In embodiments, the proximal end is provided with a proximal semi-tubular extension forming a partial funnel. Such a shape allows an easier introduction of the folded prosthesis in the tubular body. In addition, such a shape helps an automatic folding of the prosthesis into the tubular body, as the sloped walls of the proximal end of the tubular body naturally urge the prosthesis towards the inside of the tubular body.


In embodiments, said device comprises markings defining a ruler. For example, markings are provided on the tubular body for forming a ruler. Such markings may help the surgeon determine whether he has dissected an adequately long enough pocket for the insertion of the prosthesis. Such markings are more accurate than the “finger” measurement system usually used by surgeons. Such markings may therefore help avoid the situation where the surgeon attempts to position the prosthesis at the implantation site only to discover that he has not dissected enough and that he must remove the prosthesis, dissect further and then re-introduce the prosthesis. Such embodiments with markings therefore allow saving time and avoiding potential irritation and infection.


In embodiments, the tubular body is made of a transparent material. Such embodiments allow a good visibility of the folded prosthesis inside the tubular body. Such embodiments allow the surgeon to check the sliding and movement of the prosthesis from the proximal end of the tubular body to its distal end up to the ejection of the prosthesis from the device of the invention.


In embodiments, the tubular body is made from a material selected from poly(ethylene terephthalate) glycol (PETG), polyethylene terephthalate (PET), polypropylene, polycarbonate and mixtures thereof. These materials provide to the walls of the tubular body a smooth surface facilitating on one hand the sliding of the prosthesis inside the tubular body and easing on the other hand the introduction of the device in the incision.


Another aspect of the present invention is a kit comprising a device as described above and a prosthesis of generally elongate shape defining a longitudinal axis A aligned on a medial-lateral axis and a transversal axis B aligned on a cranial-caudal axis, said prosthesis comprising:

    • at least one flexible biocompatible textile of elongate shape comprising a medial end, a lateral end, a cranial part and a caudal part, said textile being delimited by a peripheral outer edge formed of a convex medial edge, a convex cranial edge, a convex lateral edge and a caudal edge, and
    • at least one reinforcing element for said textile, said reinforcing element being in the form of a resilient frame connected to said textile and set back from the peripheral outer edge.


According to the present invention, “textile” is understood as any arrangement or assembly of biocompatible yarns, fibres, filaments and/or multifilaments, for example obtained by knitting, weaving, braiding, or non-woven.


In the present application, “biocompatible” is understood as meaning that the materials having this property can be implanted in the human or animal body.


Within the meaning of the present application, a “flexible textile” is understood as a textile that can be folded up but that does not have an inherent elasticity allowing it to spontaneously recover a spread-out configuration once it has been folded up.


Within the meaning of the present application, a “resilient frame” is understood as a frame which, for example, can be semi-rigid and has a resiliency or elasticity allowing it to be deformed under the effect of a temporary stress and allowing it to return to an initial state of rest once said stress has been removed. According to the present invention, the frame allows the textile, and therefore the prosthesis, to be pressed together in the transversal direction towards the longitudinal axis of the textile.


The prosthesis above is intended to be introduced in the body of the patient and to be conveyed to the implantation site with the device of the invention. The prosthesis is able to be folded up along at least one folding direction in a very simple way, for example by pressing the frame together, in one hand, transversally in the direction of the longitudinal axis of the prosthesis. Thus, the prosthesis is capable of adopting an elongate configuration, which is very compact in the transversal direction, allowing it to be introduced in the tubular body of the device of the invention. The frame is sufficiently resilient to allow the prosthesis to be folded in order to enter the proximal end of the tubular body. When the prosthesis emerges from the distal end of the tubular body, it tends to spread out automatically under the action of the frame, which tends to recover its initial configuration in the absence of the stresses from the walls of the tubular body. The prosthesis is capable of conforming to the anatomical structures and of remaining in place once it is positioned at the implantation site.


In embodiments, the frame comprises a convex cranial segment extending from the medial end of the textile to the lateral end of said textile along said convex cranial edge, a caudal segment substantially extending from the medial end of the textile to the lateral end of said textile and caudally spaced with respect to said convex cranial segment, a lateral corner segment joining together the convex cranial segment and the caudal segment in the region of the lateral end of the textile, and a folding segment configured for joining a medial end of said convex cranial segment to a point located on the caudal segment while leaving the region of the medial end of the textile free of any frame,


said frame being able to adopt an unstressed configuration, in which said textile is deployed, and a stressed configuration, in which said frame is subjected to a transversal force directed towards said longitudinal axis A, and said convex cranial segment, said caudal segment and said folding segment are substantially collected together and aligned on one folding direction, said textile forming thereby at least one fold along said folding direction.


The specific shape of the frame allows facilitating the folding of the prosthesis and thus its introduction in the device of the invention. The respective shapes of the convex cranial segment, the caudal segment and the folding segment allow these segments to be able to converge together and to be aligned on one folding direction when a transversal pressure is exerted on the frame. The absence of any frame structure in the region of the medial end of the textile allows the convex cranial segment and the caudal segment to be brought close together, for example side by side or alternatively one on the top of the other, at the time of the folding of the prosthesis. The transversal volume occupied by the prosthesis is therefore reduced, making it easier to introduce the prosthesis into the proximal end of the tubular body of the device of the invention, in the direction of the longitudinal axis of the prosthesis.


The materials that may be suitable for producing the frame of the prosthesis according to the kit of the invention may be chosen from any biocompatible material having a certain rigidity in order to meet the requirements described above.


In one embodiment, the frame is made of a bioresorbable material. In the present application, “bioresorbable” or “biodegradable” is understood to mean that the materials having this property are absorbed and/or degraded by the tissues or washed from the implantation site and disappear in vivo after a certain time, which may vary, for example, from a few hours to a few months, depending on the chemical nature of the materials.


Thus, the frame may act as a guide for the prosthesis for introducing said prosthesis into the tubular body of the device of the invention, then may act as a means of stiffening the prosthesis during the positioning and implanting of the prosthesis, after which it may gradually degrade when the textile has been recolonized by the surrounding cells.


For example, the bioresorbable material can be chosen from among polylactic acid (PLA), polycaprolactones (PCL), polydioxanones (PDO), trimethylene carbonates (TMC), polyvinyl alcohol (PVA), polyhydroxyalkanoates (PHA), oxidized cellulose, polyglycolic acid (PGA), copolymers of these materials and mixtures thereof. For example, the bioresorbable material can be a copolymer of polylactic acid and of polyglycolic acid.


Alternatively, the frame of the prosthesis according to the invention is made of a non-bioresorbable material chosen from among polypropylenes, polyesters such as polyethyleneterephthalates, polyamides, silicones, polyether ether ketone (PEEK), polyarylether ether ketone (PAEK), polyurethanes and mixtures thereof.


In another embodiment, said frame is formed by a combination of bioresorbable material and of non-bioresorbable material.


In the prosthesis of the kit of the invention, the caudal segment of the frame may serve as a positioning guide for the surgeon, this caudal segment preferably having to be placed in the inguinal region at the intersection of the parietal and vascular planes to permit optimal positioning of the prosthesis. In one embodiment of the invention, said caudal segment may form a fold of the textile, said fold causing said caudal part of said textile to form naturally an angle to the plane of said cranial part of said textile. Thus, the caudal segment may give the textile a three-dimensional shape, similar to the anatomy of the inguinal region, by forming a fold in the textile, in such a way that the caudal part of the textile tends naturally to form an angle with the cranial part of said textile, this angle corresponding to the angle formed anatomically by the intersection of the parietal and vascular planes.


In embodiments, said caudal segment is concave. Such a shape allows an easy pressing of the frame and therefore of the prosthesis, and a significant reduction of the volume occupied by the prosthesis in the transversal direction. In addition, the concavity of the caudal segment confers to the caudal part of the textile an undulated and anatomical developed shape for matching the general shape of the lower inguinal structures, especially the spermatic and iliac vessels and the psoas muscle.


In embodiments, the folding segment joins the medial end of said convex cranial segment to a medial end of the caudal segment. For example, the folding segment has a U shape extending towards a center of the textile. In such embodiments, when pressing the frame transversally, the two legs of the U of the folding segment converge together with the convex cranial segment and the caudal segment, allowing a significant reduction of the volume occupied by the prosthesis in the transversal direction.


In one embodiment, said frame is continuous. Thus, the step of pressing the prosthesis together, by pressing the frame together towards the longitudinal axis of the prosthesis, does not create any projecting elements that could potentially perforate and damage the tissues. By virtue of its nature and its shape, the frame only has rounded and atraumatic outer contours.


In embodiments, at least a part of said frame, for example at least a part of the caudal segment, has substantially the structure of a flat band forming undulations substantially in the plane of said textile. Such undulations allow a good conformability of the prosthesis in general, and a good flexibility to the caudal segment in particular at the intersection of the parietal and vascular planes. Such undulations can expand and contract to further confer a greater flexibility to the frame. The step of introducing the prosthesis inside the tubular body of the device of the invention is therefore facilitated. In addition, such undulations confer a good resistance to folding to the prosthesis.


In embodiments, said frame further comprises a caudal extension located on the caudal segment and extending in the caudal direction toward the caudal edge of the textile. The caudal extension helps deploying the caudal part of the textile once the prosthesis is implanted. This caudal extension helps spreading out the caudal part of the textile on the biological tissues it is intended to cover, namely the iliac and spermatic vessels and part of the psoas muscle.


The frame of the prosthesis according to the invention is connected to said textile. For example, the frame can be fixed to the textile by sewing, ultrasonic welding, or else by adhesive bonding or moulding.


In one embodiment, the frame of the prosthesis according to the kit of the invention is moulded over the textile. Thus, the frame is connected to the textile by injection moulding of one or more thermoplastic or thermosetting biocompatible materials. For example, the mould of an injection-moulding machine is equipped with an insert gate in which the textile is held. One or more thermoplastic or thermosetting biocompatible materials are then heated to their melting point and injected into the mould, the latter having one or more channels of the shape desired for the frame. The holding of the textile, the precision of the injection volume and the choice of the injection parameters make it possible to obtain a frame without material loss, without flash and with good surface evenness. Such a method allows the frame to be fixed to the textile in a particularly effective and lasting way.


In one embodiment, the frame is obtained by moulding a copolymer of polylactic acid and of polyglycolic acid over the textile.


The textile of the prosthesis according to the kit of the invention has a generally elongate shape, for example oval or elliptic. The textile can have another initial shape and can then be cut to such an elongate shape, in particular to a shape adapted to the defect, for example the hernia defect of the inguinal region, that is to be treated. In particular, the shape of the textile of the prosthesis of the invention comprises a part capable of efficiently covering the anterior muscle wall, the orifice of the inguinal canal, the upper part of the os pubis and Cooper's ligament, and a part capable of covering efficiently the iliac vessels and spermatic vessels and part of the psoas muscle. The textile is delimited by a peripheral outer edge formed of a convex medial edge, a convex cranial edge, a convex lateral edge and a caudal edge. The caudal edge may be flat or convex. Preferably, the caudal edge is convex in order to optimize the covering of the iliac vessels and spermatic vessels and part of the psoas muscle. As such, the general shape of the peripheral outer edge is preferably convex.


The textile may be bioresorbable, permanent or partially bioresorbable. In embodiments, the textile is bioresorbable. Bioresorbable textiles may be made from low density meshes or knit designs. In embodiments, for example when the prosthesis is not intended to remain permanently in the body of a patient, both the frame and the textile are bioresorbable. For example, the frame is bioresorbable in a time frame comparable to the textile. The shape and nature of the frame of the prosthesis of the invention allow providing a prosthesis based on a low density bioresorbable textile capable of offering sufficient strength for performing its repair function and sufficient rigidity for being efficiently manipulated while at the same time limiting the amount of foreign material implanted.


In one embodiment, the textile is a mesh.


Within the meaning of the present application, a “mesh” is understood as a textile, as defined above, which is openworked, that is to say provided with pores that favour recolonization of tissue. It is sufficiently flexible to be folded up at the time of introduction into the abdominal cavity. The mesh can be made from a layer of textile or several layers of textile. Such meshes are well known to a person skilled in the art.


In one embodiment of the invention, the mesh is a knit. By virtue of the meshwork of the knit, it is possible to obtain openworked faces that promote cell recolonization after implantation.


Another aspect of the present invention is a method by which a prosthesis as described above is conveyed to an implantation site of the inguinal region during an open surgery procedure, said method comprising the following steps:

    • an incision of size ranging from 3 to 4 cm is completed on the abdominal skin,
    • the above prosthesis is pressed together and/or folded upon itself, by applying a transversal pressure on the frame, so that said textile forms a fold along the folding direction, and said convex cranial segment, said caudal segment and said folding segment are substantially collected together, for example side by side or one on top of the other, and aligned on one folding direction,
    • the medial end of the prosthesis is approached towards the proximal end of the tubular body of the device of the invention and the folded prosthesis is at least partially introduced into the tubular body,
    • the distal end of the tubular body is introduced into the incision and pushed in the distal direction up to the implantation site,
    • the surgeon pushes distally on the prosthesis so as to make it slide into the tubular body and be conveyed to the implantation site in the inguinal region,
    • the surgeon maintains the prosthesis in place by accessing the prosthesis via the longitudinal slit while pulling on the tubular body in the proximal direction for removing the device of the invention from the body of the patient,
    • when the device of the invention is removed, the pressure previously exerted on the frame by the walls of the tubular body is released and the prosthesis automatically starts deploying by means of the frame tending to come back to its unstressed configuration.





The present invention will emerge more clearly from the description given hereinafter and from the appended drawings, in which:



FIG. 1 is a representation in section of a median abdominal hernia or ventral rupture,



FIG. 2 is a simplified view of the hernia from FIG. 1 after the surgeon has made an abdominal incision and removed the hernia sac,



FIG. 3 is a top view of one embodiment of the device of the invention,



FIG. 4 is a top view of an embodiment of a flexible prosthesis of the kit of the invention,



FIG. 5 is a top view showing the step before introduction of another embodiment of a prosthesis of the kit of the invention in the device of FIG. 3,



FIG. 6 is a top view of the folded prosthesis of FIG. 5 partially introduced in the device of the invention.






FIG. 1 represents a hernia defect 100 of the abdominal wall 101 that is characterized by a break in the continuity of the aponeurosis 102 surrounding the straight muscles 103 and a passage through the peritoneum 104 forming a sac, the hernia sac 105, that contains either fat (epiploon) or part of the viscera 106, and which then presses on the fatty tissues 107 and is flush with the skin 108. One treatment of a hernia defect 100 entails replacing and retaining the viscera 106 in the abdominal cavity 109.



FIG. 2 shows the hernia defect 100 from FIG. 1 after the surgeon has made an incision 110 in the skin 108, the abdominal wall 101 and the peritoneum 104 and has reduced the hernia sac. The viscera are not shown in FIG. 2: they have been pushed back into the abdominal cavity 109. The surgeon must now introduce into the abdominal cavity 109, via the incision 110 that has been made, a prosthesis for reinforcing the abdominal wall, before closing the incision 110 by means of sutures, for example. In the case of treatment of an umbilical or inguinal hernia by open surgery procedure, the size of the incision 110 is particularly small, for example of the order of 1 to 4 cm diameter.


With reference to FIG. 3 is shown an embodiment of a device 1 according to the invention. The device 1 of the invention is intended to be used for introducing a flexible prosthesis, such as the prosthesis 10 shown on FIG. 4, in a body incision such as the incision 110 of FIG. 2.


The device 1 comprises a globally tubular body 2 having a proximal end 2a and a distal end 2b. The tubular body 2 has an oblong cross section and is provided with an open longitudinal slit 3 extending from the proximal end 2a to the distal end 2b. Such a shape allows an easy introduction and movement of the folded prosthesis 10 inside the device 1.


The distal end 2b is further provided with a distal semi-tubular rounded extension 2c. On the example shown, the distal semi-tubular rounded extension 2c forms a single piece with the tubular body 2. In other embodiments, the distal semi-tubular rounded extension could be an added element and/or formed from another material than that of the tubular body 2. The distal semi-tubular rounded extension 2c is intended to be introduced first in the incision 110 of the body of the patient. Its distal rounded shape allows an easy introduction of the device 1 in an incision, even if the incision is of very small size, such as 3 or 4 cm long. In addition, the semi-tubular shape of the distal semi-tubular rounded extension 2c facilitates the ejection of the prosthesis from the device 1 at the time the prosthesis is delivered on the implantation site.


The distal semi-tubular rounded extension 2c may also be used for further dissection if the dissection pocket completed by the surgeon in the first place proves to be too small in the end.


The longitudinal slit 3 facilitates the sliding of the prosthesis inside the tubular body 2, from the proximal end 2a to the distal end 2b.


The proximal end 2a of the tubular body 2 is provided with a proximal semi-tubular extension 2d forming a partial funnel. On the example shown, the proximal semi-tubular rounded extension 2d forms a single piece with the tubular body 2. In other embodiments, the proximal semi-tubular rounded extension could be an added element and/or formed from another material than that of the tubular body 2. The partial funnel formed by the proximal semi-tubular extension 2d allows an easier introduction of the folded prosthesis in the tubular body. In addition, such a shape helps an automatic folding of the prosthesis into the tubular body, as the sloped walls of the proximal end of the tubular body naturally urge the material forming the prosthesis, for example a mesh, towards the inside of the tubular body.


With reference to FIG. 3, the device 1 is further provided with markings 4 distributed along the length of the tubular body 2. These markings define a ruler. Such a ruler may help the surgeon measuring the length of the dissection he has completed. In particular, the surgeon may thus determine whether he has dissected an adequately large enough pocket for the insertion of the prosthesis. The presence of a rule on the tubular body 2 is more accurate than the “finger” measurement system usually used by surgeons. The situation where the surgeon attempts to position the prosthesis at the implantation site only to discover that he has not dissected enough and that he must remove the prosthesis, dissect further and then re-introduce the prosthesis may therefore be avoided with the device 1 of the invention. The device of the invention may therefore allow saving time and avoiding potential irritation and infection.


The tubular body 2 may be made of any biocompatible material such as plastic material usually used in surgical applications. The tubular body 2 is preferably made of a transparent material. The surgeon is thus able to easily check the position of the folded prosthesis inside the tubular body 2, as well as the sliding and movement of the prosthesis from the proximal end of the tubular body to its distal end. He can then easily proceed to the ejection of the prosthesis at the implantation site.


The tubular body may be made from a material selected from poly(ethylene terephthalate) glycol (PETG), polyethylene terephthalate (PET), polypropylene, polycarbonate and mixtures thereof. These materials provide to the walls of the tubular body a smooth surface facilitating on one hand the sliding of the prosthesis inside the tubular body and easing on the other hand the introduction of the device in the incision.


With reference to FIG. 4 is shown a flexible prosthesis 10 suitable for being introduced into a small incision and transported to an implantation site in open surgery thanks to the device 1 of the invention of FIG. 3. For example, the prosthesis 10 is textile based. The prosthesis 10 may be formed of a mesh 11, of globally oval shape on the example shown. The prosthesis 10 is reinforced with a frame 12.


On the example shown, the mesh 11 may be made from a knitted, woven or non-woven arrangement of biocompatible threads. This mesh 11 is sufficiently flexible to be folded when the prosthesis is introduced into the abdominal cavity 109 via the incision 110. However, the mesh is generally a textile having no elasticity enabling it to return to a spread out configuration of its own accord after it has been folded up. Such meshes are well known to the person skilled in the art and are not described in more detail here. The mesh may be supplied in the form of a strip that is cut to the dimensions of the defect to be treated. In the example represented, the mesh 11 has an oval shape. In other embodiments, the mesh may be of rectangular or square shape, or any shape adapted to the defect to be treated.


On the example shown, the frame 12 substantially adopts the shape of the exterior peripheral edge of the mesh 11. The frame 12 is resilient, so as to allow the prosthesis 10 to move from a compact configuration, in which it is folded up on itself and in which it occupies a small volume, to a spread out configuration, as shown on FIG. 4, corresponding to the implantation configuration.


With reference to FIG. 5, is shown the step before introduction of another embodiment of a prosthesis 200 into the device of FIG. 3.


The prosthesis 200 comprises a biocompatible textile 202 and a reinforcing element in the form of a frame 203.


The textile 202 has a generally elongate shape, similar to an oval or egg shape, defining a longitudinal axis A and a transversal axis B. In an implanted configuration of the prosthesis 202 of FIG. 5, the longitudinal axis A is aligned on the medial-lateral axis of a human body and the transversal axis B is aligned on the cranial-caudal axis of a human body.


The textile 202 is thus delimited by a peripheral outer edge 204. The textile 202 comprises a medial end 202a, a lateral end 202b, a cranial part 202c and a caudal part 202d. The peripheral outer edge 204 is therefore formed of a convex medial edge 204a, a convex cranial edge 204c, a convex lateral edge 204b and a convex caudal edge 204d.


In the example shown, the textile 202 has the general shape of the section of an egg by a longitudinal plane. Such a shape is particularly suitable for the repair of an inguinal hernia. In particular, the cranial part 202c of the textile 202 is designed and shaped so as to efficiently cover the anterior muscle wall, the upper part of the os pubis and Cooper's ligament, while the caudal part 202d of the textile 202 is designed and shaped so as to cover efficiently the iliac vessels and spermatic vessels and part of the psoas muscle. In this view, the cranial part 202c is generally larger than the caudal part 202d. In addition, the medial end 202a has a rounded configuration that makes it capable of overlying and covering the orifice of the inguinal canal. The lateral end 202b has also a rounded configuration, but of smaller size than the medial end 202a, as it is located away from the orifice of the inguinal canal in an area where less foreign material is needed and desired.


In other embodiments, the textile 202 could have a globally oval or rectangular shape or could be protean if the shape in question is generally elongate and is adapted to cover the hernia defect in the inguinal region as explained above.


The textile 202 is made up of an arrangement of biocompatible filaments, such as a knit, a woven or a nonwoven. The textile 202 may be in the form of a mesh, that is to say it has openings for better tissue integration. For example, the textile 202 can be a two-dimensional or three-dimensional knit. Such textiles in the form of meshes or knits are well known to a person skilled in the art and are not described in any greater detail here.


The textile 202 can be bioresorbable, permanent or partially bioresorbable. As will become clear from the description below, the textile 202 is sufficiently flexible to be folded up, in particular at the time of introduction of the prosthesis into the device of the invention, along at least one folding direction. In general, however, the textile 202 does not have an inherent elasticity allowing it to spontaneously recover a spread-out configuration once it has been folded up. The textile 202 can be supplied in the form of a band, which one cuts to the dimensions of the defect to be treated.


The frame 203 acts as an element reinforcing the textile 202 in order to stiffen the latter and keep it in its generally elongate shape, as a tool for guiding the prosthesis 200 at the time of its introduction into the tubular body 2 of the device 1 of the invention, and as a tool for assisting in the deployment of the prosthesis 200 when the prosthesis 200 reaches the implantation site. For this purpose, the frame 203 is connected to the textile 202 and has an elasticity allowing it to be deformed under the effect of a temporary stress and allowing it to return to an initial state of rest once said stress has been removed.


The frame 203 is connected to the textile 202. It can be attached to the textile 202 by means of a seam, or else by means of an ultrasonic weld, by adhesive bonding, or by injection moulding.


In one embodiment, the frame 203 is connected to the textile 202 by injection moulding of one or more thermoplastic or thermosetting biocompatible materials. Such an embodiment makes it possible to secure the fixing of the frame to the textile in a particularly effective manner and to produce the prostheses according to the invention at an industrial scale.


In the injection moulding technique, a mould is formed in which, for example, there is a cavity defining a contour which corresponds to the contour of the frame that is to be obtained. The textile is held in an insert gate of the mould. The thermoplastic material used to produce the frame, for example a copolymer of polylactic acid and of polyglycolic acid, is heated and injected into the cavity using an injection moulding machine.


After the injection step, the mould is opened and the prosthesis 1 is withdrawn from the mould. Such a method allows the textile to be “embedded” in the part moulded over it. Thus, the frame 203, which is the overmoulded part, is connected to the textile, without any risk of its coming loose or fragmenting. The frame 203 is slightly set back from the peripheral convex outer edge 204.


Still with reference to FIG. 5, the frame 203 comprises a first segment which is a convex cranial segment 203c and which extends from the medial end 202a of the textile 202 to the lateral end 202b of the textile 202 substantially parallel to the convex cranial edge 204c. The frame 203 further comprises a second segment which is a caudal segment 203d substantially extending from the medial end 202a of the textile 202 to the lateral end 202b of the textile 202 and caudally spaced with respect to the convex cranial segment 203c. The frame 203 further comprises a lateral corner segment 203b joining together the convex cranial segment 203c and the caudal segment 203d in the region of the lateral end 202b of the textile 202.


Eventually, always with reference to FIG. 5, the frame 203 comprises a last segment which is a folding segment 205 configured for joining the medial end of the convex cranial segment 203c to the medial end of the caudal segment 203d. The frame 203 encompasses all these segments, convex cranial segment 203c, lateral corner segment 203b, caudal segment 203d and folding segment 205, in a continuous way. The frame 203 is therefore continuous. The shape of the frame 203 leaves the region of the medial end 202a of the textile 202 free of any frame structure. On the example shown, the folding segment 205 is a U shaped body 207 extending towards a center of the textile.


Thus, in the example shown in FIG. 5, the folding segment (205, 207) defines a sort of mouth of the frame 203 in the medial end 202a of the textile 202. The presence of this mouth allows an easy folding of the textile 202 and therefore of the prosthesis 200 when a pressure, such as the force F shown on FIG. 5 is exerted on the frame 203. This pressure allows reducing the volume occupied by the prosthesis 200 in the transversal direction.


In addition, because of the frame 203 being continuous, the step of pressing the prosthesis 200 together, by pressing the frame 203 together towards the longitudinal axis A of the prosthesis 200, does not create any projecting elements that could potentially perforate and damage the tissues. By virtue of its nature and its shape, the frame only has rounded and atraumatic outer contours.


In particular, the frame 203 has a structure, in other words a shape, and a nature, in other words a material, giving it an elasticity such that it is able to adopt a first, unstressed configuration in which the textile 202 and the prosthesis 200 are deployed and spread out as shown in FIG. 5, and a second, stressed configuration in which the frame 203 is subjected to a transversal force directed towards said longitudinal axis A and the convex cranial segment 203c, the caudal segment 203d and the folding segment 205 are substantially collected together and aligned on one folding direction, the textile 202 forming thereby at least one fold along the folding direction, as shown on FIG. 6.


As shown on FIG. 5, at least a part of the frame 203 has substantially the structure of a flat band forming undulations substantially in the plane of the textile 202. Such undulations allow a good conformability of the prosthesis. Such undulations further confer flexibility to the frame 203. In addition, such undulations confer a good resistance to folding to the prosthesis 200.


The caudal segment 203d may be concave. For example, the cranial part 202c is substantially planar and large enough so as to cover the anterior muscle wall, the orifice of the inguinal canal, the upper part of the os pubis and Cooper's ligament. The concavity of the caudal segment 203d confers to the caudal part 202d of the textile 202 an undulated and anatomical developed shape for matching the general shape of the lower inguinal structures, especially the spermatic and iliac vessels and the psoas muscle. The concavity of the caudal segment 203d gives the caudal part 2d a curved shape, this caudal part 202d thus forming with the cranial part 202c an angle corresponding to the angle formed by the parietal and vascular planes at the intersection thereof in the inguinal region of a human body. Thus, the cranial part 202c and the caudal part 202d are asymmetrical, which means that a left-hand prosthesis or right-hand prosthesis will be used depending on which side the hernia to be treated is located.


Still with reference to FIG. 5, the frame 203 further comprises a caudal extension 208 located on the caudal segment 203d and extending in the caudal direction substantially up to the caudal edge 204d of the textile 202. The caudal extension 208 helps deploying the caudal part 202d of the textile 202 once the prosthesis 200 is implanted. This caudal extension 208 helps spreading out the caudal part 202d of the textile on the biological tissues it is intended to cover, namely the iliac and spermatic vessels and part of the psoas muscle.


In order to proceed to the insertion of the prosthesis 200 into the device 1 of FIG. 5, the surgeon (not shown) folds the prosthesis 200 on itself by applying a pressure on the prosthesis 200 represented by the arrows F on FIG. 5. He then approaches the prosthesis 200 from the proximal end 2a of the device 1. Thanks to the proximal semi-tubular rounded extension 2d, the introduction of the prosthesis 200 inside the tubular device 1 is facilitated, as described above. The surgeon then pushes on the prosthesis 200 in the distal direction. The prosthesis 200 automatically follows the walls of the partial funnel formed by the proximal semi-tubular rounded extension 2d and it adopts a folded configuration within the tubular body 2, as shown on FIG. 6.


The surgeon then may introduce the distal end 2b of the device 1 inside the incision 110 (FIG. 2). As described above, this introduction is facilitated by the rounded shape of the distal semi-tubular extension 2c. The tubular body 2 then forms a barrier between the prosthesis 200 and the incision 110 edges. Thanks to the presence of the ruler, the surgeon can determine if has completed a long enough dissection. In addition, the device 1 of the invention allows standardizing the gesture of the surgeon, as the surgeon is ensured to introduce the distal end of the tubular body 2 at the right depth in the body of the patient, and therefore at the precise location of the implantation site.


When the surgeon has introduced the distal end of the device 1 at the right depth as described above, he pushes distally on the prosthesis 200 which slides easily inside the tubular body 2 thanks to the open longitudinal slit 3.


When the prosthesis 200 has substantially reached the distal end of the tubular body 2 and therefore the implantation site, the surgeon then ejects the prosthesis 200 from the device 1 by maintaining the prosthesis 200 fixed with respect to the body of the patient while he removes the device 1 by pulling said device 1 in the proximal direction. During this step, the surgeon may access directly to the prosthesis 200 with one of his hand thanks to the longitudinal slit 3 of the tubular body 2. The open shape of the distal end 2b of the tubular body, thanks to the presence of the distal semi-tubular extension 2c, allows the prosthesis 200 to start spreading out as it emerges from the tubular body 2 at the implantation site.


The device 1 of the invention therefore facilitates the introduction of a flexible prosthesis in an incision of very small size, such as for example an incision of 3 or 4 cm long, in open surgery procedure without necessitating the use of any dedicated ancillary device. The device of the invention may be of great help to the surgeon for dissecting a pocket of adequate size in the first place and therefore save time and potential infection.

Claims
  • 1. A device for introducing a flexible textile based prosthesis into a surgical incision, comprising a globally tubular body designed for receiving the prosthesis in a folded configuration in a sliding way and configured to form a barrier between the prosthesis and edges of the surgical incision, the tubular body having a proximal end provided with a proximal semi-tubular extension, a distal end provided with a distal semi-tubular rounded extension, a substantially oblong cross-section, and an open longitudinal slit extending from the proximal end to the distal end, wherein the tubular body includes markings defining a ruler along the open longitudinal slit.
  • 2. The device according to claim 1, wherein the proximal semi-tubular extension and the tubular body are a single piece.
  • 3. The device according to claim 1, wherein the proximal semi-tubular extension is an element added to the tubular body.
  • 4. The device according to claim 1, wherein the distal semi-tubular rounded extension and the tubular body are a single piece.
  • 5. The device according to claim 1, wherein the distal semi-tubular rounded extension is an element added to the tubular body.
  • 6. The device according to claim 1, wherein the open longitudinal slit widens on the proximal semi-tubular extension and the distal semi-tubular rounded extension.
  • 7. The device according to claim 1, wherein the proximal semi-tubular extension forms a partial funnel.
  • 8. The device according to claim 7, wherein the proximal semi-tubular includes sloped walls configured to urge the prosthesis towards an inside of the tubular body.
  • 9. The device according to claim 1, wherein walls of the tubular body are configured to compress via the open longitudinal slit reducing a cross-sectional area of the device.
  • 10. The device according to claim 1, wherein the tubular body is made of a transparent material.
  • 11. The device according to claim 1, wherein the tubular body is made from a material selected from poly(ethylene terephthalate) glycol (PETG), polyethylene terephthalate (PET), polypropylene, polycarbonate and mixtures thereof.
  • 12. The device according to claim 1, wherein the tubular body is configured to allow direct access by a surgeon to the prosthesis via the open longitudinal slit while the device is removed from the surgical incision.
  • 13. A method of conveying a flexible textile based prosthesis to an implantation site of an inguinal region during an open surgery procedure comprising: inserting a folded prosthesis into a proximal end of a tubular body of a device for introducing the prosthesis to the implantation site, the tubular body having a substantially oblong cross-section and an open longitudinal slit extending from the proximal end to a distal end of the tubular body;inserting the distal end of the tubular body into a surgical incision on abdominal skin and in a distal direction towards the site of implantation;sliding the folded prosthesis through the tubular body towards the site of implantation; andaccessing the folded prosthesis via the open longitudinal slit to maintain the folded prosthesis in place while pulling the tubular body in a proximal direction away from the site of implantation removing the device from the surgical incision.
  • 14. The method according to claim 13, wherein the distal end of the tubular body includes a distal semi-tubular rounded extension and the proximal end includes a proximal semi-tubular extension.
  • 15. The method according to claim 14, wherein the open longitudinal slit widens on the proximal semi-tubular extension end and the distal semi-tubular rounded extension.
  • 16. The method according to claim 13, wherein the tubular body includes markings defining a ruler along the open longitudinal slit.
  • 17. The method according to claim 13, wherein the tubular body is made of a transparent material.
  • 18. The method according to claim 13, wherein the tubular body is made from a material selected from poly(ethylene terephthalate) glycol (PETG), polyethylene terephthalate (PET), polypropylene, polycarbonate and mixtures thereof.
  • 19. The method according to claim 13, wherein the surgical incision ranges from 3 to 4 cm in size.
  • 20. The method according to claim 13, wherein the prosthesis includes an elongate shape having a medial end, a lateral end, a cranial part and a caudal part, the prosthesis being delimited by a peripheral outer edge formed of a convex medial edge, a convex cranial edge, a convex lateral edge and a caudal edge, and at least one reinforcing element in the form of a resilient frame connected to the textile and set back from the peripheral outer edge.
Priority Claims (1)
Number Date Country Kind
14306522 Sep 2014 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/860,748 filed Sep. 22, 2015, which claims benefit of and priority to European Patent Application Serial No. 14306522.5 filed Sep. 29, 2014, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.

US Referenced Citations (336)
Number Name Date Kind
1187158 Mcginley Jun 1916 A
3118294 Laethem Jan 1964 A
3124136 Usher Mar 1964 A
3272204 Artandi et al. Sep 1966 A
3276448 Kronenthal Oct 1966 A
3320649 Naimer May 1967 A
3364200 Ashton et al. Jan 1968 A
3570482 Shigeru et al. Mar 1971 A
4006747 Kronenthal et al. Feb 1977 A
4060081 Yannas et al. Nov 1977 A
4173131 Melton et al. Nov 1979 A
4193137 Heck Mar 1980 A
4248064 Odham Feb 1981 A
4294241 Miyata Oct 1981 A
4307717 Hymes et al. Dec 1981 A
4338800 Matsuda Jul 1982 A
4476697 Schafer et al. Oct 1984 A
4487865 Balazs et al. Dec 1984 A
4500676 Balazs et al. Feb 1985 A
4511653 Play et al. Apr 1985 A
4527404 Nakagaki et al. Jul 1985 A
4591501 Cioca May 1986 A
4597762 Walter et al. Jul 1986 A
4603695 Ikada et al. Aug 1986 A
4631932 Sommers Dec 1986 A
4670014 Huc et al. Jun 1987 A
4709562 Matsuda Dec 1987 A
4748078 Doi et al. May 1988 A
4759354 Quarfoot Jul 1988 A
4769038 Bendavid et al. Sep 1988 A
4796603 Dahlke et al. Jan 1989 A
4813942 Alvarez Mar 1989 A
4841962 Berg et al. Jun 1989 A
4854316 Davis Aug 1989 A
4925294 Geshwind et al. May 1990 A
4931546 Tardy et al. Jun 1990 A
4942875 Hlavacek et al. Jul 1990 A
4948540 Nigam Aug 1990 A
4950483 Ksander et al. Aug 1990 A
4970298 Silver et al. Nov 1990 A
5002551 Linsky et al. Mar 1991 A
5147374 Fernandez Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5171273 Silver et al. Dec 1992 A
5176692 Wilk et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5196185 Silver et al. Mar 1993 A
5201745 Tayot et al. Apr 1993 A
5201764 Kelman et al. Apr 1993 A
5206028 Li Apr 1993 A
5217493 Raad et al. Jun 1993 A
5254133 Seid Oct 1993 A
5256418 Kemp et al. Oct 1993 A
5263983 Yoshizato et al. Nov 1993 A
5304595 Rhee et al. Apr 1994 A
5306500 Rhee et al. Apr 1994 A
5324775 Rhee et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334527 Brysk Aug 1994 A
5339657 Mcmurray Aug 1994 A
5350583 Yoshizato et al. Sep 1994 A
5356432 Rutkow et al. Oct 1994 A
5368549 Mcvicker Nov 1994 A
5376375 Rhee et al. Dec 1994 A
5376376 Li Dec 1994 A
5397331 Himpens et al. Mar 1995 A
5399361 Song et al. Mar 1995 A
5413791 Rhee et al. May 1995 A
5425740 Hutchinson, Jr. Jun 1995 A
5428022 Palefsky et al. Jun 1995 A
5433996 Kranzler et al. Jul 1995 A
5441491 Verschoor et al. Aug 1995 A
5441508 Gazielly et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5456711 Hudson Oct 1995 A
5466462 Rosenthal et al. Nov 1995 A
5480644 Freed Jan 1996 A
5487895 Dapper et al. Jan 1996 A
5490984 Freed Feb 1996 A
5512291 Li Apr 1996 A
5512301 Song et al. Apr 1996 A
5514181 Light et al. May 1996 A
5522840 Krajicek Jun 1996 A
5523348 Rhee et al. Jun 1996 A
5536656 Kemp et al. Jul 1996 A
5543441 Rhee et al. Aug 1996 A
5565210 Rosenthal et al. Oct 1996 A
5567806 Abdul-Malak et al. Oct 1996 A
5569273 Titone et al. Oct 1996 A
RE35399 Eisenberg Dec 1996 E
5593441 Lichtenstein et al. Jan 1997 A
5595621 Light et al. Jan 1997 A
5601571 Moss Feb 1997 A
5607474 Athanasiou et al. Mar 1997 A
5607590 Shimizu Mar 1997 A
5614587 Rhee et al. Mar 1997 A
5618551 Tardy et al. Apr 1997 A
5634931 Kugel Jun 1997 A
5639796 Lee Jun 1997 A
5665391 Lea Sep 1997 A
5667839 Berg Sep 1997 A
5681568 Goldin et al. Oct 1997 A
5686115 Vournakis et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5695525 Mulhauser et al. Dec 1997 A
5697978 Sgro Dec 1997 A
5700476 Rosenthal et al. Dec 1997 A
5700477 Rosenthal et al. Dec 1997 A
5709934 Bell et al. Jan 1998 A
5716409 Debbas Feb 1998 A
5720981 Eisinger Feb 1998 A
5732572 Litton Mar 1998 A
5749895 Sawyer et al. May 1998 A
5752937 Otten et al. May 1998 A
5752974 Rhee et al. May 1998 A
5766246 Mulhauser et al. Jun 1998 A
5766631 Arnold Jun 1998 A
5769864 Kugel Jun 1998 A
5771716 Schlussel Jun 1998 A
5785983 Furlan et al. Jul 1998 A
5800541 Rhee et al. Sep 1998 A
5814328 Gunasekaran Sep 1998 A
5833705 Ken et al. Nov 1998 A
5840011 Landgrebe et al. Nov 1998 A
5861034 Taira et al. Jan 1999 A
5863984 Doillon et al. Jan 1999 A
5869080 Mcgregor et al. Feb 1999 A
5871767 Dionne et al. Feb 1999 A
5876444 Lai Mar 1999 A
5891558 Bell et al. Apr 1999 A
5899909 Claren et al. May 1999 A
5906937 Sugiyama et al. May 1999 A
5910149 Kuzmak Jun 1999 A
5911731 Pham et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5919232 Chaffringeon et al. Jul 1999 A
5919233 Knopf et al. Jul 1999 A
5922026 Chin Jul 1999 A
5931165 Reich et al. Aug 1999 A
5942278 Hagedorn et al. Aug 1999 A
5962136 Dewez et al. Oct 1999 A
5972022 Huxel Oct 1999 A
RE36370 Li Nov 1999 E
5993844 Abraham et al. Nov 1999 A
5994325 Roufa et al. Nov 1999 A
5997895 Narotam et al. Dec 1999 A
6001895 Harvey et al. Dec 1999 A
6008292 Lee et al. Dec 1999 A
6015844 Harvey et al. Jan 2000 A
6039686 Robert Mar 2000 A
6042534 Gellman et al. Mar 2000 A
6042592 Schmitt Mar 2000 A
6043089 Sugiyama et al. Mar 2000 A
6051425 Morota et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6056970 Greenawalt et al. May 2000 A
6057148 Sugiyama et al. May 2000 A
6063396 Kelleher May 2000 A
6066776 Goodwin et al. May 2000 A
6066777 Benchetrit May 2000 A
6071292 Makower et al. Jun 2000 A
6077281 Das Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6083522 Chu et al. Jul 2000 A
6095968 Snyders Aug 2000 A
6120539 Eldridge et al. Sep 2000 A
6132765 Dicosmo et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6153292 Bell et al. Nov 2000 A
6165488 Tardy et al. Dec 2000 A
6171318 Kugel et al. Jan 2001 B1
6174320 Kugel et al. Jan 2001 B1
6176863 Kugel et al. Jan 2001 B1
6179872 Bell et al. Jan 2001 B1
6197325 Macphee et al. Mar 2001 B1
6197934 Devore et al. Mar 2001 B1
6197935 Doillon et al. Mar 2001 B1
6210439 Firmin et al. Apr 2001 B1
6221109 Geistlich et al. Apr 2001 B1
6224616 Kugel May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6258124 Darois et al. Jul 2001 B1
6262332 Ketharanathan Jul 2001 B1
6264702 Ory et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6277397 Shimizu Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312474 Francis et al. Nov 2001 B1
6328686 Robert Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6383201 Dong May 2002 B1
6391333 Li et al. May 2002 B1
6391939 Tayot et al. May 2002 B2
6408656 Ory et al. Jun 2002 B1
6410044 Chudzik et al. Jun 2002 B1
6413742 Olsen et al. Jul 2002 B1
6428978 Olsen et al. Aug 2002 B1
6436030 Rehil Aug 2002 B2
6440167 Shimizu Aug 2002 B2
6443964 Ory et al. Sep 2002 B1
6447551 Goldmann Sep 2002 B1
6447802 Sessions et al. Sep 2002 B2
6448378 Devore et al. Sep 2002 B2
6451032 Ory et al. Sep 2002 B1
6451301 Sessions et al. Sep 2002 B1
6454787 Maddalo et al. Sep 2002 B1
6477865 Matsumoto Nov 2002 B1
6479072 Morgan et al. Nov 2002 B1
6500464 Ceres et al. Dec 2002 B2
6509031 Miller et al. Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514286 Leatherbury et al. Feb 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6540773 Dong Apr 2003 B2
6541023 Andre et al. Apr 2003 B1
6548077 Gunasekaran Apr 2003 B1
6554855 Dong Apr 2003 B1
6559119 Burgess et al. May 2003 B1
6566345 Miller et al. May 2003 B2
6575988 Rousseau Jun 2003 B2
6576019 Atala Jun 2003 B1
6596002 Therin et al. Jul 2003 B2
6596304 Bayon et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
6599524 Li et al. Jul 2003 B2
6599690 Abraham et al. Jul 2003 B1
6613348 Jain Sep 2003 B1
6623963 Mueller et al. Sep 2003 B1
6630414 Matsumoto Oct 2003 B1
6638284 Rousseau et al. Oct 2003 B1
6652594 Francis et al. Nov 2003 B2
6653450 Berg et al. Nov 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6660280 Allard et al. Dec 2003 B1
6669735 Pelissier Dec 2003 B1
6682760 Noff et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6706684 Bayon et al. Mar 2004 B1
6706690 Reich et al. Mar 2004 B2
6719795 Bryan et al. Apr 2004 B1
6723335 Moehlenbruck et al. Apr 2004 B1
6730299 Tayot et al. May 2004 B1
6743435 Devore et al. Jun 2004 B2
6755868 Rousseau Jun 2004 B2
6773723 Spiro et al. Aug 2004 B1
6790213 Cherok et al. Sep 2004 B2
6790454 Abdul et al. Sep 2004 B1
6800082 Rousseau Oct 2004 B2
6833408 Sehl et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6852330 Bowman et al. Feb 2005 B2
6869938 Schwartz et al. Mar 2005 B1
6893653 Abraham et al. May 2005 B2
6896904 Spiro et al. May 2005 B2
6936276 Spiro et al. Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6949625 Tayot Sep 2005 B2
6966918 Schuldt-Hempe et al. Nov 2005 B1
6971252 Therin et al. Dec 2005 B2
6974679 Andre et al. Dec 2005 B2
6974862 Ringeisen et al. Dec 2005 B2
6977231 Matsuda Dec 2005 B1
6988386 Okawa et al. Jan 2006 B1
7025063 Snitkin et al. Apr 2006 B2
7041868 Greene et al. May 2006 B2
RE39172 Bayon et al. Jul 2006 E
7098315 Schaufler Aug 2006 B2
7175852 Simmoteit et al. Feb 2007 B2
7192604 Brown et al. Mar 2007 B2
7207962 Anand et al. Apr 2007 B2
7214765 Ringeisen et al. May 2007 B2
7226611 Yura et al. Jun 2007 B2
7229453 Anderson et al. Jun 2007 B2
7594921 Browning Sep 2009 B2
7670380 Cauthen, III et al. Mar 2010 B2
10327882 Bailly Jun 2019 B2
20010008930 Tayot et al. Jul 2001 A1
20020095218 Carr et al. Jul 2002 A1
20020116070 Amara et al. Aug 2002 A1
20030013989 Obermiller et al. Jan 2003 A1
20030023316 Brown et al. Jan 2003 A1
20030086975 Ringeisen May 2003 A1
20030100954 Schuldt-Hempe et al. May 2003 A1
20030114937 Leatherbury et al. Jun 2003 A1
20030133967 Ruszczak et al. Jul 2003 A1
20030212460 Darois et al. Nov 2003 A1
20030225355 Butler Dec 2003 A1
20030232746 Lamberti et al. Dec 2003 A1
20040034373 Schuldt-Hempe et al. Feb 2004 A1
20040054406 Dubson et al. Mar 2004 A1
20040059356 Gingras Mar 2004 A1
20040101546 Gorman et al. May 2004 A1
20040138649 Takamoto Jul 2004 A1
20040138762 Therin et al. Jul 2004 A1
20040172048 Browning Sep 2004 A1
20040215219 Eldridge et al. Oct 2004 A1
20050002893 Goldmann Jan 2005 A1
20050010306 Priewe et al. Jan 2005 A1
20050021058 Negro Jan 2005 A1
20050085924 Darois et al. Apr 2005 A1
20050113849 Popadiuk et al. May 2005 A1
20050113938 Jamiolkowski et al. May 2005 A1
20050137512 Campbell et al. Jun 2005 A1
20050142161 Freeman et al. Jun 2005 A1
20050148963 Brennan Jul 2005 A1
20050175659 Macomber et al. Aug 2005 A1
20050228408 Fricke et al. Oct 2005 A1
20050232979 Shoshan Oct 2005 A1
20050244455 Greenawalt Nov 2005 A1
20050267521 Forsberg Dec 2005 A1
20050288691 Leiboff Dec 2005 A1
20060064175 Pelissier et al. Mar 2006 A1
20060094318 Matsuda et al. May 2006 A1
20060135921 Wiercinski et al. Jun 2006 A1
20060147501 Hillas et al. Jul 2006 A1
20060167561 Odar et al. Jul 2006 A1
20060216320 Kitazono et al. Sep 2006 A1
20060252981 Matsuda et al. Nov 2006 A1
20070031474 Tayot et al. Feb 2007 A1
20070112361 Schonholz May 2007 A1
20070161109 Archibald et al. Jul 2007 A1
20070213734 Bleich et al. Sep 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070280990 Stopek Dec 2007 A1
20070297987 Stad et al. Dec 2007 A1
20070299538 Roeber Dec 2007 A1
20080306497 Brown et al. Dec 2008 A1
20110022165 Oba Jan 2011 A1
20110034942 Levin Feb 2011 A1
20110301502 Gill Dec 2011 A1
20130331868 Lepage, Jr. et al. Dec 2013 A1
20140249540 Nieman et al. Sep 2014 A1
20140379007 Costa et al. Dec 2014 A1
Foreign Referenced Citations (96)
Number Date Country
1317836 May 1993 CA
19544162 Apr 1997 DE
10019604 Oct 2001 DE
10043396 Jun 2002 DE
0194192 Sep 1986 EP
0248544 Dec 1987 EP
0276890 Aug 1988 EP
0372969 Jun 1990 EP
0544485 Jun 1993 EP
0552576 Jul 1993 EP
0614650 Sep 1994 EP
0621014 Oct 1994 EP
0625891 Nov 1994 EP
0637452 Feb 1995 EP
0705878 Apr 1996 EP
0719527 Jul 1996 EP
0774240 May 1997 EP
0797962 Oct 1997 EP
0827724 Mar 1998 EP
0836838 Apr 1998 EP
0895762 Feb 1999 EP
0898944 Mar 1999 EP
1017415 Jul 2000 EP
1052319 Nov 2000 EP
1055757 Nov 2000 EP
1216717 Jun 2002 EP
1216718 Jun 2002 EP
0693523 Nov 2002 EP
1315468 Jun 2003 EP
1382728 Jan 2004 EP
1484070 Dec 2004 EP
1561480 Aug 2005 EP
1782848 May 2007 EP
2633827 Sep 2013 EP
2712580 Apr 2014 EP
2244853 Apr 1975 FR
2257262 Aug 1975 FR
2308349 Nov 1976 FR
2453231 Oct 1980 FR
2715405 Jul 1995 FR
2724563 Mar 1996 FR
2744906 Aug 1997 FR
2766698 Feb 1999 FR
2771622 Jun 1999 FR
2779937 Dec 1999 FR
2859624 Mar 2005 FR
2863277 Jun 2005 FR
2884706 Oct 2006 FR
2051153 Jan 1981 GB
H0332677 Feb 1991 JP
H05237128 Sep 1993 JP
H09137380 May 1997 JP
8902445 Mar 1989 WO
8908467 Sep 1989 WO
9012551 Nov 1990 WO
9206639 Apr 1992 WO
9220349 Nov 1992 WO
9311805 Jun 1993 WO
9318174 Sep 1993 WO
9417747 Aug 1994 WO
9507666 Mar 1995 WO
9518638 Jul 1995 WO
9532687 Dec 1995 WO
9603091 Feb 1996 WO
9608277 Mar 1996 WO
9609795 Apr 1996 WO
9614805 May 1996 WO
9641588 Dec 1996 WO
9735533 Oct 1997 WO
9835632 Aug 1998 WO
9849967 Nov 1998 WO
9905990 Feb 1999 WO
9906079 Feb 1999 WO
9906080 Feb 1999 WO
9951163 Oct 1999 WO
0016821 Mar 2000 WO
0067663 Nov 2000 WO
0115625 Mar 2001 WO
0180773 Nov 2001 WO
0207648 Jan 2002 WO
02078568 Oct 2002 WO
03002168 Jan 2003 WO
2004004600 Jan 2004 WO
2004071349 Aug 2004 WO
2004078120 Sep 2004 WO
2004103212 Dec 2004 WO
2005011280 Feb 2005 WO
2005013863 Feb 2005 WO
2005018698 Mar 2005 WO
2005105172 Nov 2005 WO
2006018552 Feb 2006 WO
2006023444 Mar 2006 WO
2007048099 Apr 2007 WO
2007056297 May 2007 WO
2013007534 Jan 2013 WO
2013048272 Apr 2013 WO
Non-Patent Literature Citations (33)
Entry
Amid, P., “Lichtenstein tension-free hernioplasty: Its inception, evolution, and principles,” Hernia, 2004; pp. 1-7, 8, published online Sep. 2003.
Blondin, C. et al., “Inhibition of Complement Activation by Natural Sulfated Polysaccharides (Fucans) from Brown Seaweed,” Molecular Immuol., Mar. 1994, pp. 247-253, 31(4).
Blondin, C. et al., “Relationships between chemical characteristics and anticomplementary activity of fucans,” Biomaterials, Mar. 1996, pp. 597-603, 17(6).
Boisson-Vidal, C. et al., “Neoangiogenesis Induced by Progenitor Endothelial Cells: Effect of Fucoidan From Marine Algae,” Cardiovascular & Hematological Agents in Medicinal Chem., Jan. 2007, pp. 67-77, 5(1).
Bracco, P. et al., “Comparison of polypropylene and polyethylene terephthalate (Dacron) meshes for abdominal wall hernia repair: A chemical and morphological study,” Hernia, 2005, pp. 51-55, 9 (1), published online Sep. 2004.
Collins, R. et al., “Use of collagen film as a dural substitute: Preliminary animal studies,” Journal of Biomedical Materials Research, Feb. 1991, pp. 267-276, vol. 25.
Ellouali, M. et al., “Antitumor Activity of Low Molecular Weight Fucans Extracted from Brown Seaweed Ascophyllum nodosum,” Anticancer Res., Nov.-Dec. 1993, pp. 2011-2020, 12 (6A).
European Search Report for EP 14306522.5 date of completion is Apr. 17, 2015 (7 pages).
Examination report No. 1 issued in corresponding Australian patent application No. 2015221458 dated May 14, 2019, 6 pages.
Haneji, K. et al., “Fucoidan extracted from Cladosiphon Okamuranus Tokida Induces Apoptosis of Human T-cell Leukemia Virus Type 1-Infected T-Cell Lines and Primary Adult T-Cell Leukemia Cells,” Nutrition and Cancer, 2005, pp. 189-201, 52(2), published online Nov. 2009.
Haroun-Bouhedja, F. et al., “In Vitro Effects of Fucans on MDA-MB231 Tumor Cell Adhesion and Invasion,” Anticancer Res., Jul.-Aug. 2002, pp. 2285-2292, 22(4).
Haroun-Bouhedja, F. et al., “Relationship between sulfate groups and biological activities of fucans,” Thrombosis Res., Dec. 2000, pp. 453-459, 100(5).
Hirano, S. et al., “The blood biocompatibility of chitosan and N-acylchitosans,” J. Biomed. Mater. Res., Apr. 1985, 413-417, 19.
Junge, K. et al., “Functional and Morphologic Properties of a Modified Mesh for Inguinal Hernia Repair,” World J. Surg., Sep. 2002, pp. 1472-1480, 26.
Kanabar, V. et al., “Some structural determinants of the antiproliferative effect of heparin-like molecules on human airway smooth muscle,” Br. J. Pharmacol., Oct. 2005, pp. 370-777, 146(3).
Klinge, U. et al., “Foreign Body Reaction to Meshes Used for the Repair of Abdominal Wall Hernias,” Eur J. Surg, Sep. 1999, pp. 665-673, 165.
Klinge, U. et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” J Biomed. Mater. Res., Jan. 2002, pp. 129-136, 63.
Langenbech, M. R. et al., “Comparison of biomaterials in the early postoperative period,” Surg Enclose., May 2003, pp. 1105-1109, 17(7).
Logeart, D. et al., “Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. II. Degradation and molecular weight effect,” Eur. J. Cell. Biol., Dec. 1997, pp. 385-390, 74(4).
Malette, W. G. et al., “Chitosan, a New Hemostatic,” Ann Th. Surg., Jul. 1983, pp. 55-58, 36.
Muzzarelli, R. et al., “Reconstruction of parodontal tissue with chitosan,” Biomaterials, Nov. 1989, pp. 598-604, 10.
O'Dwyer, P. et al., “Randomized clinical trial assessing impact of a lightweight or heavyweight mesh on chronic pain after inguinal hernia repair,” Br. J. Surg., Feb. 2005, pp. 166-170, 92(2).
Preliminary Search Report from French Patent Office dated Dec. 20, 2006, 3 pages.
Prokop, A. et al., “Water Soluble Polymers for Immunoisolation I: Complex Coacevation and Cytotoxicity,” Advances in Polymer Science, Jul. 1998, pp. 1-51, 136.
Rao, B. et al., “Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential,” J. Biomed. Mater. Res., Jan. 1997, pp. 21-28, 34.
Rosen, M. et al., “Laparoscopic component separation in the single-stage treatment of infected abdominal wall prosthetic removal,” Hernia, 2007, pp. 435-440,11, published online Jul. 2007.
Scheidbach, H. et al., “In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs,” Surg. Endosc., Feb. 2004, pp. 211-220, 18(2).
Strand, S. et al., “Screening of Chitosans and Conditions for Bacterial Flocculation,” Biomacromolecules, Mar. 2001, 126-133, 2.
Varum, K. et al., “In vitro degradation rates of partially N-acetylated chitosans in human serum,” Carbohydrate Research, Mar. 1997, pp. 99-101, 299.
Welty, G. et al., “Functional impairment and complaints following incisional hernia repair with different polypropylene meshes,” Hernia, Aug. 2001; pp. 142-147, 5.
Zvyagintseva, T. et al., “Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds,” Comparative Biochem and Physiol, Jul. 2000, pp. 209-215, 126(3).
Communication pursuant to Article 94(3) EPC issued in European Patent Application No. 14306522.5 dated Oct. 24, 2019, 5 pages.
Canadian Office Action issued in Canadian Application No. 2,902,563 dated Sep. 16, 2021, 5 pages.
Related Publications (1)
Number Date Country
20190274808 A1 Sep 2019 US
Continuations (1)
Number Date Country
Parent 14860748 Sep 2015 US
Child 16423566 US