This application claims priority to Italian patent application no. 102016000074336 filed on Jul. 15, 2016, the contents of which are fully incorporated herein by reference.
The present invention relates to a wheel hub unit with a central nut.
Wheel hub units with a central nut may include a central hub provided with a flanged portion and an external threaded profile arranged at a free end opposite the flanged portion, a single nut provided with an internal threaded profile which is screwed, in such a way that it can be unscrewed, on the external threaded profile so as to clamp at least one wheel rim between itself and the flanged portion, and an anti-unscrewing element interposed between the central hub and the single nut to prevent accidental unscrewing of the single nut and the consequent risk of losing the wheel.
German patent application DE 10 2014 116 227 discloses a wheel hub unit with a central nut, in which both the free end of the central hub and the single nut have respective shaped profiles. In particular, the free end of the central hub is provided with a respective radially external shaped profile which is made axially on the external threaded profile, while the single nut is provided with a respective radially internal shaped profile which is made on the inside of said central nut in such a way that it axially overlaps the radially external shaped profile once the single nut is screwed onto the central hub.
German patent application DE 10 2014 116 227 also discloses an anti-unscrewing element comprising two respective shaped profiles, one radially internal and one radially external, axially aligned with one another in such a way as to simultaneously engage the radially external shaped profile of the central hub and the radially internal shaped profile of the single nut so as to prevent any possible rotation of said single nut, preventing it from becoming unscrewed accidentally.
Wheel hub units of the type described above are usually used preferably for sports tires, i.e. tires with a wide tread, and although the axial footprint, or the radial footprint, do not seem to be a very big technical problem, any reduction in the latter would result in a reduction in the weight of the wheel hub unit to the full benefit of a reduction in the suspended mass, the kinetic energy, as well as a saving on the materials used.
It is an aim of the present invention to produce a wheel hub unit with a central nut which does not have the abovementioned disadvantages.
A wheel hub unit with a central nut produced according to the present invention has the features described in the attached claims.
The invention shall now be described with reference to the attached drawings which illustrate a non-limiting embodiment of the invention, in which:
With reference to the attached figure, the reference sign 1 indicates a wheel hub unit as a whole.
The unit 1 provides a central hub 2 provided with a flange (not shown), transverse to an axis A of rotation of the unit 1, and a tubular body 3, which extends along the axis A of rotation from the flange (not shown) and has a free end 4 provided with an internal shaped profile 5 and an external threaded profile 6 arranged substantially axially in series along the axis A and radially oriented facing away from one another.
In particular, the shaped profile 5 is arranged around the axis A on the inside of the tubular body 3, starting from an input edge 7 of the end 4, and is axially delimited on the side opposite to the edge 7 by a groove 8 and, successively, by a shoulder 9, while the threaded profile 6 extends around the axis A on the outside of the tubular body 3, from a position which is axially set back from the input edge 7.
The unit 1 further provides a single central nut 10 made up of: a tubular main body 11 defined externally by a polygonal surface 12; and a tubular appendage 13 extending along the axis A from the main body 11.
The single nut 10 has an internal threaded profile 14, which extends substantially all along the tubular appendage 13 and over part of the tubular main body 11 and which is screwed, in such a way that it can be unscrewed, on the external threaded profile 6 of the central hub 2; and a respective shaped profile 15, which is arranged around the axis A on the inside of the main body 11 starting from an input edge 16 of said main body 11, and which is axially delimited on the side opposite to the edge 16 by a groove 17 and, then, by the threaded profile 14.
The shaped profile 15 of the single nut 10 and the shaped profile 5 of the central hub 2 are both oriented facing towards the axis A and the shaped profile 15 has an average circumference of dimensions greater than the dimensions of an average circumference of the shaped profile 5 of the central hub 2: the smaller the difference between the dimensions of these average circumferences, the greater the saving in terms of weight for the unit 1.
The unit 1 further provides an anti-unscrewing element 20, which is interposed between the central hub 2 and the single nut 10 to prevent accidental unscrewing of said single nut 10, and which provides two shaped profiles 21 and 22, both radially oriented facing away from the axis A of the central hub 2 so as to engage with the shaped profile 5 of the central hub 2 and with the shaped profile 15 of the single nut 10, respectively.
The shaped profile 21 and the shaped profile 22 are both oriented facing away from the axis A and the shaped profile 21 has an average circumference of dimensions smaller than the dimensions of an average circumference of the shaped profile 22 and, as discussed above, the smaller the difference between the dimensions of these average circumferences, the greater the saving in terms of weight for the unit 1. The dimensions and the shape of the shaped profile 21 and the shaped profile 22 are however such that they allow them to be coupled with the shaped profile 5 of the central hub 2 and with the shaped profile 15 of the single nut 10, respectively.
With reference also to
In the case where the number N1 is higher than the number N2, the accuracy of the coupling between the shaped profiles 5 and 21, or 15 and 22, will be better the lower the value of the ratio between the number N and the number N1, or N/N1, and will be even better the closer the value of the ratio between the number N2 and the number N1, or N2/N1, is to one.
By contrast, in the case where the number N1 is lower than the number N2, the accuracy of the coupling between the shaped profiles 5 and 21, or 15 and 22, will be better the lower the value of the ratio between the number N and the number N2, or N/N2, and will be even better the closer the value of the ratio between the number N1 and the number N2, or N1/N2, is to one.
Once the single nut 10 is screwed onto the central hub 2 in such a way as to axially clamp, between said nut and said flange (not shown), a rim, shown schematically and designated by the number 50, of a wheel (known and not shown), the anti-unscrewing element 20 is interposed in an axial direction between the single nut 10 and the central hub 2 in such a way that the shaped profiles 5 and 15 become substantially axially aligned with the shaped profiles 21 and 22, respectively, and in such a way as to connect the shaped profiles 5 and 15 with the shaped profiles 21 and 22, respectively. The axial position of the anti-unscrewing element 20 is determined by the shoulder 9 against which the anti-unscrewing element 20 comes into axial abutment: in this way, an axial length of the shaped profiles 21 and 22 will not need to be that different to an axial length of the shaped profiles 5 and 15.
Given that fully screwing the single nut 10 on the central hub 2 does not make it possible to determine, a priori, the final angular position of the single nut 10 with respect to the central hub 2, or the angular position of the profile 5 with respect to the profile 15, since said reciprocal position may be influenced both by the axial thickness of the rim 50, and by the properties of the threaded profiles 6 and 14, for example the pitch thereof or the helical path thereof, the angular coupling of the anti-unscrewing element 20 simultaneously with both the single nut 10 and the central hub 2 is made possible by the fact that the number N1 of teeth 5a, 21a is different to the number N2 of teeth 15a, 22a. Said coupling, which renders the single nut 10 and the central hub 2 angularly integral, thereby preventing any possible accidental unscrewing of said single nut 10, is achieved by rotating, during assembly, the anti-unscrewing element 20 about the axis A until an angular position of said anti-unscrewing element 20 is found in which, simultaneously, the angular position of the shaped profiles 21 and 22 matches the angular position of the shaped profiles 5 and 15, respectively. Even though the numbers N1 and N2 are different to one another, there will always be an angular position of the anti-unscrewing element 20 that will allow simultaneous coupling of the shaped profiles 5 and 21, and 15 and 22: aligning a tooth 15a of the profile 15 with a tooth 5a of the profile 5, the next tooth 15a of the profile 15 will not be aligned with the next tooth 5a of the profile 5, since, by virtue of the difference N between the number N1 and the number N2, there will be a difference of a portion of a tooth 5a or 15a between the two profiles 5 and 15 and said difference of a portion of a tooth increases angularly over the profile 5 until it reaches the end. The difference N ensures that it is possible to find a single possibility of alignment of all the teeth 5a and 15a with the teeth 21a and 22a, respectively, in which the shaped profile 21 of the anti-unscrewing element 20 will fit perfectly with the shaped profile 5, and the shaped profile 22 of the anti-unscrewing element 20 will fit perfectly with the shaped profile 15.
Thanks to the axially aligned position of the shaped profiles 5 and 21, and 15 and 22, and the position of the shaped profile 5 radially facing in the opposite direction to the threaded profile 6, it is possible to produce a wheel hub unit 1 which is more compact and, therefore, also more lightweight because less metal may be used. Above all, given that the wheel hub unit 1 described above is preferably for use with sports tyres, or with high performance vehicles, the possibility of having the shaped profiles 5 and 21 axially aligned with the shaped profiles 15 and 22 makes it possible to substantially disassociate the dimensions of the average circumference of the shaped profiles 5 and 21 from the dimensions of the average circumference of the shaped profiles 15 and 22, to the full benefit of reducing the weight and said circumferential dimensions of said shaped profiles 5 and 21, and 15 and 22. The fact that the dimensions of the average circumferences of the shaped profiles 5 and 21 and the shaped profiles 15 and 22 may be optimized independently of one another makes the wheel hub unit 1 and the anti-unscrewing element 20 described above particularly suitable for use in high performance vehicles since the kinetic energy and the polar mass moments involved in acceleration and deceleration in this type of motor vehicle are particularly high and, since the kinetic energy and the polar mass moments are proportional to the square of the radius of said circumferences, they are very much influenced by the dimensions of the latter.
Lastly, the wheel hub unit 1 provides a cover 40, which is screwed using screws 41 (shown schematically) onto the single nut 10 and is arranged axially just before the anti-unscrewing element 20. The cover 40, preferably, axially locks the anti-unscrewing element 20 in its mounted position shown in
It should be understood that the invention is not limited to the single embodiment described herein, as the anti-unscrewing element 20 of the invention above may be used for all purposes in which a wheel hub unit 1 is provided with a wheel support, such as a central hub 2 to be precise, threaded externally with a threaded profile 6, and an axial locking element, such as a single central nut 10 to be precise, threaded internally with a threaded profile 14 and screwed, in such a way that it can be unscrewed, on the threaded profile 6. For such purposes, where it is necessary to ensure the wheel support and the axial locking element are angularly integral, the anti-unscrewing element 20 is interposed between the wheel support and the axial locking element and the invention provides two shaped profiles 5 and 15 both radially oriented facing towards an axis A, and made in the wheel support and in the locking element, respectively; and two further shaped profiles 21 and 22 both radially oriented facing away from an axis A so as to engage with the shaped profiles 5 and 15, respectively, and make the wheel support and the locking element angularly integral with each other.
Note that in addition to the embodiments of the invention described above, there are many other variants. Note also that said embodiments are merely examples and do not limit the scope of the invention or the uses thereof, or the possible configurations thereof. On the contrary, although the above description enables a person skilled in the art to carry out the present invention at least according to an exemplary configuration thereof, note that many variations of the components described are possible without exceeding the scope of the invention as defined in the attached claims, interpreted literally and/or according to their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
102016000074336 | Jul 2016 | IT | national |