The subject invention is directed to a wheel hub for a drum brake that allows a camshaft assembly to be removed from a vehicle brake without having to remove the wheel hub from an axle assembly.
To service a camshaft assembly for a drum brake, a wheel hub typically must be removed before the camshaft assembly can be removed. This is labor intensive and time consuming. Further, removal of the wheel hub results in the need to re-lubricate wheel bearings, as well as requiring replacement of an inboard lubricant seal and an outboard lubricant gasket, which is expensive.
In some wheel assemblies, the wheel hub has been modified to facilitate removal of the camshaft but these modifications have not been effective and/or have weakened the wheel hub in an unsatisfactory manner.
A wheel hub is rotatable about an axis and includes a hub flange that extends about the wheel hub. The hub flange includes a removed section that is to be aligned with a camshaft assembly. An insert is used to fill the removed section. The insert is selectively removable from the hub flange to provide access to the removed section such that the camshaft assembly can be removed from a vehicle brake via the removed section without having to remove the wheel hub from an axle assembly.
In one example, the hub flange includes a plurality of apertures that are to receive wheel studs such that the wheel hub can be attached to another wheel component. The insert includes at least one aperture that is to receive one of these wheel studs. In this example, the apertures each have a center that is positioned at a common radial distance from the axis. The aperture in the insert also has a center that is positioned at this common radial distance from the axis.
In one example, the insert comprises a plate that is attached to the hub flange with a plurality of fasteners.
In one example, the insert is associated with a brake drum that is attached to the wheel hub.
To remove the camshaft assembly from the vehicle brake, the insert is detached from the hub flange to provide the removed section. The camshaft assembly is then disassembled from the vehicle brake by being slid along a linear path through the removed section. To re-assemble the vehicle brake, the camshaft assembly is slid back through the removed section. The insert is then re-attached to the hub flange.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A brake assembly 10 is shown in
The brake shoes 12 are coupled together with a retaining spring 30 at one end, and a shoe return spring 32 is used to move the brake shoes 12 away from the brake drum 20 after a braking operation.
The brake drum 20 is mounted to a wheel hub 34 as shown in
In the example shown, the wheel discs 36 and brake drum 20 are mounted on a common side of the hub flange 40 with a common set of fasteners 42 (only one is shown). The brake drum 20 and wheel discs 36 could also be mounted on opposing sides of the hub flange 40 from each other.
The wheel hub 34 is shown in greater detail in
Thus, the camshaft assembly 18 can be removed for service operations as needed without requiring removal of the wheel hub 34, i.e., the wheel hub 34 can remain mounted to the axle assembly. Once service has been completed, the camshaft assembly 18 can be re-installed by sliding the camshaft assembly 18 through the removed section 48, and then the insert 50 can then be re-inserted into the removed section 48 and re-attached to the hub flange 40. Thus, the insert 50 strengthens the wheel hub 34 by filling in the removed section 48 during normal vehicle operations. The insert 50 has a thickness that is optimized to provide a desired level of stiffness to provide a satisfactory system life. This will be discussed in greater detail below.
In the example shown in
The hub flange 40 includes a first side 58 and a second side 60 facing opposite of the first side 58. A plurality of apertures 62 are formed within the hub flange 40 and extend through the hub flange 40 from to the first side 58 to the second side 60. The apertures 62 receive fasteners 64, such as wheel studs, that secure the wheel hub 34 to other wheel components such as the brake drum 20 and/or the wheel disc 36.
The hub flange 40 extends outwardly from the hub body 38 to define an outermost peripheral edge 66. The removed section 48 provides a recess in the hub flange 40 that extends from the first side 58 to the second side 60 and is open to the outermost peripheral edge 66. In the example shown, the removed section 48 is formed as a wedge shaped section that is wider at an outermost peripheral edge portion 68 than at a base portion 70; however, other section shapes could also be used.
The hub flange 40 includes a mounting lip 72 that is formed about a periphery of the removed section 48. A wall 74 (
As discussed above, the insert 50 comprises a plate 52 and has a main portion 76 and a mounting flange portion 78 that extends about a portion of the periphery of the main portion. The mounting flange portion 78 overlaps the mounting lip 72 such that there is abutting contact between the mounting flange portion 78 and the mounting lip 72. The mounting flange portion 78 includes a plurality of apertures 80 that are aligned with the apertures 96 such that the fasteners 54 can be used to secure the plate 52 to the hub flange 40.
The plate 52 also includes at least one aperture 82 that receives one of the fasteners 64 that is used to secure the wheel hub 34 to the brake drum 20 and/or wheel disc 36. The apertures 62 formed within the hub flange 40 each have a center that is located at a common radial distance R1 (
An outer peripheral edge 86 of the mounting flange portion 78 abuts against the wall 74 of the removed section 48. An outer peripheral edge 88 of the main portion 76 abuts against another wall 90 that defines the removed section 48. Thus, the insert 50 is easily located and held in place within the removed section 48 such that the fasteners 54 can be installed.
In the example shown, the mounting flange portion 78 of the insert 50 has a first thickness, and the main portion 76 has a second thickness that is different than the first thickness. The aperture 82 is formed within the main portion 76. The thicknesses of the main portion 76 and mounting flange portion 78 are optimized to fill in the removed section 48 such that the wheel hub 34 has sufficient strength and stiffness to provide a desired system life level.
In the example shown in
The inserts 50, 100 are selectively removable from the hub flange 40 such that the camshaft assembly 18 can be removed and serviced without requiring removal of the wheel hub 34. The inserts 50, 100 are removable along a radial and/or a linear path that extends through the removed section 48. The linear path is generally parallel to the axis A. The inserts 50, 100 are then re-attached after servicing to provide the wheel hub 34 with sufficient strength and stiffness during vehicle operation.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1368654 | Nicholas | Feb 1921 | A |
1381635 | Hannegan | Jun 1921 | A |
1387444 | White | Aug 1921 | A |
1488758 | Edward | Apr 1924 | A |
1521934 | Eicher | Jan 1925 | A |
3339677 | Behnke | Sep 1967 | A |
4206834 | Williams | Jun 1980 | A |
5316111 | Layfield | May 1994 | A |
6089361 | Davison et al. | Jul 2000 | A |
6409280 | Mair | Jun 2002 | B1 |
6622828 | DeLeeuw et al. | Sep 2003 | B1 |
7055662 | Jones et al. | Jun 2006 | B1 |
20020041122 | Mair | Apr 2002 | A1 |
20060225974 | Inada et al. | Oct 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090101457 A1 | Apr 2009 | US |