The invention relates to a wheel bearing arrangement comprising a hub mounted rotatably about the rotational axis of the hub in at least one non-rotating outer ring, the wheel bearing having an encoder, and the encoder being fixed to that side of the wheel bearing arrangement at the hub side, from which side a radial flange leads radially away from the hub and the encoder being operatively connected to the sealing arrangement.
A wheel bearing arrangement of this type is described in U.S. Pat. No. 4,864,231. The vehicle wheel is, as a rule, fastened to the radial flange of the hub by way of bolts. In this case, the radial flange is configured integrally with the hub.
The wheel bearing is as a rule a roller bearing having two or more rows of rolling bodies. Inner rings having the raceways for the rows are seated optionally on the hub. At least one raceway of two or more of the rows of rolling bodies is optionally incorporated directly into the material of the hub. The wheel bearing has one or more outer rings, on which the inner raceways for the rows are formed. The outer rings are either seated in the wheel support, or the outer ring is, as in the underlying prior art, the wheel support itself. The wheel support is provided with a flange, which has, for example, a plurality of fastening holes, for fastening the wheel support on the vehicle side. The outer ring is accordingly fixed in terms of rotation. The hub and therefore the vehicle wheel are mounted in the wheel bearing so as to rotate with respect to the wheel support.
The wheel bearing is, as a rule, sealed with two seals against environmental influences from the outside. One of the seals protects the wheel bearing as well as the encoder and at the same time has a sealing operative connection to the encoder. To this end, the seal has a sealing element in the form of a covering plate which is seated on the outer ring. One sealing lip on the covering plate bears sealingly against the encoder.
The sensor system is often arranged on the side of the radial flange, as the installation space on the vehicle side between the articulation bell and the wheel carrier is small for passing through the connecting lines of the sensor system and as the sensor system is exposed sometimes, to extreme contaminations at this location. The expenditure for sealing the wheel bearing and for simultaneously protecting the sensor system is therefore relatively high. The connecting lines are endangered by mud or ice accumulations on the side of the articulation bell.
However, in contrast, little installation space is available on the side of the vehicle wheel for the sensor system, for the components seal, encoder and sensor/sensors per se. In addition, the heads/threaded ends of the bolts which protrude axially out of the radial flange for fastening the wheel project in a disruptive manner into the installation space and also influence the signals of the sensor system by interfering signals.
The encoder is seated directly on the hub by means of a press fit and rotates with the latter relative to the sensor. In the arrangement according to U.S. Pat. No. 4,864,231, the sensor which belongs to the sensor system is held in a hole of the wheel carrier and protrudes through the hole into the interior of the wheel bearing. The seat of the sensor in the outer ring is to be manufactured and sealed separately and therefore causes additional costs. During the mounting of the sensor, and also during repair and maintenance, there is the risk that dirt particles pass into the interior of the roller bearing during insertion of the sensor. Those sealing lips of known sealing arrangements which lie on the outside of wheel bearing arrangements are, as a rule, directly exposed to environmental influences and fail prematurely. Dirt and moisture pass under the seal and penetrate into the roller bearing.
It is therefore the object of the invention to provide a wheel bearing arrangement, with which the above-described disadvantages are avoided. In particular, a simple and inexpensive sealing arrangement having an integrated encoder is to be provided. Furthermore, sufficient installation space for the sealing arrangement and the encoder is to be provided on the wheel flange side.
This object is achieved in that:
or as an alternative:
Additional installation space for the wheel-side sealing of the wheel bearing and for the sensor system is provided by a wheel bearing arrangement of this type. The encoder is sufficiently protected by the seal. The sensor is arranged in a spatially separate manner from the interior of the wheel bearing. The bearing arrangement and, particularly, the sealing arrangement can be manufactured inexpensively, in particular, when the covering plate and the sensor with the carrier are cold-formed sheet metal parts. The encoder and the sensor are arranged far enough away from the interfering influences of the wheel bolts on the sensor signals. The active surface of the encoder (the encoding section which communicates with the sensor) can be of generous configuration in a manner which is free and independent of the dimensions of the axial installation space between the end side of the wheel bearing and the radial flange. The quality of the signals is improved. The axial installation space therefore can be used for the design of the sealing arrangement according to the invention with sufficient sealing action.
The invention is suitable for the use of all conceivable magnetized encoders (with changing polarity), such as pulse generators having magnetized particles in elastomers, or for the use of nonmagnetized encoders, such as pulse generator rings made from sheet metal. The protective sleeve, optionally also made from plastic, is preferably a protective plate made from nonferromagnetic material. The encoder is protected against stone chipping or other hard particles. Spray water and ferromagnetic particles from the surroundings are kept away by the protective sleeve.
The dimension of the gap of the gap seal is smaller than or at most equal to one millimeter. The corresponding orientation of the protective sleeve and the position of the sealing gap ensure that fluid which has penetrated via the gap into the interior of the seal drips out of the gap or is conveyed through the gap to the outside during operation as a result of centrifugal force on the rotating encoder.
Refinements and exemplary embodiments of the invention are explained in greater detail in the following text.
a shows a segment of an encoder of the wheel-flange-side sealing arrangement from the wheel bearing arrangement according to
Furthermore, the wheel bearing arrangement 1 has a sealing arrangement 27 with a protective sleeve 7 from a nonferromagnetic sheet, with an elastic seal 8 and with an encoder 9. At least one sensor 17 lies opposite the encoder 9. The encoder 9 and the sensor 17 are separated from one another by the protective sleeve 7.
The encoder 9 is shown partially as an individual part in
It is also conceivable that, as shown in
As an alternative,
The encoder 9 is fixed on the inner ring 11 by a press fit of the collar 9c on the support 9b and is therefore fixed on the hub side. The encoding section 9a of the encoder 9 which is relevant for the signal generation of the sensor 17 extends, from the support 9b, axially away from the radial flange 2 in the direction of the wheel support 5 and reaches over the latter at the annular section 5a. The encoder 9 surrounds the annular section 5a of the outer ring 18 or of the support 5 without contact, by way of the communicating encoding section 9a.
In this case, the projections 16a of the wheel bolts 16 are the heads of the wheel bolts 16 and they protrude axially from the radial flange 2. The communicating encoding section 9a is spaced radially apart from the projections and is not protruded beyond axially. The radial spacing of the projections from the hub 6 is greater than the radial spacing of the radially outermost body edge of the encoding section 9a from the hub 6.
The protective sleeve 7 is cup-shaped, cold-formed from sheet metal and nonferromagnetic. A first hollow-cylindrical section 7a of the protective sleeve 7 which lies radially on the outside covers the encoder 9 from the outside against environmental influences. A second hollow-cylindrical section 7b which is formed integrally with the first section 7a is seated fixedly on the annular section 5a of the outer ring 18, with the result that the protective sleeve 7 is fixed in terms of rotation together with the outer ring 18 during the operation of the wheel bearing, the encoder 9 extends axially along an entire length of the second hollow-cylindrical section 7b. A gap seal. A gap seal 20 is formed by a sealing gap 19 between the first section 7a which functions as a sealing element and the circumferentially extending edge 9d on the axial end of the encoder 9 (
The sealing arrangements 3 and 27 optionally have a further gap seal 21 with a sealing gap 23 which is formed axially between the protective sleeve 7 and the radial flange 2. In this case, an elastic seal 25 is fixed with a sealing lip 26 on the protective sleeve 7 of the sealing arrangement 4 according to
In the operative connection in the sequence from the outside to the inside, the gap seal 20 follows the gap seal 21 or the seal 25 on the bearing side. Accordingly, in this sequence, the gap seal 20 is followed by the seal 8 in the sealing arrangement 27 according to
The encoder 21, 22 is fixed directly on the hub 6 by a press fit of the collar 33a on the support 33. The encoding section 21a or 22a of the encoder 21, 22 which is relevant for the signal generation of the sensor 17 extends from the support 33 axially away from the radial flange 2 in the direction of the wheel support 5 and reaches over the latter at the annular section 5a. The encoder 21 or 22 surrounds the annular section 5a of the outer ring 18 or the support 5 without contact, by way of the communicating encoding section 21a or 22a.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 044 118 | Sep 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2005/001427 | 8/12/2005 | WO | 00 | 4/11/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/026950 | 3/16/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4864231 | Okumura et al. | Sep 1989 | A |
5080500 | Hilby et al. | Jan 1992 | A |
5127747 | Hilby et al. | Jul 1992 | A |
6190051 | Angelo et al. | Feb 2001 | B1 |
6414479 | LaCroix et al. | Jul 2002 | B1 |
6485188 | Dougherty | Nov 2002 | B1 |
6637754 | Ohtsuki et al. | Oct 2003 | B1 |
6906509 | Tomioka | Jun 2005 | B2 |
6974136 | Vignotto et al. | Dec 2005 | B2 |
7034521 | Sentoku et al. | Apr 2006 | B2 |
7077574 | Niebling et al. | Jul 2006 | B2 |
20050047692 | Niebling et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
38 19 619 | Feb 1989 | DE |
0 144 240 | Aug 2004 | EP |
2004 045370 | Feb 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20080031556 A1 | Feb 2008 | US |