The present invention relates in general to systems for lubricating wheel flanges on railroad vehicles, overhead cranes, trolleys and other equipment traveling on rails. In particular, the system relates to lubrication of wheel flanges using a rigid lubricant block or stick.
Friction between rails and wheels is known to increase the wear on the wheel flange and increase fuel consumption. It has long been known to apply lubricant to a wheel flange to reduce the friction and wear between a vehicle wheel and a rail. Lubricants which are not solid (greases and liquids) have many disadvantages including; storing and refilling the lubricant container, controlling the amount applied and dealing with environmental concerns with lubricant on the track. Most of these systems also rely on the lubricant rubbing from the wheel flange onto the rail and carrying back to subsequent cars. The amount of lubricant being shared with subsequent wheel flanges is not easily controlled.
It is well known that misalignment will occur between the rail and wheel flange due to the vertical and horizontal movements of the wheel. Rail alignment will also contribute to wheel flange wear. Since there will always be alignment problems, it is important that the wheel flange lubrication system can track the position of the wheel flange relative to the rail to maintain constant contact of the lubricant with the flange.
The use of a lubricant block or stick has eliminated some of these problems but still has not been completely successful. Lubricant sticks are usually rigid blocks of lubricant which gradually wear with contact and must be replaced over time. The sticks must be held against the flange to maintain contact and this is usually accomplished with springs. It has been difficult to mount these devices on board a rail vehicle or crane and control where the lubricant stick is positioned to insure the lubrication is applied to the flange. Previous sticks have had their tips pushed against the wheel flange and have not had their position controlled to compensate for the normal wheel movement and curvature of the track. The tip of the lubricating stick is used to contact the wheel flange. The capability to adjust the forces and direction on the stick has been lacking.
The rail and crane industries are still in need of a flange lubrication system which applies lubricant in the desired amount and location while also being easily mounted to the vehicle. Applying lubricant to a wheel flange which is subject to a great range of movement has created a need not solved by previous lubricant stick or block application systems.
A rigid block of lubricant is provided with a holder for directing a contact side of the block against the wheel flange. A method and means are provided to force the contact side of the lubricant block laterally against the wheel flange and radially into the crotch of the wheel. The rigid block has independent radial and lateral force means for improved control of the position of the block. A significant improvement in lubrication control is achieved by providing means to adjust the forces used to position and direct the lubrication block. Improved control minimizes lubricant contact on the tread of the wheel or on the rail. A preferred design is the use of a curved block or segment blocks to provide an arc length of at least 5 degrees relative to the wheel radius.
The lubrication system of the present invention includes a lubrication block or block segments supported by a spine which holds the lubricant block around the wheel. The spine provides a radial flexing action to provide force towards the crotch of the wheel. The spine will be connected to metallic holders which are used to attach side springs for lateral force. The tensioning means keep the lubricant block in direct contact with the wheel flange to distribute lubricant to the wheel flange. The spine(s) and metallic holders are normally held in place while the lubricant material is cast, extruded, injection molded, etc., around them.
Support means are included to keep the lubrication system in position for proper lubrication and to compensate for vertical and horizontal movement of the wheels relative to the rails.
The present invention is applicable to a wheel lubrication system for a wheel with two flanges where two lubrication blocks (or two connected segments of blocks) are mounted with side springs to push the blocks against the two wheel flanges or on a single wheel flange design where only one lubrication block (or one connected segments of blocks) is forced against the one wheel flange.
The following description is a preferred embodiment by way of example only and without any limitation to the combination of features for carrying out the invention.
The present invention relates to a system for lubricating wheel flanges using a rigid lubrication block. Various lubricants may be used including microporous polymeric lubricants, graphite, molybdenum disulfide, impregnated polymers, solid grease, sponge, sintered bronze, impregnated felt, PTFE (PolyTetraFluoroEthylene) and UHMWPE (UltraHighMolecularWeightPolyEthylene). Other lubricants may also be used. A preferred lubricant is the microporous polymeric lubricant which has excellent wear characteristics and provides a controlled release of the lubricant from the block. This type of material is taught in U.S. Pat. Nos. 3,541,011; 3,547,819; and 3,729,415.
The lubricant block or stick is composed of at least 30% solids. The lubricant block may have various shapes. The shape, amount of surface contact, type of lubricant, force, surface characteristics of the flange, etc., determine the amount of lubricant being provided to the flange. A major improvement provided by the invention is the increased surface area provided by the contact surface of the arc shaped lubricant block contrasted to the tips of previously mentioned sticks. By providing an arc shape, the lubricant blocks provide a contact surface of at least 5 degrees of arc and preferably at least about 10 degrees up to the point where the blocks do not cause interference between the wheel and rail. The contact surface of the lubricant block may be a single surface or composed of segments which are connected or spaced apart. A typical lubricant block would be an arc shape of about 45-315 degrees and preferably about 90-135 degrees relative to the wheel. An arc shape of greater than about 315 degrees would not provide much improved lubrication and would begin to cause difficulties with the installation.
Mounting means must be provided in order to support the lubricant block in position. Any mounting means may be used which provides a stable support which maintains the block in the desired position regardless of distance between the wheel flange and the rail. The mounting means provide a way of increasing the contact surface area with the wheel flange and means to adjust the forces. The mounting means also provide the desired force vectors for directing the lubricant block into the flange. The force is preferably provided by springs which provide radial and lateral forces which maintain the desired position and compensates for variations in distance between the rail and wheel flange.
The lubricant blocks, including the mounting means, must also be supported by means which attach the lubricating system to the vehicle. Various bracket designs have been taught in the past. It is important that the lubricating system be kept stationary relative to the wheel. The brackets or support means used in the present invention are not novel in and of themselves and numerous designs may be used.
The lubrication system of the present invention has solved the problems with previous designs by providing lubrication blocks which have adjustable radial and lateral forces to ensure the blocks are maintained in a position which lubricates only the wheel flange. The amount of surface contact area provided by the controllable positioning of the high surface area arc shaped lubrication blocks provides a method of controlling the amount of lubricant supplied to the wheel flange. The invention will now be discussed in more detail and in reference to the figures.
The lubrication support system 8 of the present invention for casting, injecting, molding or extruding lubricant blocks 23 (shown in
One or more tensioning devices 17 may be used to provide radial force and adjust the amount of contact between the lubricant blocks 23 and the wheel flange 24 shown in subsequent figures. The tensioning devices 17 may include one or more rods 18 having loops 18a for attaching to the mounting brackets 15. The use of more than one rod 18 will provide an added measure of safety. The tension adjustment bolts 19 are positioned in the loops 18a and connected by upper and lower tensioning nuts 20 and 21. Bracket nuts 22 are used to connect the tensioning device to the mounting brackets 15. Washers may also be included. The amount of tightening on the upper and lower tensioning nuts 20 and 21 will position the rod 18 and thus the lubricant blocks 23 correctly. As will be explained in more detail later, this influences the amount of the contact side 23a of the blocks 23 in contact with the wheel flange and the amount of lubricant and its distribution.
The present invention is not limited to a single block of rigid lubricant 23. If segments of lubricant blocks 23 are employed, one must include connection means with springs between the segments (not shown). This is important for installation purposes and control of the surface area of contact. It is the sum of the arc shaped segments which compares with the arc length of a single block 23 in order to provide the same levels of lubrication and control of the lubricant distribution. Numerous forms of rigid lubricant blocks may be used. Those skilled in the art will appreciate that different materials will require different lengths of surface contact to provide the same amount of lubrication.
It is a further feature of the present invention that solid, wear resistant spacers 31 in
It is preferable that the height of the lubricant blocks 23 should be at least the height of the wheel flange 24. The amount of lubricant provided will depend on the height and length of the lubricant blocks 23.
The present invention may also be applied to single flange applications. As shown in
The invention has significant advantages. The lubrication system may be easily produced and has great flexibility in application to a wide range of operating conditions. It is easily applied to all wheel flange designs. The wheel flanges are lubricated with a control not previously obtainable. The system is easily installed and avoids the maintenance concerns of other systems. There are also no environmental issues with the present invention. While the present invention has been shown in several embodiments, it should be apparent to those skilled in the art that it is not so limited and numerous changes may be made without departing from the scope of the invention.
This patent application is based on and claims priority of provisional patent application No. 60/585,984, filed on Jul. 7, 2004.
Number | Name | Date | Kind |
---|---|---|---|
2281400 | Welby | Apr 1942 | A |
4811818 | Jamison | Mar 1989 | A |
4915195 | Dial | Apr 1990 | A |
5054582 | Aracil | Oct 1991 | A |
5085292 | Dial | Feb 1992 | A |
5251724 | Szatkowski | Oct 1993 | A |
5337860 | Burke et al. | Aug 1994 | A |
5358072 | Szatkowski | Oct 1994 | A |
6136757 | Chiddick | Oct 2000 | A |
6182793 | Jamison | Feb 2001 | B1 |
6619429 | Brand | Sep 2003 | B1 |
6854908 | Hui | Feb 2005 | B2 |
20030146051 | Velayutha | Aug 2003 | A1 |
20040238282 | Mitrovich | Dec 2004 | A1 |
20070012515 | Murphy | Jan 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20060054403 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60585984 | Jul 2004 | US |