The present invention relates generally to a dynamic behavior control apparatus for an automotive vehicle, and more specifically, to a method and apparatus for determining whether a wheel of an automotive vehicle has lifted from the pavement.
Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Dynamic control systems typically control the yaw of the vehicle by controlling the braking effort at various wheels of the vehicle. By regulating the amount of braking at each corner of the vehicle, the desired direction of the vehicle may be maintained.
Typically, the dynamic control systems do not address roll of the vehicle. For high profile vehicles in particular, it would be desirable to control the rollover characteristics of the vehicle to maintain the vehicle position with respect to the road. That is, it is desirable to maintain contact of each of the four tires of the vehicle on the road.
Vehicle rollover and tilt control (or body roll) are distinguishable dynamic characteristics. Tilt control maintains the body on a plane or nearly on a plane parallel to the road surface. Rollover control is used to maintain the vehicle wheels on the road surface.
Such systems typically use position sensors to measure the relative distance between the vehicle body and the vehicle suspension. One drawback to such systems is that the distance from the body to the road must be inferred.
It would therefore be desirable to provide a rollover detection system having reduced costs and increased reliability in predicting the occurrence of a rollover.
It is therefore one object of the invention to provide a rollover detection system that may be used in conjunction with the dynamic stability control system of the vehicle to determine rollover.
In one aspect of the invention, a wheel lift identification system for an automotive vehicle includes a speed sensor coupled to the vehicle producing a wheel speed signal. A torque control system is coupled to the wheel for charging the torque at the wheel. A controller is coupled to the torque control system and the speed sensor. The controller determines lift by changing the torque of the wheel, measuring the change in wheel speed since the torque was changed, and indicating a wheel lift if the change in the wheel speed is greater than a predetermined value.
In a further aspect of the invention, a method for determining wheel lift of a vehicle comprises the steps of:
In a further aspect of the invention, the changing of the torque of the wheel may be performed by increasing the brake pressure for that wheel. When the wheel speed has significant deceleration, a wheel flag is set. When the brake pressure is released and the wheel speed changes greater than a reacceleration threshold, then wheel contact is assumed. If the wheel speed does not increase over the reacceleration threshold within a predetermined time, then wheel lift status is confirmed. As an alternative, driveline torque may be used.
One advantage of the invention is that in vehicles employing a dynamic stability control system, additional sensors may not be required.
Other objects and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
The present invention is described with respect to a wheel lift identification system for an automotive vehicle. Those skilled in the art will recognize that the present invention may be incorporated into a rollover prevention system for an automotive vehicle.
Referring now to
Other sensors 24 may be coupled to roll control system 16. For example, roll angle sensors, steering wheel angle sensors, yaw rate sensors, and other sensors may be incorporated therein. Other sensors 24, as will be further described below, may be used to identify a condition suitable for the potential of wheel lift. Such a condition may initiate further action by roll control system 16 to verify wheel lift.
In the following example, the application of brake pressure is used to provide the change in torque. However, other methods such as applying engine torque may also be used to change the amount of torque at a wheel. Further references to the application of torque to a wheel may include hydraulic or electric brake torque, changes in engine torque or engagement of driveline torque through the use of an electronically controlled transfer case, differential, transmission or clutch. The present invention may also be used to determine if a sensor has failed in the roll control system 16. That is, if roll is suspected by a particular sensor but all other conditions or sensors indicate otherwise, the sensor may be operating improperly. Also, although speed is used, wheel acceleration may also be used in place of speed as would be evident to those skilled in the art.
Referring now to
Referring back to step 40, if the torque is not greater than the torque threshold then step 50 is executed.
Referring back to step 46, after the wheel speed is recorded after the torque release, step 56 is executed. In step 56 torque is released. After step 56, step 58 is implemented in which the wheel speed change is compared to a reacceleration threshold. The reacceleration threshold is a predetermined value that corresponds to a wheel speed change that should be achieved should wheel contact be reestablished. The wheel speed change is determined from the time that the torque was released. If the wheel speed change is greater than a reacceleration threshold or if the wheel lift status from steo 52 is zero, wheel contact is assumed. In such a case the traction level may be calculated in step 60. If the wheel speed does not increase over the reacceleration threshold, then the wheel lift status is confirmed beginning with step 70.
Referring back to step 58, if the wheel speed is less than the reacceleration threshold, step 62 compares the Dump_Counter to a predetermined dump time. If the predetermined dump time is greater than the Dump_Counter, then the Dump_Counter is incremented in step 64 and steps 56 and 58 are again executed. If the Dump_Counter is greater than the predetermined dump time, then the wheel lift status flag is set in step 66 and the Dump_Counter is reset in step 68. After step 68, the process is reinitiated and returns to step 36.
Returning back to step 60, the traction level is calculated in step 60. After step 60, the plausibility of a sensor failure is determined. If, for example, the process was initiated based on the suspicion of a sensor failure from block 30 above and no wheel lift was detected, a sensor failure is indicated in step 72. For either result, if a sensor failure is indicated by block 70 or not, the build counter and Dump_Counter are cleared in block 74 and the wheel lift status is cleared in block 76. The end of the routine occurs in block 78.
Thus, as can be seen, the application of torque can be used to first determine whether a suspected wheel has lifted from the pavement. For confirmation, the removal of the torque and the resulting wheel speed change may be used to confirm the initial finding. Advantageously, the system may be implemented in a dynamic stability system of an automotive vehicle without adding further sensors. If rollover is detected, then the rollover can be corrected by applying the brakes or generating a steering correction.
Referring now to
Referring now to
While particular embodiments of the invention have been shown and described, numerous variations alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2917126 | Phillips | Dec 1959 | A |
3604273 | Kwok et al. | Sep 1971 | A |
3608925 | Murphy | Sep 1971 | A |
3797893 | Burckhardt | Mar 1974 | A |
3899028 | Morris et al. | Aug 1975 | A |
3948567 | Kasselmann et al. | Apr 1976 | A |
3972543 | Presley et al. | Aug 1976 | A |
4023864 | Lang et al. | May 1977 | A |
RE30550 | Reise | Mar 1981 | E |
4480714 | Yabuta et al. | Nov 1984 | A |
4592565 | Eagle | Jun 1986 | A |
4597462 | Sano et al. | Jul 1986 | A |
4624476 | Tanaka et al. | Nov 1986 | A |
4650212 | Yoshimura | Mar 1987 | A |
4679808 | Ito et al. | Jul 1987 | A |
4690553 | Fukamizu et al. | Sep 1987 | A |
4705130 | Fukunaga et al. | Nov 1987 | A |
4761022 | Ohashi et al. | Aug 1988 | A |
4765649 | Ikemoto et al. | Aug 1988 | A |
4767588 | Ito | Aug 1988 | A |
4778773 | Sukegawa | Oct 1988 | A |
4809183 | Eckert | Feb 1989 | A |
4827416 | Kawagoe et al. | May 1989 | A |
4846496 | Tanaka et al. | Jul 1989 | A |
4872116 | Ito et al. | Oct 1989 | A |
4888696 | Akatsu et al. | Dec 1989 | A |
4898431 | Karnopp et al. | Feb 1990 | A |
4930082 | Harara et al. | May 1990 | A |
4951198 | Watanabe et al. | Aug 1990 | A |
4960292 | Sadler | Oct 1990 | A |
4964679 | Rath | Oct 1990 | A |
4967865 | Schindler | Nov 1990 | A |
4976330 | Matsumoto | Dec 1990 | A |
4998593 | Karnopp et al. | Mar 1991 | A |
5033770 | Kamimura et al. | Jul 1991 | A |
5058017 | Adachi et al. | Oct 1991 | A |
5066041 | Kindermann et al. | Nov 1991 | A |
5088040 | Matsuda et al. | Feb 1992 | A |
5089967 | Haseda et al. | Feb 1992 | A |
5163319 | Spies et al. | Nov 1992 | A |
5200896 | Sato et al. | Apr 1993 | A |
5208749 | Adachi et al. | May 1993 | A |
5224765 | Matsuda | Jul 1993 | A |
5228757 | Ito et al. | Jul 1993 | A |
5239868 | Takenaka et al. | Aug 1993 | A |
5247466 | Shimada et al. | Sep 1993 | A |
5261503 | Yasui | Nov 1993 | A |
5265020 | Nakayama | Nov 1993 | A |
5274576 | Williams | Dec 1993 | A |
5278761 | Ander et al. | Jan 1994 | A |
5282134 | Gioutsos et al. | Jan 1994 | A |
5297646 | Yamamura et al. | Mar 1994 | A |
5307274 | Takata et al. | Apr 1994 | A |
5311431 | Cao et al. | May 1994 | A |
5311956 | Sugiyama | May 1994 | A |
5324102 | Roll et al. | Jun 1994 | A |
5335176 | Nakamura | Aug 1994 | A |
5365439 | Momose et al. | Nov 1994 | A |
5370199 | Akuta et al. | Dec 1994 | A |
5408411 | Nakamura et al. | Apr 1995 | A |
5446658 | Pastor et al. | Aug 1995 | A |
5455770 | Hadeler et al. | Oct 1995 | A |
5510989 | Zabler et al. | Apr 1996 | A |
5515277 | Mine | May 1996 | A |
5548536 | Ammon | Aug 1996 | A |
5549328 | Cubalchini | Aug 1996 | A |
5560688 | Schappler et al. | Oct 1996 | A |
5579245 | Kato | Nov 1996 | A |
5598335 | You | Jan 1997 | A |
5602734 | Kithil | Feb 1997 | A |
5610575 | Gioutsos | Mar 1997 | A |
5627756 | Fukada et al. | May 1997 | A |
5634698 | Cao et al. | Jun 1997 | A |
5640324 | Inagaki | Jun 1997 | A |
5648903 | Liubakka | Jul 1997 | A |
5671982 | Wanke | Sep 1997 | A |
5676433 | Inagaki et al. | Oct 1997 | A |
5694319 | Suissa et al. | Dec 1997 | A |
5703776 | Soung | Dec 1997 | A |
5707117 | Hu et al. | Jan 1998 | A |
5707120 | Monzaki et al. | Jan 1998 | A |
5720533 | Pastor et al. | Feb 1998 | A |
5723782 | Bolles, Jr. | Mar 1998 | A |
5732377 | Eckert | Mar 1998 | A |
5732378 | Eckert et al. | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5736939 | Corcoran | Apr 1998 | A |
5737224 | Jeenicke et al. | Apr 1998 | A |
5740041 | Iyoda | Apr 1998 | A |
5740877 | Sasaki | Apr 1998 | A |
5742918 | Ashrafi et al. | Apr 1998 | A |
5742919 | Ashrafi et al. | Apr 1998 | A |
5762406 | Yasui et al. | Jun 1998 | A |
5782543 | Monzaki et al. | Jul 1998 | A |
5787375 | Madau et al. | Jul 1998 | A |
5801647 | Survo et al. | Sep 1998 | A |
5809434 | Ashrafi et al. | Sep 1998 | A |
5816670 | Yamada et al. | Oct 1998 | A |
5825284 | Dunwoody et al. | Oct 1998 | A |
5842143 | Lohrenz et al. | Nov 1998 | A |
5857160 | Dickinson et al. | Jan 1999 | A |
5857535 | Brooks | Jan 1999 | A |
5869943 | Nakashima et al. | Feb 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5890084 | Halasz et al. | Mar 1999 | A |
5893896 | Imamura et al. | Apr 1999 | A |
5925083 | Ackermann | Jul 1999 | A |
5931546 | Nakashima et al. | Aug 1999 | A |
5944137 | Moser et al. | Aug 1999 | A |
5944392 | Tachihata et al. | Aug 1999 | A |
5946644 | Cowan et al. | Aug 1999 | A |
5964819 | Naito | Oct 1999 | A |
5971503 | Joyce et al. | Oct 1999 | A |
6002974 | Schiffmann | Dec 1999 | A |
6002975 | Schiffmann et al. | Dec 1999 | A |
6026926 | Noro et al. | Feb 2000 | A |
6038495 | Schiffman | Mar 2000 | A |
6040916 | Griesinger | Mar 2000 | A |
6050360 | Pattok et al. | Apr 2000 | A |
6055472 | Breunig et al. | Apr 2000 | A |
6062336 | Amberkar et al. | May 2000 | A |
6065558 | Wielenga | May 2000 | A |
6073065 | Brown et al. | Jun 2000 | A |
6079513 | Nishizaki et al. | Jun 2000 | A |
6081761 | Harada et al. | Jun 2000 | A |
6085860 | Hackl et al. | Jul 2000 | A |
6086168 | Rump | Jul 2000 | A |
6089344 | Baughn et al. | Jul 2000 | A |
6104284 | Otsuka | Aug 2000 | A |
6121873 | Yamada et al. | Sep 2000 | A |
6122568 | Madau et al. | Sep 2000 | A |
6122584 | Lin et al. | Sep 2000 | A |
6129172 | Yoshida | Oct 2000 | A |
6141604 | Mattes et al. | Oct 2000 | A |
6141605 | Joyce | Oct 2000 | A |
6144904 | Tseng | Nov 2000 | A |
6149251 | Wuerth et al. | Nov 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6169939 | Raad et al. | Jan 2001 | B1 |
6169946 | Griessbach | Jan 2001 | B1 |
6176555 | Semsey | Jan 2001 | B1 |
6178375 | Breunig | Jan 2001 | B1 |
6179310 | Clare et al. | Jan 2001 | B1 |
6179394 | Browalski et al. | Jan 2001 | B1 |
6184637 | Yamawaki et al. | Feb 2001 | B1 |
6185485 | Ashrafti et al. | Feb 2001 | B1 |
6185497 | Taniguchi et al. | Feb 2001 | B1 |
6186267 | Hackl et al. | Feb 2001 | B1 |
6192305 | Schiffmann | Feb 2001 | B1 |
6195606 | Barta et al. | Feb 2001 | B1 |
6198988 | Tseng | Mar 2001 | B1 |
6202009 | Tseng | Mar 2001 | B1 |
6202020 | Kyrtsos | Mar 2001 | B1 |
6206383 | Burdock | Mar 2001 | B1 |
6219604 | Dilger et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6226579 | Hackl et al. | May 2001 | B1 |
6227482 | Yamamoto | May 2001 | B1 |
6233510 | Platner et al. | May 2001 | B1 |
6236916 | Staub et al. | May 2001 | B1 |
6263261 | Brown et al. | Jul 2001 | B1 |
6266596 | Hartman et al. | Jul 2001 | B1 |
6272420 | Schramm et al. | Aug 2001 | B1 |
6278930 | Yamada et al. | Aug 2001 | B1 |
6282471 | Burdock et al. | Aug 2001 | B1 |
6282472 | Jones et al. | Aug 2001 | B1 |
6282474 | Chou et al. | Aug 2001 | B1 |
6290019 | Kolassa et al. | Sep 2001 | B1 |
6292734 | Murakami et al. | Sep 2001 | B1 |
6292759 | Schiffmann | Sep 2001 | B1 |
6311111 | Leimbach et al. | Oct 2001 | B1 |
6314329 | Madau et al. | Nov 2001 | B1 |
6315373 | Yamada et al. | Nov 2001 | B1 |
6321141 | Leimbach | Nov 2001 | B1 |
6324445 | Tozu et al. | Nov 2001 | B2 |
6324446 | Brown et al. | Nov 2001 | B1 |
6324458 | Takagi et al. | Nov 2001 | B1 |
6330522 | Takeuchi | Dec 2001 | B1 |
6332104 | Brown et al. | Dec 2001 | B1 |
6338012 | Brown et al. | Jan 2002 | B2 |
6349247 | Schramm et al. | Feb 2002 | B1 |
6351694 | Tseng et al. | Feb 2002 | B1 |
6352318 | Hosomi et al. | Mar 2002 | B1 |
6356188 | Meyers et al. | Mar 2002 | B1 |
6363309 | Irie et al. | Mar 2002 | B1 |
6370938 | Leimbach et al. | Apr 2002 | B1 |
6394240 | Barwick | May 2002 | B1 |
6397127 | Meyers et al. | May 2002 | B1 |
6419240 | Burdock et al. | Jul 2002 | B1 |
6424897 | Mattes et al. | Jul 2002 | B1 |
6428118 | Blosch | Aug 2002 | B1 |
6438464 | Woywod et al. | Aug 2002 | B1 |
6459990 | McCall et al. | Oct 2002 | B1 |
6471218 | Burdock et al. | Oct 2002 | B1 |
6477480 | Tseng et al. | Nov 2002 | B1 |
6496758 | Rhode et al. | Dec 2002 | B2 |
6496763 | Griessbach | Dec 2002 | B2 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6502023 | Fukada | Dec 2002 | B1 |
6526342 | Burdock et al. | Feb 2003 | B1 |
6529803 | Meyers et al. | Mar 2003 | B2 |
6542792 | Schubert et al. | Apr 2003 | B2 |
6547022 | Hosomi et al. | Apr 2003 | B2 |
6553284 | Holst et al. | Apr 2003 | B2 |
6554293 | Fennel et al. | Apr 2003 | B1 |
6556908 | Lu et al. | Apr 2003 | B1 |
6559634 | Yamada | May 2003 | B2 |
6593849 | Chubb | Jul 2003 | B2 |
6598946 | Nagae | Jul 2003 | B2 |
6600414 | Foo et al. | Jul 2003 | B2 |
6600985 | Weaver | Jul 2003 | B2 |
6618656 | Kueblbeck et al. | Sep 2003 | B2 |
6631317 | Lu | Oct 2003 | B2 |
6644454 | Yamada et al. | Nov 2003 | B2 |
6650971 | Haas | Nov 2003 | B2 |
6654674 | Lu et al. | Nov 2003 | B2 |
6657539 | Yamamoto et al. | Dec 2003 | B2 |
6681196 | Glaser et al. | Jan 2004 | B2 |
6704631 | Winner et al. | Mar 2004 | B2 |
6747553 | Yamada et al. | Jun 2004 | B2 |
6756890 | Schramm et al. | Jun 2004 | B1 |
6799092 | Lu | Sep 2004 | B2 |
20030182025 | Tseng et al. | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
36 16 907 | Nov 1987 | DE |
38 15 938 | Nov 1989 | DE |
43 21 571 | Jan 1994 | DE |
42 27 886 | Feb 1994 | DE |
42 28 893 | Mar 1994 | DE |
43 35 979 | Apr 1995 | DE |
43 42 732 | Jun 1995 | DE |
199 07 633 | Oct 1999 | DE |
10025493 | May 2000 | DE |
10065010 | Dec 2000 | DE |
10046036 | Mar 2002 | DE |
10133409 | Jan 2003 | DE |
0 430 813 | Dec 1993 | EP |
0 662 601 | Jul 1995 | EP |
0 758 601 | Feb 1997 | EP |
1 046 571 | Apr 2000 | EP |
1 197 409 | Sep 2001 | EP |
24 25 342 | Dec 1979 | FR |
2257403 | Jan 1993 | GB |
2 342 078 | Apr 2000 | GB |
62055211 | Sep 1985 | JP |
63116918 | May 1988 | JP |
63151539 | Jun 1988 | JP |
63203456 | Aug 1988 | JP |
1101238 | Apr 1989 | JP |
2171373 | Jul 1990 | JP |
3042360 | Feb 1991 | JP |
3045452 | Feb 1991 | JP |
4008837 | Jan 1992 | JP |
5016699 | Jan 1993 | JP |
5254406 | Oct 1993 | JP |
6278586 | Oct 1994 | JP |
6297985 | Oct 1994 | JP |
6312612 | Nov 1994 | JP |
8080825 | Mar 1996 | JP |
9005352 | Jan 1997 | JP |
10024819 | Jan 1998 | JP |
10329682 | Dec 1998 | JP |
11011272 | Jan 1999 | JP |
11170992 | Jun 1999 | JP |
11254992 | Sep 1999 | JP |
11255093 | Sep 1999 | JP |
11304663 | Oct 1999 | JP |
11304662 | Nov 1999 | JP |
11321603 | Nov 1999 | JP |
816649 | Mar 1981 | SU |
WO 0220318 | Mar 2002 | WO |
WO 03072397 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 09669513 | Sep 2000 | US |
Child | 11019148 | US |