The present invention relates generally to wheels and, more particularly, to wheels configured to be used on a variety of terrains and surfaces.
A wheel, in the simplest terms, is a circular component that rotates on an axle. The main advantage of a wheel is that it greatly reduces friction by rolling across a flat surface compared to sliding or dragging an object. Early wheels were simple wooden disks with a hole for an axle. At first, a cross section of a tree was used. However, this type of wheel was problematic because it did not have sufficient structural strength to support weight without breaking. It was inherently flawed because a cross section of a tree does not utilize the strength of the grain of wood, like a plank cut lengthwise. Eventually, to strengthen the wheel, three lengthwise cut planks were banded together side by side, with the axle hole bored through the centerpiece, and shaped into a circle.
Subsequently, the wheel evolved to the blueprint of the modern wheel comprising of a hub, spokes, and a rim. The advent of spokes made the wheel lighter and stronger than a solid wheel, and used less material. Further advances made to the spokes and rims resulted in wheels becoming lighter and faster. Subsequently, to prolong the durability of a wheel, covers for wheel, known today as tires, were developed as a measure to protect the wheel from damage. Initially, tires were made of simple materials such as leather, but progressed to other more durable materials such as iron and rubber.
Nonetheless, the overall circular shape has remained the same throughout the years. Presently, refinements in a wheel design have primarily been based on advancements in materials as well as, on designs adapted for specific uses, to include specific types of surfaces.
It should, therefore, be appreciated that there remains a need for a wheel assembly that is effective across a variety of surfaces. The present invention fulfills this need and others.
Briefly, and in general terms, the invention provides a wheel assembly having a body formed as an alternating pattern circumscribed about a central hub. The body has a constant radial distance from the axis of rotation, as referenced by a median circle centered on the axis of rotation and defined by the body's alternating pattern.
More particularly, by way of example only and not limitation, the wheel can be adapted for use in any type of vehicle for transportation, such as a car, bicycle, skateboard, and wheelchair, among others. The wheel body defines an effective width (We) greater than a body width (Wb). On hard surfaces, the wheel assembly can provide a broad track while maintaining a relatively thin contact area in that the wheel assembly generates less friction than a traditional wheel with a comparable effective width. On soft surfaces, e.g., sand, the broad travel path of the wheel assembly enables the vehicle to travel smoothly without unduly sinking into soft material, providing substantial traction, particularly if the wheel begins to slip.
In a detailed aspect of an exemplary embodiment, the wheel body is formed of a plurality of arcs connected in sequential, adjacent alignment to circumscribe the central hub. Each arc having an arc center that is spaced apart from the axis of rotation, such that adjacent arcs have arc center on opposing sides of the body.
In another detailed aspect of an exemplary embodiment, each arc of the plurality of arcs has an arc angle of 90 degrees, in which the alternating pattern is formed of six arcs.
For purposes of summarizing the invention and the advantages achieved or implemented over the prior art, certain advantages of the invention have been described herein. Of course, it is to be understood that not necessarily all such advantages may be achieved or implemented in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves, optimizes, or implements one advantage or group of advantages as taught herein without necessarily achieving or implementing other advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment disclosed.
Embodiments of the present invention will now be described, by way of example only, with reference to the following drawings in which:
a-8e are perspective views of the wheel assembly of
Referring now to the drawings, and particularly
On soft surfaces, e.g., sand, the broad travel path of the wheel assembly enables the vehicle to travel smoothly without unduly sinking into soft material (see,
With reference to
With reference now to
The shape of the body can vary in other embodiments. For example, the number and shape of the alternating portions can vary. For example, in
In addition, the amplitude and frequency of the portions can vary across embodiments as well as within an embodiment. Furthermore, the alternating portions need not be limited to a curved shape, any other shape can be used such as squared, pie, or cantilevered portions, among others. Moreover, one or more portions of the body can extend along the median circle at prescribed location(s), interspaced between alternating portion.
With reference now to
With reference now to
With reference now to
Although the invention has been disclosed in detail with reference only to the exemplary embodiments, those skilled in the art will appreciate that various other embodiments can be provided without departing from the scope of the invention. Accordingly, the invention is defined only by the claims set forth below.