The disclosure relates to a wheel assembly, more particularly to a wheel assembly for a trolley.
Referring to
The central shaft 93 can be operated to move the detent device 95 downwardly and to move the toothed plate 94 downwardly so that selected ones of downwardly extending teeth of the toothed plate 94 engage the slots 980, respectively, to arrest pivotal movement of the wheel 92. The leg portions 991 of the brake pad 99 are pushed downwardly by the detent device 95 to press against an outer peripheral surface of the wheel 92 so as to arrest rotation of the wheel 92 and to achieve the effect of braking.
By rotating the bolt 951 and the nut 952, a distance between the bolt 951 and the brake pad 99 can be adjusted so as to achieve the purpose of adjusting a brake stroke. However, since it is required to rotate the bolt 951 relative to the nut 952, two wrenches are needed to adjust the distance between the bolt 951 and the brake pad 99. Consequently, it is relatively troublesome to adjust the brake stroke of the conventional wheel assembly.
Additionally, the bolt 951 and the nut 952 may be loosened and fall off from the wheel seat 91 after a period time of use. Further, it is time consuming to sequentially assemble the liner 97, the positioning pad 98 and the brake pad 99 on the wheel seat 91.
Therefore, an object of the disclosure is to provide a wheel assembly capable of alleviating the drawbacks of the conventional wheel assembly.
According to an aspect of the disclosure, a wheel assembly includes a transmission unit, a wheel set unit, and a brake unit. The transmission unit includes a shaft seat and a transmission shaft. The transmission shaft extends through the shaft seat along an up-down direction and is operable to move relative to the shaft seat along the up-down direction. The wheel set unit includes a wheel bracket mounted at a bottom end of the shaft seat and rotatable about the transmission shaft, and a wheel mounted pivotally to the wheel bracket. The brake unit includes a brake element, an internally threaded member, and a screw. The brake element has a fixed end mounted fixedly to the wheel bracket. The internally threaded member is spaced apart from the fixed end and is sleeved movably on the brake element. The screw extends threadably through the internally threaded member and extends vertically and movably through the brake element such that movement of the internally threaded member relative to the brake element is prevented. The screw is pushable downwardly by the transmission shaft such that the brake unit moves downwardly to press resiliently against the wheel, so as to arrest rotation of the wheel. The screw is configured such that a single tool is allowed to be accessed to a lower end of the screw so as to adjust a distance between the brake unit and the wheel.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present invention is described in greater detail, it should be noted that where considered appropriate, reference numerals or terminal portions of reference numerals have been repeated among the figures to indicate corresponding or analogous elements, which may optionally have similar characteristics.
Referring to
Further referring to
The wheel set unit 2 includes a wheel bracket 21 mounted at a bottom end of the shaft seat 11 and rotatable about the transmission shaft 12, and a wheel 22 mounted pivotally to the wheel bracket 21. The wheel bracket 21 has an inner periphery that is formed with two positioning notches 210.
The brake unit 3 includes a brake element 31, a limiting member 32, an internally threaded member 33, a screw 34, and a toothed disc 35. The brake element 31 has a fixed end 36 mounted fixedly to the wheel bracket 21, a main body 37 extending from and disposed below the fixed end 36, two protrusions 38 extending from and disposed below the main body 37, and a locking portion 39 connected to the fixed end 36.
The main body 37 includes two inclined interconnecting segments 371 extending downwardly and outwardly from the fixed end 36 and flanking the locking portion 39, an inclined stamped segment 372 extending outwardly and downwardly from lower ends of the interconnecting segments 371, and an insert segment 373 extending upwardly and outwardly from a lower end of the stamped segment 372. The internally threaded member 33 is spaced apart from the fixed end 36 and is sleeved movably on the insert segment 373. The screw 34 extends threadably through the internally threaded member 33 and extends vertically and movably through the insert segment 373 such that movement of the internally threaded member 33 relative to the brake element 31 is prevented. The fixed end 36, the interconnecting segments 371 and the stamped segment 372 cooperate with one another to define an opening 30 thereamong. The protrusions 38 are co-movable downwardly with the main body 37 to press against an outer peripheral surface of the wheel 22 to arrest rotation of the wheel 22. Specifically, each of the protrusions 38 is configured as a pressed protruding tab formed by stamping and includes an extending segment 381 extending downwardly from the stamped segment 372, and a brake segment 382 extending transversely along a direction parallel to a rotating axis of the wheel 22 from the extending segment 381 toward the other one of the protrusions 38. Note that in other embodiments of the present disclosure, the brake segments 382 of the protrusions 38 may extend away from each other along the direction parallel to the rotating axis of the wheel 22 or extend along a direction transverse to the rotating axis of the wheel 22 and the present disclosure is not limited in this respect. The locking portion 39 extends from the fixed end 36 into the opening 30, is disposed between and spaced apart from the interconnecting segments 371, and is formed with two holes 390.
The limiting member 32 is mounted to the wheel bracket 21 and includes a mounting portion 321 that is mounted fixedly between the fixed end 36 and the wheel bracket 21, and two leg portions 322 that are spaced apart from each other, that extend from and disposed below the mounting portion 321, that extend into the opening 30, and that abut respectively against two sides of the locking portion 39 which are opposite along a direction parallel to the rotating axis of the wheel 22.
The screw 34 is pushable downwardly by the transmission shaft 12 such that the brake unit 3 moves downwardly to press resiliently against the wheel 22, so as to arrest rotation of the wheel 22.
The toothed disc 35 is mounted to a bottom end portion of the transmission shaft 12, and is disposed under the shaft seat 11 and between the wheel bracket 21 and the locking portion 39 of the brake element 31. The toothed disc 35 has an upper surface formed with two positioning protrusions 352 extending upwardly and includes a plurality of downwardly extending teeth 351 angularly spaced apart from one another and arranged around the transmission shaft 12. The toothed disc 35 is co-movable downwardly with the transmission shaft 12 to contact the locking portion 39, such that two of the teeth 351 engage the holes 390, respectively, to arrest pivotal movement of the wheel 22 about a central axis of the transmission shaft 12. Note that the number of the holes 390 formed in the locking portion 39 is not limited to two and may be one or more than three in other embodiments of this disclosure.
In this embodiment, the internally threaded member 33 is made of plastic, preferably a high structural strength engineering plastic, e.g., but not limited to, polyamide (PA), acrylonitrile-Butadiene-Styrene (ABS), polycarbonate (PC) and polyoxymethylene (POM). The screw 34 is, for example, but not limited to, a self-tapping screw. Thus, connection strength among the screw 34, the internally threaded member 33 and the brake element 31 is ensured.
To use the wheel assembly of the present disclosure, the wheel assembly is mounted on a vehicle such as a trolley, a cart or a tool cart, and an operating rod 4 (see
As shown in
Further referring to
Further referring to
Further referring to
Referring to
To sum up, by virtue of the arrangement of the brake element 31, the internally threaded member 33 and the limiting member 32, the number of components of the wheel assembly of the present disclosure is decreased as compared to the conventional wheel assembly. Further, the brake unit 3 has a relatively high structural strength and is thus relatively durable. Finally, it is relative simple to operate and assemble the wheel assembly of the present disclosure.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiments. It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects, and that one or more features or specific details from one embodiment may be practiced together with one or more features or specific details from another embodiment, where appropriate, in the practice of the disclosure.
While the disclosure has been described in connection with what are considered the exemplary embodiments, it is understood that this disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Name | Date | Kind |
---|---|---|---|
4414702 | Neumann | Nov 1983 | A |
4658466 | Vollberg | Apr 1987 | A |
4677706 | Screen | Jul 1987 | A |
4815161 | Timmer | Mar 1989 | A |
5014391 | Schulte | May 1991 | A |
5139116 | Screen | Aug 1992 | A |
5184373 | Lange | Feb 1993 | A |
5303450 | Lange | Apr 1994 | A |
5503416 | Aoki | Apr 1996 | A |
5774936 | Vetter | Jul 1998 | A |
6834746 | Lin | Dec 2004 | B1 |
7134167 | Yan | Nov 2006 | B2 |
7406745 | Chou | Aug 2008 | B2 |
7810613 | Lin | Oct 2010 | B2 |
7987553 | Lin | Aug 2011 | B2 |
7992254 | Ahn | Aug 2011 | B2 |
8079606 | Dull | Dec 2011 | B2 |
8365354 | Fan | Feb 2013 | B1 |
8452508 | Frolik | May 2013 | B2 |
8516656 | Lin | Aug 2013 | B2 |
8789662 | Childs | Jul 2014 | B2 |
8850657 | Yang | Oct 2014 | B1 |
9038786 | Lin | May 2015 | B2 |
9139043 | Fan | Sep 2015 | B1 |
9908367 | Yamamoto | Mar 2018 | B2 |
10486466 | Yang | Nov 2019 | B1 |
10857833 | Patmore | Dec 2020 | B2 |
11065913 | Molozis | Jul 2021 | B2 |
20060254867 | Yan | Nov 2006 | A1 |
20110067202 | Chou | Mar 2011 | A1 |
20120255141 | Lin | Oct 2012 | A1 |
20150258850 | Schioppa | Sep 2015 | A1 |
20210276366 | Hartkopf | Sep 2021 | A1 |