The present invention relates to a locking fastener to prevent the loosening of a threaded fastener in a fastener joint.
Locking washers are commonly used in fastening assemblies to prevent relative motion between the stem and fastened pieces, which may cause a nut to back off the stem, thereby loosening the fastened piece.
Vehicle wheel assemblies commonly include an axle shaft supported for rotation by a knuckle and a wheel bearing disposed between the shaft and knuckle. The assembly is commonly secured by a retaining ring. A disc for mounting a wheel for rotation with the axle shaft is then mounted on the shaft. The disc may integrate a brake rotor and hub flanges into one piece. A locking washer slides against the disc and a nut tightens the locking washer against the disc to prevent relative movement between the axle shaft and the disc, which may cause the nut to back off the axle shaft.
A variety of locking washers known in the art have been used with vehicle wheel assemblies to prevent nut loosening, including split washers and star washers. One problem with using star or split washers in vehicle wheel assemblies is that during operation of the vehicle, these washers may still be subject to movement. Any relative movement may cause the nut to back off, which in turn may cause the wheel to become detached while the vehicle is in motion.
To address these and other deficiencies associated with conventional locking washer configurations, including star or split washers, manufacturers have machined the threaded portion of the axle shaft to create a linear groove extending along its threads. The washer is provided with a spline tang extending into the groove to prevent the washer from rotating relative to the threaded shaft. A similar locking washer uses a flat portion on the inside circumference to lockingly engage a flat plane machined on the external threads. These designs prevent the nut from loosening because the washer cannot rotate around the axle shaft while being subjected to vibration, twisting, expansion, contraction, and other possible movements. However, these designs require additional machining of the threaded portion of the axle shaft. Any extra machining increases manufacturing costs and expense. Moreover, care must be taken in machining the threaded portion of the axle shaft to prevent damage to any threads.
The present invention is directed to a vehicle wheel assembly having a locking washer and axle shaft configuration that prevents rotational movement of the washer relative to the axle shaft without requiring machining of the threaded portion of the shaft.
The locking washer includes a generally flat outboard face against which the nut tightens. The inboard face of the washer includes an indented portion, which defines members that mate with torque transferring members on the axle shaft. The invention is further directed to a locking washer that has a step portion that allows the washer members to engage the torque transferring members of the axle shaft while securely locking the disc onto the axle shaft.
Further scope of applicability of the present invention will become apparent from the following detailed description, claims, and drawings. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art.
The present invention will become more fully understood from the detailed description given here below, the appended claims, and the accompanying drawings in which:
A wheel end assembly 10 constructed in accordance with the preferred embodiment is illustrated in FIG. 1. Conventionally, wheel end assemblies attach a wheel to a vehicle axle 20 and transmit torque from the engine to the wheel. To this end, the wheel end assembly 10 includes an axle support assembly 30, a disc 50 fixed to the wheel, a locking washer 60, and a nut 90. The axle 20 is coupled to the engine of the car through the drive train, passes outward from the center of the car, and is supported for rotation by the axle support assembly 30. The axle support assembly 30 includes a housing or knuckle 32 that forms a cavity within which is disposed a wheel bearing unit 40 to facilitate rotation of the axle 20 relative to the knuckle 32. The axle support assembly 30, wheel bearing unit 40, and disc 50 are secured to the axle 20 by the locking washer 60 and the nut 90, as shown in FIG. 1.
In general, inner bearing rings 44 of the wheel bearing unit 40 and the disc 50 rotate with the axle 20 to drive the vehicle wheel. While a variety of axle, bearing unit, and disc configurations may be used to provide the desired rotational coupling, the illustrated embodiment of the axle 20 includes a shaped portion 22 (
As is best shown in
While the cross-sectional configuration of the shaped cavity 82 and shaped section 22 may vary, exemplary illustrations are shown in
The locking washer 60 may be constructed of any suitable material. In the illustrated embodiment the washer 60 is formed from heat-treated steel with a GEOMET coating applied for corrosion resistance. A GEOMET coating is a water-based chromium-free coating widely used in the auto industry to provide resistance to corrosion. Of course, it should be readily apparent that other materials such as a mild steel or aluminum may be used to form the washer. It also should be readily apparent that the coating may be zinc, black oxide, or some other corrosion-resistant material and that the washer 60 may even be formed without any coating.
The manufacturing process for the axle 20, axle support assembly 30, wheel bearing unit 40, disc 50, and nut 90 are well known in the art. For axles 20 with a polygonal shaped portion 22, conventional manufacturing processes may be used, such as counter-rotational machining.
The locking washer 60 may be formed by a variety of techniques well known in the art for forming washers. In the preferred embodiments, the locking washer 60 may be formed by machining but other processes may be used. When machining the washer, a blank having the size and shape of the washer may be formed. Next, the blank may be machined to form the outer groove 80, inner shaped recess 82, and hole 74. Of course, one skilled in the art should recognize that there is no particular order to machine the washer 60. Other techniques well known in the art for fasteners that are suitable for fabricating the washer 60 include stamping, powder metallurgy, and cold heading.
The wheel end 10 may be assembled in a manner readily apparent to those skilled in the art. For example, once the axle 20 is interconnected into the vehicle drive train (not shown) and the wheel bearing 40 is placed within the knuckle 32, the knuckle 32 and bearing unit 40 may be slid onto the axle 20. The knuckle 32 may then be attached to the vehicle suspension system (not shown) or the vehicle frame (not shown). Next, the disc 50 is rotationally aligned with and inserted onto the shaped axle section 22 and engaged on the lobes 26 or splines. The locking washer 60 is then placed onto the axle 20 with the projections 83 (e.g., washer lobes 85) aligned to engage against the shaped portion 22 and prevent rotation of the locking washer 60 relative to the axle 20. The sleeve 78 of the washer 60 fits within the sleeve groove 62 on the disc 50. In the illustrated embodiment the sleeve 78 is not in contact with the disc 50, but the washer 60 contacts the disc 50 at the disc contact surface 86. The nut 90 is then threaded onto the axle 20 and tightened so that the axle support assembly 30, disc 50, and locking washer 60 are all firmly held on the axle 20. Because the locking washer 60 is engaged with the shaped portion 22 on the axle 20, it is prevented from rotating or transferring vibrational movements from the disc 50 to the nut 90, preventing the nut 90 from backing off.
The foregoing discussion discloses and describes an exemplary embodiment of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the true spirit and fair scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
145783 | Brown | Dec 1873 | A |
582599 | Brownell | May 1897 | A |
615662 | Callaghan | Dec 1898 | A |
695081 | Reese | Mar 1902 | A |
978096 | Wilson | Dec 1910 | A |
982403 | Whitton | Jan 1911 | A |
1171182 | Dibble | Feb 1916 | A |
1534056 | Bellis | Apr 1925 | A |
1790737 | Alborn | Feb 1931 | A |
1796610 | Modler | Mar 1931 | A |
2252132 | Mazveskas et al. | Aug 1941 | A |
2609243 | Ponnequin | Sep 1952 | A |
2890910 | Bern | Jun 1959 | A |
2956632 | Forbush et al. | Oct 1960 | A |
3112965 | Popiel | Dec 1963 | A |
3308682 | Puidokas | Mar 1967 | A |
3851690 | Wing et al. | Dec 1974 | A |
3985393 | Jovick | Oct 1976 | A |
4210372 | McGee et al. | Jul 1980 | A |
4354711 | Main | Oct 1982 | A |
4433877 | Colanzi | Feb 1984 | A |
4502738 | Nauta | Mar 1985 | A |
4555197 | Erickson | Nov 1985 | A |
4812094 | Grube | Mar 1989 | A |
5366300 | Deane et al. | Nov 1994 | A |
5660591 | Reynolds | Aug 1997 | A |
5877952 | Moriguchi et al. | Mar 1999 | A |
20030118399 | Schilling et al. | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040047708 A1 | Mar 2004 | US |