This application is the United States national phase of International Application No. PCT/EP2017/060137 filed Apr. 27, 2017, and claims priority to Polish Patent Application No. P.417024 filed Apr. 28, 2016, the disclosures of which are hereby incorporated in their entirety by reference.
The invention relates to a wheel detector for detecting a wheel of a rail vehicle, which in particular can be used at railway stations and railway lines for detecting the lack of track section occupancy, i.e. the absence of vehicles in the track section, in order to manage rail vehicle traffic.
Track circuits, wheel detectors and induction loops are used in systems for detecting lack of track section occupancy according to prior art.
One prior art type of wheel detector functions based on analyzing—with the use of a trackside electronic unit—a the signal transmitted by a receiver head of the wheel detector which is located within a the magnetic field that is being generated by a transmitter head of the wheel detector, wherein the heads are mounted on opposite sides of the rail on which a wheel may run and pass the detector.
The Polish Patent Document PL 199810 B discloses an integrated two-channel head of a detector for detecting a rail vehicle wheel, which head has a transmitting head with two resonant capacitive-inductive sets in the form of a parallel (current) resonance circuit and four coil receiving heads. Pairs of the coils of the receiving head are located asymmetrically in relation to coils of the transmitting head. Such an arrangement of the coils in the receiving head ensures that the envelope of the signal is appropriately shaped during the passage of different types of wheels, for example small wheels, untypical wheels or wheels which are moved away from the rail head.
Other Polish Patent Document PL 209435 B discloses a wayside electronic circuit of a detector for detecting a wheel of a rail vehicle, which detector comprises a transmitting part including transmitting heads, a receiving part which includes receiving heads and a microprocessor circuit.
Both the transmitting part and the receiving part have modulators which are controlled by the signals transmitted form the microprocessor circuit, however the modulator in the receiving part is connected with a preamplifier and a change of amplification of the preamplifier is controlled from the microprocessor circuit. The preamplifier is in turn connected with the circuit which multiplies the input signal from the receiving heads by the control signal (command signal) from the microprocessor circuit. The multiplying circuit is connected with a further multiplying circuit which multiplies the input signal from the receiving heads by the signal that feeds the transmitting heads, which is modified in the phase shifter that is controlled from the microprocessor circuit. The signal from the other multiplying circuit is transmitted to the circuit of input signal adder from the receiving heads and the signal from the microprocessor circuit.
The design consisting of only one head which is fastened to a rail and which enables detecting a passage of a wheel flange is another design solution that is implemented in wheel detectors according to prior art. Most frequently the principle of how one-side wheel detectors function is that electric parameters of electric circuits change—e.g. of the resonance circuits that are inside the wheel detectors—in the presence of an electric conductor, here of a wheel. The above mentioned principle of wheel detector functioning with one head is also widely implemented in the designs of metal detectors in a number of different industries. An example of such a technical solution is contained in EP 1479587 A2 according to which two independent inductive sensors are located in a common enclosure—first one and then the other one—lengthwise along the rails. Each of the circuits of the detector comprises a coil of the detector which may or may not have a steel core and comprises an oscillator circuit. A coil of the detector together with a capacitor form an oscillating circuit which generates a variable magnetic field around it. When the wheel flange reaches the zone of operation of the coil of the detector, oscillations of the oscillating circuit will be attenuated as a result of being deprived of energy by the steel wheel flanges due to eddy-currents induced within the wheel. In consequence, the voltage amplitude of the oscillator circuit will change and/or the resonance frequency of the oscillator circuit will change and in the majority of detectors this results into a change of power consumption of the detector for operating the oscillator circuit. A corresponding current signal is transmitted via a two-wire link to a device in the safety installation. There, the signal is transformed e.g. using comparator circuits into the control signals (command signals) and is transmitted for further processing taking account different tasks within the safety installation.
The invention relates to a wheel detector for detecting a wheel of a rail vehicle which is installed next to the rail head. The purpose of the wheel detector is to detect the passage of a flange of a wheel of a rail vehicle and to transmit data about the passage of the wheel to a supervisory system, e.g. an interlocking system, a level crossing system or a line blocking system. To ensure proper and safe functioning of the wheel detector it is desired to maintain stable parameters of wheel detector performance within the entire spectrum of environmental conditions that occur in the vicinity of a rail. Temperature changes and vibrations are environmental conditions that have an impact on the performance of wheel detectors that are mounted on a rail. The immunity of the wheel detector to electromagnetic interference that is present in the wayside area is a significant feature of the wheel detector.
Due to a large number of variants of rails and a different degree of wear and tear of rails onto which the wheel detector can be mounted, it is advantageous to adjust the parameters of wheel detector performance in the very location of its installation. The adjustment of the wheel detector should guarantee that the parameters declared by the manufacturer of the wheel detector functioning on the types of rails specified by the manufacturer will be fulfilled.
The electric circuit of a wheel detector unit that is consistent with the invention is a two-channel circuit and there is a coil unit in each of the channels of the wheel detector and the coil unit is (in particular unidirectionally) connected with a measurement and feeding module of the respective channel for feeding the coil unit with an output signal of the measurement and feeding module, wherein a decision module of the respective channel is bi-directionally (with respect to the transmission of data and/or signals) connected to the measurement and feeding module.
The measurement and feeding module of each channel comprises a temperature measurement module, e.g. comprising in each case at least one temperature sensor, and a mechanical vibration measurement module, e.g. comprising in each case at least one acceleration sensor, wherein the temperature measurement module and/or vibration measurement module is/are connected with an input/with inputs of a decision module. The at least one acceleration sensor allows for measuring the acceleration, i.e. a quantity characterizing mechanical vibrations. The measured acceleration can be transmitted from the wheel detector to another part (e.g. a so-called upper layer) of the wheel detector system, in particular in order to inform a user if the vibrations are in an acceptable range.
The decision modules of the two channels are connected with one another through a bi-directional digital interface and furthermore the decision module of the first channel is connected via a bi-directional digital interface with the data transmission module in order to guarantee the communication between the wheel detector and the supervisory system via a data transmission line.
In particular, there are two circuits in the coil unit of the first channel and the circuits influence one another via coils that are located along the rail head. The connection and geometrical arrangement of relevant coils in the coil unit in the second channel are the same as the ones that are described in respect of the first channel.
Power supply to both channels of the wheel detector can be, for example, provided by independent power supply blocks that are connected with the power supply line.
The measurement and feeding module of at least one of the channels may comprise an amplifier, an output of the amplifier may be connected with the coil unit of the channel and an input of the amplifier may be connected with an output of the decision module of the channel.
In the coil unit in the first channel of the wheel detector only one of the circuits may be connected with the amplifier output and may be fed by the signal from the amplifier output. The input signal for the amplifier in turn may be acquired from the output of the decision module. The information about the power that the amplifier draws via power supply path is transmitted via a power measurement module to the decision module.
The information about the parameters of the output signal coming from the amplifier is transmitted to the decision module using a parameter measurement module. In the coil unit in the second channel of the wheel detector however only one of the circuits is connected with the output of the amplifier in this channel and is fed by the output signal from this amplifier. The input signal for the amplifier is acquired from the output of the decision module of this channel. The information about the power drawn by the amplifier via the power supply path is transmitted to the decision module via the power measurement module of this channel. The information about the parameters of the output signal coming from the amplifier of this channel is transmitted to the decision module of this channel of the wheel detector via the parameter measurement module.
Modules of the two channels may be located within a common enclosure, in particular including power supply modules, data transmission modules, the measurement and feeding module, the measurement modules and/or the decision modules for analyzing changes in measured temperature and/or measured mechanical vibration. The modules may be located one after another alongside the rail.
Examples of the invention are illustrated in the Drawing, in which the figures show:
As shown in the Drawing the electric circuit of the wheel detector block i.e. CK is a two-channel circuit. The division of CK wheel detector into two channels A and B is shown in
There are two circuits, i.e. O1_A and O2_A in the coil unit MC_A in the first channel. Circuits O1_A and O2_A influence each other via coils L1A and L2A which are located along the rail head SZ and along the flange of wheel K as shown in
In the coil unit MC_B the connections of relevant circuits O1_B and O2_B and the geometrical arrangement of relevant coils L1B and L2B are the same as in MC_A module. In the coil unit MC_A only one of the circuits O1_A is connected to the output of the amplifier WM_A and is fed by the output signal SWM_A from the amplifier WM_A in accordance with the block diagram which is shown in
The input signal SMM_A for the amplifier WM_A is acquired from the output of decision module MD_A and this process is presented in a simplified form in
In the coil unit MC_B only one of the circuits O1_B is connected to the output of the amplifier WM_B and is fed by the signal SWM_B in accordance with the block diagram in
There is a transformer L1A-L2A in the coil unit of the first channel MC_A as shown in
Proper fastening of the wheel detector and maintaining unchanged position of the wheel detector during its standard functioning is the prerequisite for proper and safe functioning of this piece of equipment. Standard functioning of the wheel detector shall start after the adjustment process of the wheel detector as defined by the manufacturer has been completed.
The design of the wheel detector enclosure and of the fastening of the wheel detector to a rail guarantees that the transformers L1A-L2A and L1B-L2B are positioned in parallel to the rail and therefore it is possible to effectively compensate the interference generated by the magnetic field that the current flowing in the rail generates—it is presented in a schematic manner in
Furthermore, the design of the enclosure and of the fastening of the wheel detector to the rail makes it possible for positioning the enclosure of the wheel detector within the defined by the manufacturer minimum distance from the top of the rail head, thereby guaranteeing conflict-free functioning of wheel detectors during passage of wheels.
Mounting of the wheel detector on the rail in the position which is defined by the manufacturer, which consists in placing the transformers L1A-L2A and L1B-L2B within the defined distance from the rail head, results in establishing the values of the parameters of electric circuits in coil units MC_A and MC_B and in establishing the indications WPM_A, WPM_B of value of the power drawn. Thanks to maintaining the unchanged position of the wheel detector which is achieved owing to the use of a stable design of a wheel detector fastening, it is ensured that constant values of the electric parameters of the circuits in the coil units MC_A and MC_B are maintained and the constant indications WPM_A, WPM_B of the values of power that is drawn during the period of time between the adjustment and the periodical inspection of the system. It makes it possible to apply the method of cyclic check of the correctness of the position of the wheel detector through cyclic check of the value WPM_A, WPM_B of the power drawn in the algorithm of the wheel detector performance.
A bi-directional digital interface IMD is used in the method of cyclic check of the value WPM_A, WPM_B of power drawn. The bi-directional interface IMD connects the decision modules MD_A and MD_B and enables transmitting the value WPM_A to the decision module MD_B and the value WPM_B to the decision module MD_A. Thanks to transmitting the values WPM_A and WPM_B between the decision modules, each of the decision modules checks the values of the power drawn WPM_A, WPM_B from two channels on a cyclic basis, which makes it possible to reduce the probability of failure to detect the unacceptable change in the position of the wheel detector.
The above described conditions for mounting of the wheel detector on a rail ensure unobstructed movement of the flange of the wheel over the coil units MC_A, MC_B. When an electric conductor in the form of a wheel flange appears above the coil unit MC_A, it leads to the change of the value of the electric parameters of the circuit in this coil unit and the change of the value WPM_A of the power drawn.
When an electric conductor in the form of a wheel flange appears above the coil unit MC_B, it leads to the change of the value of the electric parameters of the circuit in this coil unit and the change of the value WPM_B of the power drawn. The passage of the wheel over the coil units MC_A and MC_B causes generating a sequence of changes in the values of signals WPM_A and WPM_B. One of the conditions of transmitting data about a passage of a wheel from the wheel detector via the data transmission link D is that each of the decision modules MD_A and MD_B detects the passage of a wheel.
The method of detecting the passage of the wheel which is recorded in the algorithms of the performance of decision modules MD_A and MD_B is based on the principle of detecting by each of the decision modules of the sequence of signals WPM_A and WPM_B as defined by the manufacturer.
A bi-directional digital interface IMD is used in the method of detecting the sequence of signals WPM_A, WPM_B as well. The bi-directional interface IMD connects the decision modules MD_A and MD_B and enables transmitting the value WPM_A to the decision module MD_B and the value WPM_B to the decision module MD_A. Thanks to transmitting WPM_A and WPM_B values between the decision modules, each of the decision modules checks the values WPM_A and WPM_B of the power drawn from two channels on a cyclic basis, which makes it possible to reduce the probability of a wrong result of the analysis of the sequence of changes in WPM_A, WPM_B and thereby reduces the probability of detecting improperly the passage of a wheel by the wheel detector thereby leading to low—as required for rail traffic control systems—probability of sending wrong information about passages of wheels to the supervisory system.
Number | Date | Country | Kind |
---|---|---|---|
417024 | Apr 2016 | PL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/060137 | 4/27/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/186886 | 11/2/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3359417 | Gallagher | Dec 1967 | A |
3840850 | Whiteing | Oct 1974 | A |
3964703 | Wilkas | Jun 1976 | A |
4518918 | Avery | May 1985 | A |
4727372 | Buttemer | Feb 1988 | A |
5084674 | Lachmann | Jan 1992 | A |
5260614 | Theus | Nov 1993 | A |
6371417 | Southon | Apr 2002 | B1 |
6663053 | Shams | Dec 2003 | B1 |
20070001059 | Appleby et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
19709840 | Sep 1998 | DE |
1479587 | Nov 2004 | EP |
2057056 | May 2009 | EP |
2218624 | Aug 2010 | EP |
2496459 | Feb 2014 | EP |
199810 | May 2005 | PL |
209435 | Oct 2006 | PL |
2008138858 | Nov 2008 | WO |
2011054646 | May 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20190152499 A1 | May 2019 | US |