Wheelchair and suspension systems

Information

  • Patent Grant
  • 11903887
  • Patent Number
    11,903,887
  • Date Filed
    Friday, February 19, 2021
    3 years ago
  • Date Issued
    Tuesday, February 20, 2024
    2 months ago
  • CPC
    • A61G5/1078
    • A61G5/1089
  • Field of Search
    • CPC
    • A61G5/1078
    • A61G5/1089
  • International Classifications
    • A61G5/10
    • Term Extension
      403
Abstract
Embodiments of a wheelchair and suspension system are provided. The suspension includes a drive assembly that is pivotably connected to a base frame at multiple locations. In one embodiment, the connection is via intermediary pivoting links or arms. Embodiments of the links or arms including rigid links, resilient links, elastic links, shocks, springs, gas cylinders and lockable gas cylinders (or combinations of the foregoing). The drive assembly can, via the pivot connections, pivot to accommodate and traverse variations and obstacles on ground surfaces.
Description
BACKGROUND

Wheelchairs and scooters are an important means of transportation for a significant portion of society. Whether manual or powered, these vehicles provide an important degree of independence for those they assist. However, this degree of independence can be limited if the wheelchair is required to traverse obstacles such as, for example, curbs that are commonly present at sidewalks, driveways, and other paved surface interfaces. This degree of independence can also be limited if the vehicle is required to ascend inclines or descend declines.


Most wheelchairs have front and/or rear anti-tip wheels to stabilize the chair from excessive tipping forward or backward and to ensure that the drive wheels are always in contact with the ground. The anti-tip wheels are typically much smaller than the drive wheels. In center wheel drive (CWD) wheelchairs, the front anti-tip wheels are normally ground engaging and mounted on pivot arms so the front anti-tip wheels can raise and lower when traveling over obstacles. Examples of CWD wheelchairs are shown in U.S. Pat. Nos. 7,040,429, 7,219,755, 7,066,290, 8,534,679, 8,794,359, and 8,910,975, which are hereby fully incorporated by reference.


In front wheel drive (FWD) wheelchairs, the front anti-tip wheels are typically suspended above the ground, as shown in U.S. Pat. No. 9,010,470 to Cuson et al. and hereby fully incorporated by reference. By having the front anti-tip wheels suspended above the ground, FWD wheelchairs allow the much larger front drive wheels to navigate over the obstacle without being impeded by the front anti-tip wheels.


While these configurations provide important advancements, additional improvements are desirable including better ground engagement (or traction) by drive wheels and more comfortable rides as rough terrain or obstacles are traversed.


SUMMARY

In one embodiment, a wheelchair is provided having a suspension system. The suspension includes a drive assembly that is pivotably connected to a base frame at multiple locations. In one embodiment, the connection is via intermediary pivoting links or arms. Embodiments of the links or arms include rigid links, resilient links, elastic links, shocks, springs, gas cylinders and lockable gas cylinders (or combinations of the foregoing). The drive assembly can, via the pivot connections, pivot to accommodate and traverse variations and obstacles on ground surfaces.





BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the inventions are illustrated, which, together with a general description of the inventions above, and the detailed descriptions given below, serve to example the principles of the inventions.



FIGS. 1-4C illustrate various embodiments of a power wheelchair and suspension system.



FIGS. 5-11 illustrate various views of another embodiment of a power wheelchair and suspension system.



FIG. 12 illustrates an exploded perspective view of the suspension system embodiment shown FIGS. 5-11.



FIGS. 13 and 14 are select component views of the suspension system shown in FIG. 12.



FIG. 15-17 are various views of one embodiment of drive assembly components.



FIGS. 18-22 illustrate various views and embodiments of an ornamental design for a hub and wheel hub combination.



FIGS. 23-27 illustrate various views and embodiments of an ornamental design for a hub and wheel hub combination.





DESCRIPTION

Embodiments of the invention provide, for example, a wheelchair suspension having the ability for drive wheels to maintain traction and comfort while traversing rough terrain or obstacles. The suspension can pivot the drive assembly about one or more pivot axes with respect to the base frame. In one embodiment, the drive assembly pivots about multiple pivot axes with respect to the drive assembly providing traction control and ride comfort over rough terrain and obstacles. The embodiments of suspension systems disclosed herein are applicable to any configuration of wheelchair or mobility vehicle including FWD, CWD and RWD (rear wheel drive).


Referring now to FIGS. 1-4A, various embodiments of a power wheelchair and suspension system are shown. Only one side of the power wheelchair is illustrated with the understanding the other side is a mirror arrangement. FIG. 1 illustrates a wheelchair 100 having a seat (or seating system) 102 and a base frame 104. A suspension system 106 is shown connected to the base frame 104. The base frame 104 includes multiple pivot axes or pivot connections 108 and 110 to which the suspension system 106 is connected. In one embodiment, pivot connection 108 is an upper pivot connection and located proximate the upper portion of the base frame. Pivot connection 110 is a lower pivot connection and located proximate a lower portion of the base frame.


The precise locations of these pivot connections or axis is not critical. For example, lower pivot connection 110 can be located at or near the extreme lower edge or bottom plane of the base frame 104. In other embodiments, lower pivot connection 110 can be located some distance upward (e.g., about 1 to 6 inches) from the extreme lower edge or bottom plane of base frame 104. Similarly, upper pivot connection 108 can be located at or near the extreme upper edge or upper plane of base frame 104. In other embodiments, upper pivot connection 108 can be located some distance downward (e.g., about 1 to 6 inches) from the extreme upper edge or bottom plane of base frame 104.


Still referring to FIG. 1, the suspension system 106 includes first and second links 114 and 116. Link 114 is an upper pivoting link and connected to base frame 104 via upper pivot connection 108. So connected, link 114 can pivot about upper pivot connection 108, as schematically represented by arrows 118. Link 116 is a lower pivoting link and connected to base frame 104 via lower pivot connection 110. So connected, link 116 can pivot about lower pivot connection 110, as schematically represented by arrows 120.


Links 114 and 116 each include a body and can take the form of various shapes, components, and arrangements. In the embodiment shown, each link 114 and 116 includes a pivot connection or axes such as 126 and 128, respectively. These pivot connections are used to connect a drive assembly to the suspension system 106. The drive assembly includes a mount or mounting arrangement 124. Mount 124 is movably or pivotably connected to links 114 and 116. This connection is made via pivot connections 126 and 128. So arranged, the drive assembly is mounted to base frame 104 via at least two pivot connections or axes (e.g., 108 and 110) or via multiple pivot connections or axes (126 and 108, respectively, and 128 and 110, respectively). The drive assembly typically includes a drive system having an electric motor connected to a gearbox (or, alternatively, an electric gearless and brushless motor (e.g., a wheel hub motor)). The gearbox connects to a drive axis or shaft 141 of a main drive wheel 136.


Link 116 may be an extension of or connected to another link 122 to which a rear caster wheel 134 is connected. A front wheel 140 arranged as an anti-tip wheel is connected to base frame 104 via link 138. In the embodiment shown, front anti-tip wheel 140 is suspended above the ground or normal horizontal supporting surface 142 of the wheelchair. Link 138 can be connected to base frame 104 via a rigid connection or a suspension system that can include a pivot connection or axis, which may be cushioned from impacts by a resilient member (e.g., see FIG. 12). Typically, two anti-tip wheels 140 are provided near the left and right sides of the front of base frame 104.


In the case of an FWD power wheelchair configuration, the center of gravity 144 of the wheelchair 100 and a user is generally horizontally offset very little (if any) from lower pivot connection 110 to distribute the combined load or weight between main drive wheel 136 and rear castor wheel 134. So arranged, main drive wheel 136 and rear castor wheel 134 are substantially ground engaging even over rough terrain. Horizontally offsetting center of gravity 144 from lower pivot connection 110 biases the tipping behavior of the base frame in the offset direction. The amount of biasing can be determined based on the desired base frame and suspension system behavior under weight-bearing conditions. For example, it may be desirable to slightly bias the center of gravity 144 (and base frame 104 center of gravity) rearward slightly rearward of pivot connection 110 so that anti-tip wheels 140 can more easily pivot or rotate the front portion of base frame 104 upwards when encountering a large obstacle (such as a curb or elevated sidewalk).


Referring now to FIG. 2, a wheelchair 200 having a suspension system similar that of FIG. 1 is shown. In FIG. 2, upper link 114 includes a resilient member 202. Resilient member 202 can take the form of various embodiments including a shock absorber, spring, spring and shock absorber, gas cylinder, lockable gas cylinder, an elastomeric body, etc., and combinations thereof. Resilient member 202 can perform various functions including, for example, absorbing impacts when drive wheel 136 encounters a large obstacle, very rough terrain, or elevated terrain. In such a situation, resilient member 202 absorbs the impact by compressing thereby not allowing the force of the impact to transfer to the base frame 104.


Resilient member 202 can also act as an extendable member allowing drive assembly 124 to pivot away from base frame 104 via pivot connection 128 and or pivot connection 110. This allows drive wheel 136 to maintain contact with variable terrain that includes terrain that may be lower than the terrain contacting the other drive wheel and/or rear caster wheels of the wheelchair. Such example includes when power wheelchair 100 is coming off an elevated surface, like an elevated sidewalk, berm and the like. Resilient member 202 can also act as a retractable member allowing drive assembly 124 to pivot into base frame 104 via pivot connection 128. This allows drive wheel 136 to maintain contact with variable terrain that includes terrain that may be higher than the terrain contacting the other drive wheel and/or rear caster wheels.


Referring now to FIG. 3, a wheelchair 300 having a suspension system similar that of FIGS. 1 and 2 is shown. In FIG. 3, suspension system 106 includes a further resilient member 302. Resilient member 302 can take the form of various embodiments including a shock absorber, spring, spring and shock absorber, gas cylinder, lockable gas cylinder, an elastomeric body, etc., and combinations thereof. Member 302 is located between base frame 104 and link 122. So arranged, member 302 can perform various functions including biasing link 122 towards the ground by distributing a portion of the wheelchair weight thereon, allowing link 122 to pivot about lower pivot connection 110 under bias pressure of the weight of base frame 104, cushioning or dampening movement (e.g., tipping) of base frame 104 against link 122, limiting movement (e.g., tipping) of base frame 104, etc. and combinations of the foregoing.



FIGS. 4A-4C illustrate the wheelchair behavior when traversing rough terrain or an obstacle such as, for example, a curb, berm, or elevated surface like a sidewalk. In FIG. 4A, the wheelchair approaches an elevated surface 400, which can be, for example, rough terrain, a large obstacle, or an elevated sidewalk. Front anti-tip wheel 140 makes initial contact with surface 400, which may be slightly cushioned if link 138 is connected to base frame 104 via a suspension having a resilient or compressible member. As the wheelchair continues to drive forward, anti-tip wheel 140 causes the front portion of base frame 104 to raise by rotating base frame 104 about lower pivot connection 110 (as indicated by arrow 402) as anti-tip wheel 140 drives itself onto the top of surface 400. Drive wheel 136 and rear castor wheel 134 maintain engagement with the lower supporting surface 142.


Referring now to FIG. 4B, as the wheelchair continues to drive forward, drive wheel 136 encounters elevated surface 400. This encounter typically creates physical impact on drive wheel 136 which may be transferred to the base frame 104 and the user. Suspension system 106 reduces the effect of this physical impact by allowing drive assembly mount 124 to pivot about pivot connection 128 (as shown by arrow 406) into base frame 104. Resilient member 202 absorbs some or all of this physical impact by compressing or retracting (as shown by arrow 404) as drive assembly mount 124 pivots against it.


Referring now to FIG. 4C, as the wheelchair continues to drive forward, drive wheel 136 is driven over and onto elevated surface 400. During this sequence, drive assembly mount 124 rotates or pivots about pivot connection 128 (as shown by arrow 410) away from base frame 104. Resilient member 202 extends or returns to its normal decompressed state (as shown by arrow 408) as drive assembly mount 124 pivots away from it. Now with drive wheel 136 on elevated surface 400, the wheelchair can continue to drive forward whereby rear castor wheel 134 will be driven over and onto elevated surface 400.


So arranged, suspension system 106 provides drive assembly mount 124 with multiple pivot connections (e.g., upper pivot connections 108 and 126 and lower pivot connections 110 and 128) to base frame 104. These pivot connections allow drive assembly mount 124 to pivot, rotate, raise, and/or lower as necessary to traverse rough terrain and obstacles while maintaining traction therewith. The inclusion of resilient member 202 allows physical impacts on drive wheel 136 to be absorbed or softened from being transferred to base frame 104 where they would be felt by a user. As previously described, less than the four illustrated pivot connections can be used and resilient member 202 may be a rigid link or other component(s). Moreover, as shown and described in connection with FIG. 3, an additional resilient member 302 can be included as part of suspension system 106.



FIGS. 5-11 illustrate a more specific embodiment of a wheelchair 500 and suspension system. Wheelchair 500 is generally configured similar to the embodiments of FIGS. 1-4A previously discussed. Reference numbers from the embodiments of FIGS. 1-4A are used when referring to the same or similar general components, assemblies, and/or systems. Wheelchair 500 includes base frame 104 and suspension system 106. Left and right front anti-tip wheels 140 are connected to base frame 104 by link 138, which suspend the anti-tip wheels above the supporting surface 142 of the wheelchair (e.g., see FIGS. 7, 8, 10 and 11). Also, left and right drive wheels 136 and left and right rear castor wheels 140 are connected to base frame 140.



FIG. 11 shows a side elevational view with left drive wheel 136 removed for clarity. In the embodiment of wheelchair 500, upper pivot connections 108 and 126 and lower pivot connection 110 and 128 are shown. Also, link 114 is shown as resilient member 202 connecting drive assembly mount 124 to the base frame via upper pivot connections 108 and 126. Link 116 is shown connecting drive assembly mount 124 to base frame 104 via lower pivot connections 110 and 128. Wheelchair 500 further includes resilient member 302 acting between base frame 104 and link 122. Wheelchair 500 is configured as a front wheel drive (FWD) wheelchair. Wheelchair 500 via lower pivot connection 110 and resilient member 302 distribute the weight of wheelchair (and user) onto drive wheels 136 and rear castor wheels 134 so they are substantially in constant contact with the ground or terrain (i.e., drive wheels 136 and read castor wheels 134 are substantially weight-bearing). Front anti-tip wheels 140 are shown suspended above the normal horizontal supporting surface 142 of the wheelchair in order to facilitate traversing obstacles or rough terrain as exemplified by FIGS. 4A-C and the associated text.



FIG. 12 is an exploded perspective view of one side of the embodiment of wheelchair 500 showing the components of suspension system 106. Links 116 and 122 form the body of a pivot arm that is secured to pivot connection 110 via through hole 1210 and fastener 1212. Fasteners as used herein may take a plurality of forms including screws, bolts, nuts, threads, sleeves, washers, bearings, spacers, etc., and combinations of the foregoing. So joined, links 116 and 122 can pivot about pivot connection 110. Base frame 104 can also pivot about connection 110 with respect to links 116 and 122 such as, for example, when front anti-tip wheels 140 encounter a large obstacle.


Link 122 also includes a contact area 1230 for contacting one end of resilient member 302. Base frame 104 also includes a contact area 1228 for contacting the other end of resilient member 302. In this manner, resilient member 302 acts between link 122 and base frame 104. As shown, resilient member 302 is a coil spring and contact area 1230 is circular allowing the coil spring to seat or nest thereon. Contact area 1228 on base frame 104 can be similarly arranged. Base frame 104 includes a further contact area 1232 that can act as a physical stop feature limiting the amount of upward movement of the rear portion of base frame 104. Contact area 1232, which may include a resilient member, is arranged to make selective contact with the underside of link 122. Other contact area arrangements are also possible including flat or planar contact areas and those formed to seat or nest the resilient member 302.


Link 116 extends from link 122 as shown and includes through hole 1211. Through hole 1211 is used to form a lower pivot connection (i.e., pivot connection 128) between drive assembly mount 124 (including sub-mount 1222) and links 116 and 122 (e.g., forming the rear castor wheel pivot arm). Fasteners (e.g., 1204 and 1208) and mounting holes (e.g., 1206) are used in this embodiment to complete the pivot connection.


An upper pivot connection (i.e., pivot connection 126) is formed between the drive assembly mount 124 and link 114 shown as resilient member 202. One end of resilient member 202 is fastened to aperture 1202 in drive assembly mount 124. The other end of resilient member 202 is pivotably joined to base frame 104 to form a pivot connection (i.e., upper pivot connection at 108.)


A drive system 1214 can include a motor and gearbox and is joined to drive assembly mount 124. Further sub-mounts 1220 and 1222 can be included to provide additional structural support and protection to the drive system 1214. These components are collectively joined together via fasteners (e.g., 1216, 1218, 1224, and 1226).


Still referring to FIG. 12, front anti-tip wheels 140 are connected in this embodiment to base frame 104 via a suspension assembly. Suspension assembly includes link 138 having adjacent through holes 1238 and 1240. Through hole 1238 is mounted to pivot connection 1236 via fasteners 1242, 1246, and 1250. Through hole 1240 includes resilient member 1248 and receives post 1234 therein. Fasteners 1250 and 1244 secure the connection. Link 138 is permitted a range of pivotal motion (e.g., pivoting upward) around pivot connection 1236 that is limited by post 1236 acting against resilient member 1248. Resilient member 1248 can be, in one embodiment, an elastomeric cylinder receiving post 1236 therein.



FIGS. 13 and 14 illustrate perspective and elevational views of suspension system 106 with the drive motor and gearbox components not shown. As previously described, the suspension system includes multiple pivot connections including upper pivot connections 108 and 126 and lower pivot connections 110 and 128. Upper pivot connection 108 and lower pivot connection 110 are connected to base frame 104. Upper pivot connection 108 allows link 114 (resilient member 202) to move or pivot as indicated by arrows 118. Lower pivot connection 110 allows the pivot arm formed by links 116 and 122 to move or pivot as indicated by arrows 120. Upper pivot connection 126 and lower pivot connection 128 connect links 114 and 116 to drive assembly mount 124. This allows drive assembly mount 124 to move or pivot as indicated by arrows 130 and 132.


Link 114 includes a body having first and second end portions and wherein the first end portion is connected to drive assembly mount 124 to form pivot connection 126. The second end portion of link 114 body is connected to the base frame 104 forming pivot connection 108. As shown, link 114 body may include a resilient element 202 such as, for example, a shock absorber, spring, etc. Links 116 and 122 form a pivot arm body having first and second end portions and wherein the first end portion is connected to the drive assembly mount 124 thereby forming pivot connection 128. The pivot arm body is also connected between its end portions to base frame 104 thereby forming pivot connection 110.


As previously described, resilient member 202 can extend and retract and can be a shock absorber. Resilient member 202 retracts under shock force to cushion impacts from jarring base frame 104. Resilient member 202 extends back to its normal position after the shock force has dissipated or passed. Hence, distance D2 represents the length of link 114 and can vary through this shock absorbing function. Distance D2 can also dynamically vary to accommodate changing levels of elevation or terrain to allow for continued ground engagement by drive wheels 136. In this situation, distance D2 grows and shrinks as drive wheel 136 travels over bumps, steps, and the like. Distance D1 represents the distance between lower pivot connections 110 and 128. In the embodiment shown, distance D1 is less than distance D2. The amount by which distance D1 is less than D2 can vary based on the amount of desired mechanical advantage to be applied during pivoting movement of the pivot arm.


Referring now to FIGS. 15 and 16, one embodiment of a drive assembly mount 124 and optional sub-mounts 1220 and 1222 are illustrated. Drive assembly mount 124 includes a body having an upper portion with aperture 1610 and a lower portion with aperture 1612. Upper aperture 1610 connects drive assembly mount 124 to link 114. Lower aperture 1612 connects drive assembly mount 124 to link 116. Drive assembly mount 124 also includes support 1608 for supporting and positioning the motor and gearbox combination within space 1602 of drive assembly mount 124. Apertures 1614, 1616, 1618, and 1620 are provided for fastening the motor and gearbox combination (and optional sub-mounts 1220 and 1222) to drive assembly mount 124. Drive assembly mount 124 also includes protective walls 1604 and 1606 that protect the motor and gearbox combination from direct impacts by foreign objects, terrain and/or obstacles.



FIGS. 15 and 17 illustrate optional sub-mounts 1220 and 1222. These sub-mounts include spaces or recesses 1706 and 1706 to allow drive components such as a drive shaft to extend from the motor and gearbox combination to a drive wheel. So arranged, sub-mounts 1220 and 1222 also provide lateral protection from impacts and foreign objects. Apertures 1700 and 1702 are used to fasten sub-mount 1220 to drive assembly mount 124. Sub-mount 1222 can also be joined to drive assembly mount 124 via welding or formed integral therewith to provide a strong connection or integral body connection.



FIGS. 18 and 19 illustrate a design for one embodiment of a hub for a wheel including, for example, drive wheel 136. FIGS. 20-22 illustrate the design for one embodiment of just the hub without the wheel. While the entire hub design has been shown, other components can stand alone as designs including the five-point (or star or spoke) pattern originating from the central circular area of the hub.



FIGS. 23 and 24 illustrate a design for another embodiment of a hub for a wheel including, for example, rear castor wheels 134. FIGS. 25-27 illustrate the design for one embodiment of just this hub without the wheel. While the entire hub design has been shown, other components can stand alone as designs including the five-point (or star or spoke) pattern originating from the central circular area of the hub.


In the ornamental embodiments of FIGS. 18-27, the surface topologies (e.g., convex, concave, combinations thereof, etc.) of the designs can be varied and are not critical to the illustrated ornamentally, nor are the relative proportions of the respective design features and components. Other ornamental design embodiments including varying design component size and proportions are within the scope of the disclosure herein.


While the present inventions and designs have been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the descriptions to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the inventions and designs, in broader aspects, are not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures can be made from such details without departing from the spirit or scope of the general inventive concepts.

Claims
  • 1. A wheelchair comprising: a base frame having an upper pivot connection and a lower pivot connection;a drive assembly having first and second pivot connections;a plurality of links connecting the drive assembly to the base frame, the plurality of links including: a first pivoting link connecting the drive assembly first pivot connection to the base frame upper pivot connection; anda second pivoting link connecting the drive assembly second pivot connection to the base frame lower pivot connection;wherein the second link comprises a body having first and second end portions and wherein the body is connected to the base frame lower pivot connection at a portion between the first and second end portions.
  • 2. The wheelchair of claim 1 wherein the first link comprises a body having first and second end portions and wherein the first end portion is connected to the drive assembly first pivot connection.
  • 3. The wheelchair of claim 2 wherein the second end portion of the first link body is connected to the base frame upper pivot connection.
  • 4. The wheelchair of claim 1 wherein the first link comprises a body having a shock absorber.
  • 5. The wheelchair of claim 1 wherein the first link comprises a body having a resilient member.
  • 6. The wheelchair of claim 1 wherein the first link comprises a body having a spring and shock absorber.
  • 7. The wheelchair of claim 1 wherein the second link comprises a body having first and second end portions and wherein the first end portion is connected to the drive assembly second pivot connection.
  • 8. The wheelchair of claim 1 wherein the drive assembly comprises a body having upper and lower portions and wherein the upper portion is connected to the first pivoting link.
  • 9. The wheelchair of claim 1 wherein the drive assembly comprises a body having upper and lower portions and wherein the lower portion is connected to the second pivoting link.
  • 10. The wheelchair of claim 1 wherein the drive assembly comprises a body having upper and lower portions and wherein the upper portion is connected to the first pivoting link and the lower portion is connected to the second pivoting link.
  • 11. The wheelchair of claim 1 wherein the second pivoting link comprises a body that extends rearwardly of the base frame.
  • 12. The wheelchair of claim 1 wherein the second pivoting link comprises a body that extends rearwardly of the base frame and connects to a rear castor wheel.
  • 13. The wheelchair of claim 1 wherein the second pivoting link comprises a body having first, second and third portions, and wherein the first portion connects to the drive assembly, the second portion connects to the base frame lower pivot connection, and the third portion connects to a rear castor wheel.
  • 14. The wheelchair of claim 1 wherein the drive assembly comprises a mounting body having upper and lower portions and wherein the upper portion comprise the drive assembly first pivot connection and the lower portion comprises the drive assembly second pivot connection.
  • 15. A wheelchair comprising: a base frame having an upper pivot connection and a lower pivot connection;a drive assembly having first and second pivot connections, the first pivot connection connected to the base frame upper pivot connection; anda pivot arm connected to the base frame lower pivot connection and the drive assembly second pivot connection;wherein the pivot arm is connected to a rear caster.
  • 16. The wheelchair of claim 15 wherein the drive assembly first pivot connection is located above the drive assembly second pivot connection.
  • 17. A wheelchair comprising: a base frame having an upper pivot axis and a lower pivot axis;a pivot arm connected to the base frame lower pivot axis; anda drive assembly connected to the base frame upper pivot axis by a link and connected to the pivot arm, wherein the drive assembly pivots about the pivot arm connection and pivots about the base frame upper pivot axis via the link;wherein the pivot arm is connected to a rear caster.
  • 18. The wheelchair of claim 17 wherein the link comprises a resilient member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/981,265, filed on Feb. 25, 2020 and which is hereby fully incorporated by reference.

US Referenced Citations (423)
Number Name Date Kind
X865514 Mullenmeister Sep 1907
1116086 Lewis Nov 1914 A
1151414 Steinbach Aug 1915 A
1773254 Becker Sep 1930 A
1973627 Harter Sep 1934 A
2398211 du Pont Apr 1946 A
2427482 Wiessman Sep 1947 A
2767995 Stout Oct 1956 A
2949153 Hickman Aug 1960 A
2986200 Nobile May 1961 A
3104112 Crail Sep 1963 A
3174176 Olson Mar 1965 A
3191990 Rugg et al. Jun 1965 A
3195670 Dunn Jul 1965 A
3210092 Kraus et al. Oct 1965 A
3282605 Nihlean et al. Nov 1966 A
3314672 Persson Apr 1967 A
3506079 Madler et al. Apr 1970 A
3573877 Locke Apr 1971 A
3580591 Coffey May 1971 A
3589700 Ruet et al. Jun 1971 A
3592282 Soileau Jul 1971 A
3602522 Zamotin Aug 1971 A
3618968 Greer Nov 1971 A
3627157 Blatchly Dec 1971 A
3661228 Glasser May 1972 A
3664450 Udden et al. May 1972 A
3682462 Papousek Aug 1972 A
3689103 Meulendyk Sep 1972 A
3709313 James Jan 1973 A
3709517 Nossner Jan 1973 A
3848883 Breacain Nov 1974 A
3862751 Schwaller Jan 1975 A
3876012 Regier Apr 1975 A
3881773 Rodaway May 1975 A
3883153 Singh et al. May 1975 A
3893529 Karchak, Jr. et al. Jul 1975 A
3901337 Cragg Aug 1975 A
3901527 Danziger et al. Aug 1975 A
3905437 Kaiho et al. Sep 1975 A
3917312 Rodaway Nov 1975 A
3930551 Cragg Jan 1976 A
3952822 Udden et al. Apr 1976 A
3953054 Udden et al. Apr 1976 A
3976152 Bell Aug 1976 A
4078817 Ferguson et al. Mar 1978 A
4108449 Rhodes Aug 1978 A
4118020 Myers Oct 1978 A
4119163 Ball Oct 1978 A
4128137 Booth Dec 1978 A
4190263 Powers Feb 1980 A
4222449 Feliz Sep 1980 A
4245847 Knott Jan 1981 A
4247125 Rayment Jan 1981 A
4264085 Volin Apr 1981 A
4310167 McLaurin Jan 1982 A
4333681 Nelson Jun 1982 A
4337958 Witt et al. Jul 1982 A
4341278 Meyer Jul 1982 A
4375295 Volin Mar 1983 A
4387325 Klimo Jun 1983 A
4405142 Whetstine Sep 1983 A
4436320 Brudermann et al. Mar 1984 A
4437678 Schultz Mar 1984 A
4455029 Taylor Jun 1984 A
4455031 Hosaka Jun 1984 A
4456295 Francu Jun 1984 A
4483407 Iwamoto et al. Nov 1984 A
4500102 Haury et al. Feb 1985 A
4513832 Engman Apr 1985 A
4515385 Christian May 1985 A
4542918 Singleton Sep 1985 A
4545593 Farnam Oct 1985 A
4545616 Booth Oct 1985 A
4556229 Bihler et al. Dec 1985 A
4565385 Morford Jan 1986 A
4592570 Nassiri Jun 1986 A
RE32242 Minnebraker Sep 1986 E
4614246 Masse et al. Sep 1986 A
4618155 Jayne Oct 1986 A
4641848 Ayers Feb 1987 A
4655471 Peek Apr 1987 A
4687068 Pagett Aug 1987 A
4720223 Neights et al. Jan 1988 A
4721321 Haury et al. Jan 1988 A
4721322 Hawkins Jan 1988 A
4730842 Summers et al. Mar 1988 A
4736983 Furbee Apr 1988 A
4759418 Goldenfeld et al. Jul 1988 A
4763910 Brandli et al. Aug 1988 A
4805712 Singleton Feb 1989 A
4805925 Haury et al. Feb 1989 A
4811966 Singleton Mar 1989 A
4823900 Farnam Apr 1989 A
4826194 Sakita May 1989 A
4840394 Bickler Jun 1989 A
4861056 Duffy, Jr. et al. Aug 1989 A
4862983 Kreft Sep 1989 A
4886294 Nahachewski Dec 1989 A
4905972 Scowen Mar 1990 A
4919441 Marier et al. Apr 1990 A
4926952 Farman May 1990 A
4934626 Kimura Jun 1990 A
4951766 Basedow et al. Aug 1990 A
4962942 Barnett et al. Oct 1990 A
4967864 Boyer et al. Nov 1990 A
4989890 Lockard et al. Feb 1991 A
5020816 Mulholland Jun 1991 A
5042607 Falkenson et al. Aug 1991 A
5044647 Patterson Sep 1991 A
5044648 Knapp Sep 1991 A
5076390 Haskins Dec 1991 A
5076602 Robertson et al. Dec 1991 A
5113959 Mastov et al. May 1992 A
5123495 Littlejohn et al. Jun 1992 A
5125468 Coker Jun 1992 A
5137295 Peek Aug 1992 A
5156226 Boyer et al. Oct 1992 A
5176393 Robertson et al. Jan 1993 A
5180025 Yeh et al. Jan 1993 A
5180275 Czech et al. Jan 1993 A
5181133 Lipton Jan 1993 A
5181733 Tague Jan 1993 A
5183133 Roy et al. Feb 1993 A
5197559 Garin, III et al. Mar 1993 A
5203610 Miller Apr 1993 A
5209322 Mcmahon May 1993 A
5209509 Gay et al. May 1993 A
5222567 Broadhead et al. Jun 1993 A
5228709 Kao Jul 1993 A
5230522 Gehlsen et al. Jul 1993 A
5241876 Mathis Sep 1993 A
5248007 Watkins et al. Sep 1993 A
5290055 Treat, Jr. Mar 1994 A
5294141 Mentessi et al. Mar 1994 A
5297021 Koerlin et al. Mar 1994 A
5301964 Papac Apr 1994 A
5316328 Bussinger May 1994 A
5341533 Seitz Aug 1994 A
5351774 Okamoto Oct 1994 A
5366037 Richey Nov 1994 A
5372211 Wilcox et al. Dec 1994 A
5403031 Gottschalk et al. Apr 1995 A
5419571 Vaughan May 1995 A
5435404 Garin, III Jul 1995 A
5447317 Gehlsen et al. Sep 1995 A
5464271 McFarland Nov 1995 A
5467838 Wu Nov 1995 A
5482261 Ortega Jan 1996 A
5485140 Bussin Jan 1996 A
5489139 McFarland Feb 1996 A
5513875 Tahara et al. May 1996 A
5518081 Thibodeau May 1996 A
5531284 Okamoto Jul 1996 A
5540297 Meier Jul 1996 A
5562172 Mick Oct 1996 A
5564512 Scheulderman Oct 1996 A
5575348 Goertzen et al. Nov 1996 A
5611555 Vidal Mar 1997 A
5628377 LaGloan May 1997 A
5701122 Canedy Dec 1997 A
5727802 Garven, Jr. et al. Mar 1998 A
5727809 Ordelman et al. Mar 1998 A
5762155 Scheulderman Jun 1998 A
5772048 Sopcisak Jun 1998 A
5772226 Bobichon Jun 1998 A
5772237 Finch et al. Jun 1998 A
D397645 Schaffner Sep 1998 S
5833248 Eguchi Nov 1998 A
5848658 Pulver Dec 1998 A
5851018 Curran et al. Dec 1998 A
5851019 Gill et al. Dec 1998 A
5853059 Goertzen et al. Dec 1998 A
D404693 Schaffner et al. Jan 1999 S
5855387 Gill et al. Jan 1999 A
5899475 Verhaeg et al. May 1999 A
5904214 Lin May 1999 A
5921532 Pierce et al. Jul 1999 A
5944131 Schaffner et al. Aug 1999 A
5954351 Koschinat Sep 1999 A
5957474 Mundy et al. Sep 1999 A
5964473 Degonda et al. Oct 1999 A
5988304 Behrents Nov 1999 A
5996716 Montiglio et al. Dec 1999 A
6003624 Jorgensen et al. Dec 1999 A
6029763 Swisher Feb 2000 A
6041876 Pulver et al. Mar 2000 A
6047979 Kraft et al. Apr 2000 A
6062600 Kamen et al. May 2000 A
6068280 Torres May 2000 A
6070898 Dickie et al. Jun 2000 A
6073951 Jindra et al. Jun 2000 A
6076619 Hammer Jun 2000 A
6079698 Patterson et al. Jun 2000 A
6079725 Lazaros Jun 2000 A
D429665 Dickie Aug 2000 S
6095271 Dickie et al. Aug 2000 A
6129165 Schaffner et al. Oct 2000 A
6131679 Pulver et al. Oct 2000 A
6131940 Arnoth Oct 2000 A
6135222 Furukawa Oct 2000 A
6161856 Peterson Dec 2000 A
6168178 Garven, Jr. et al. Jan 2001 B1
6176335 Schaffner et al. Jan 2001 B1
6179076 Fernie et al. Jan 2001 B1
6186252 Schaffner et al. Feb 2001 B1
6196343 Strautnieks Mar 2001 B1
6199647 Schaffner et al. Mar 2001 B1
6206119 Wu Mar 2001 B1
6209670 Fernie et al. Apr 2001 B1
6217114 Degonda Apr 2001 B1
6225894 Kyrtsos May 2001 B1
6234263 Boivin et al. May 2001 B1
6234507 Dickie et al. May 2001 B1
6241275 Slagerman Jun 2001 B1
6264218 Slagerman Jul 2001 B1
6279927 Nishihira et al. Aug 2001 B1
6312000 Pauls et al. Nov 2001 B1
6322089 Dantele et al. Nov 2001 B1
6341657 Hopely et al. Jan 2002 B1
6341671 Ebersole Jan 2002 B1
6347688 Hall et al. Feb 2002 B1
6357793 Dickie et al. Mar 2002 B1
6375209 Schlangen Apr 2002 B1
6394738 Springer May 2002 B1
6405816 Kamen et al. Jun 2002 B1
6412804 Dignat Jul 2002 B1
6425597 Peterson Jul 2002 B1
6428020 Steadman Aug 2002 B1
6428029 Barclay Aug 2002 B1
6429541 Takenaka et al. Aug 2002 B2
6454286 Hosino Sep 2002 B1
6460641 Kral Oct 2002 B1
6460869 Tremouilles Oct 2002 B1
6494474 Kramer, Jr. Dec 2002 B1
6533305 Falk Mar 2003 B1
6533306 Watkins Mar 2003 B2
6543564 Kamen et al. Apr 2003 B1
6543798 Schaffner et al. Apr 2003 B2
6554086 Goertzen et al. Apr 2003 B1
6568030 Watanabe et al. May 2003 B1
6581711 Tuluie Jun 2003 B1
6588799 Sanchez Jul 2003 B1
6601863 Mentessi et al. Aug 2003 B1
6640916 Schaffner et al. Nov 2003 B2
6684969 Flowers et al. Feb 2004 B1
6688437 Usherovich Feb 2004 B2
6702306 Ockwell Mar 2004 B1
6712369 Wu Mar 2004 B2
6715845 Kamen et al. Apr 2004 B2
D491115 Taylor Jun 2004 S
6776430 White et al. Aug 2004 B2
6851711 Goertzen et al. Feb 2005 B2
6857490 Quigg Feb 2005 B2
6923278 Mulhern et al. Aug 2005 B2
6923280 Goertzen et al. Aug 2005 B2
6935448 Goertzen et al. Aug 2005 B2
6938923 Mulhern et al. Sep 2005 B2
7021641 Wu Apr 2006 B2
7040429 Molnar et al. May 2006 B2
7055634 Molnar Jun 2006 B2
7066290 Fought Jun 2006 B2
7083195 Goertzen et al. Aug 2006 B2
7100716 Engels et al. Sep 2006 B2
7150463 Liao Dec 2006 B1
7175193 Wu Feb 2007 B2
7219755 Goertzen et al. May 2007 B2
7219924 Mulhern et al. May 2007 B2
7232008 Levi et al. Jun 2007 B2
7234554 Mulhern et al. Jun 2007 B2
7264272 Mulhern et al. Sep 2007 B2
7273118 Huang Sep 2007 B2
7293801 Bertrand et al. Nov 2007 B2
7316282 Mulhern et al. Jan 2008 B2
7370876 Hsu et al. May 2008 B2
7374002 Fought May 2008 B2
7380824 Chen Jun 2008 B2
7389835 Mulhern et al. Jun 2008 B2
7398842 Fontecchio et al. Jul 2008 B2
7413038 Mulhern et al. Aug 2008 B2
7461897 Kruse et al. Dec 2008 B2
7472767 Molnar Jan 2009 B2
7490683 Schaffner Feb 2009 B2
7506709 Kiwak et al. Mar 2009 B2
7516984 Tang Apr 2009 B2
7556109 Chen et al. Jul 2009 B2
7597163 Goertzen et al. Oct 2009 B2
7735591 Puskar-Pasewicz et al. Jun 2010 B2
7766106 Puskar-Pasewicz et al. Aug 2010 B2
7775307 Cheng Aug 2010 B2
7828310 Vreeswijk et al. Nov 2010 B2
D632229 Kruse Feb 2011 S
7882909 Pearlman et al. Feb 2011 B2
7896394 Jackson et al. Mar 2011 B2
8037953 Puskar-Pasewicz et al. Oct 2011 B2
8113531 Zhou Feb 2012 B2
8118321 Hunziker Feb 2012 B2
8172015 Molnar May 2012 B2
8172016 Goertzen et al. May 2012 B2
8177257 Dugas et al. May 2012 B2
8186463 Hunziker et al. May 2012 B2
8210556 Zhou et al. Jul 2012 B2
8272461 Bekoscke et al. Sep 2012 B2
8286738 Cheng Oct 2012 B2
8297388 Indenkamp et al. Oct 2012 B2
8534679 Goertzen et al. Sep 2013 B2
8573341 Fought et al. Nov 2013 B2
8636089 Goertzen et al. Jan 2014 B2
8794359 Bekoske Aug 2014 B2
8833774 Goertzen et al. Sep 2014 B2
8910975 Bekoscke et al. Dec 2014 B2
8925943 Molnar Jan 2015 B2
9010470 Cuson et al. Apr 2015 B2
9022400 Porcheron May 2015 B2
9149398 Goertzen et al. Oct 2015 B2
9308143 Bekoscke Apr 2016 B2
9346335 Bekoscke et al. May 2016 B2
9351889 Mulhern May 2016 B2
9358165 Wu Jun 2016 B2
9364377 Goertzen et al. Jun 2016 B2
9370455 Molnar Jun 2016 B2
9603762 Bekoscke Mar 2017 B2
9700470 Bekoscke et al. Jul 2017 B2
9827823 Bekoscke et al. Nov 2017 B2
9913768 Cuson et al. Mar 2018 B2
9925100 Goertzen et al. Mar 2018 B2
9987177 Goertzen et al. Jun 2018 B2
10226392 Chiang Mar 2019 B2
10265229 Bekoscke et al. Apr 2019 B2
10335330 Omer Jul 2019 B2
10434019 Bekoscke et al. Oct 2019 B2
10512572 Goertzen et al. Dec 2019 B2
10532626 Bekoscke et al. Jan 2020 B2
10912690 Bekoscke et al. Feb 2021 B2
11452648 Batke Sep 2022 B2
20010011613 Schaffner et al. Aug 2001 A1
20010013437 Husted et al. Aug 2001 A1
20020023787 Kamen et al. Feb 2002 A1
20020088657 Brett et al. Jul 2002 A1
20020175027 Usherovich Nov 2002 A1
20030030243 Engels Feb 2003 A1
20030075365 Fought Apr 2003 A1
20030122332 Engels et al. Jul 2003 A1
20030168264 Goertzen et al. Sep 2003 A1
20030168265 Goertzen et al. Sep 2003 A1
20030201632 Mulhern et al. Oct 2003 A1
20030205420 Mulhern et al. Nov 2003 A1
20040004342 Mulhern et al. Jan 2004 A1
20040032119 Tran et al. Feb 2004 A1
20040060748 Molnar Apr 2004 A1
20040084230 Grymko et al. May 2004 A1
20040094944 Goertzen et al. May 2004 A1
20040144580 Wu Jul 2004 A1
20040150204 Goertzen et al. Aug 2004 A1
20040159476 Molnar Aug 2004 A1
20040168839 Wu Sep 2004 A1
20040188152 Schaffner Sep 2004 A1
20040232683 Mulhern Nov 2004 A1
20040262859 Turturiello Dec 2004 A1
20050034903 Wu Feb 2005 A1
20050077694 Levi et al. Apr 2005 A1
20050077714 Mulhern et al. Apr 2005 A1
20050077715 Mulhern et al. Apr 2005 A1
20050127631 Schaffner Jun 2005 A1
20050151360 Bertrand et al. Jul 2005 A1
20050206124 Levi Sep 2005 A1
20050206149 Mulhern Sep 2005 A1
20050225040 Goertzen et al. Oct 2005 A1
20050225041 Longino Oct 2005 A1
20060021806 Goertzen et al. Feb 2006 A1
20060022445 Mulhern Feb 2006 A1
20060076747 Pauls et al. Apr 2006 A1
20060076748 Pauls et al. Apr 2006 A1
20060082117 Turturiello Apr 2006 A1
20060086554 Jackson et al. Apr 2006 A1
20060201723 Hsu et al. Sep 2006 A1
20060213705 Molnar Sep 2006 A1
20060244249 Goertzen et al. Nov 2006 A1
20060249317 Fought Nov 2006 A1
20060255581 Goertzen et al. Nov 2006 A1
20060266565 Fontecchio et al. Nov 2006 A1
20070018418 Huang Jan 2007 A1
20070023209 Wu Feb 2007 A1
20070039766 Jackson et al. Feb 2007 A1
20070080003 Koerlin et al. Apr 2007 A1
20070095582 Stuijt et al. May 2007 A1
20070107955 Puskar-Pasewicz et al. May 2007 A1
20070181353 Puskar-Pasewicz et al. Aug 2007 A1
20070209845 Chen et al. Sep 2007 A1
20070209848 Tang Sep 2007 A1
20080053720 Chen et al. Mar 2008 A1
20080083573 Tseng Apr 2008 A1
20080087481 Grymko et al. Apr 2008 A1
20080157513 Cheng Jul 2008 A1
20080208394 Fought Aug 2008 A1
20090091092 Molnar Apr 2009 A1
20090121532 Kruse et al. May 2009 A1
20090145677 Zhou Jun 2009 A1
20090295119 Bloswich Dec 2009 A1
20100004820 Bekoscke et al. Jan 2010 A1
20100013172 Goertzen Jan 2010 A1
20100065346 Porcheron Mar 2010 A1
20100084209 Bekoscke et al. Apr 2010 A1
20100102529 Lindenkamp et al. Apr 2010 A1
20100301576 Dugas et al. Dec 2010 A1
20110083913 Cuson et al. Apr 2011 A1
20110215540 Hunziker Sep 2011 A1
20120012416 Mirzaie Jan 2012 A1
20120217070 Goertzen Aug 2012 A1
20120217713 Molnar Aug 2012 A1
20120299262 Bekoscke Nov 2012 A1
20130207364 Bekoscke et al. Aug 2013 A1
20130328282 Porcheron Dec 2013 A1
20150196438 Mulhern Jul 2015 A1
20160287456 Bekoske Oct 2016 A1
20160318367 Bekoske Nov 2016 A1
20180028379 Bekoske Feb 2018 A1
20180214325 Van de Wal et al. Aug 2018 A1
20180360678 Cuson et al. Dec 2018 A1
20190046373 Coulter Feb 2019 A1
20200155387 Bekoske May 2020 A1
20200206047 Bekoske Jul 2020 A1
20200276065 Mulhern Sep 2020 A1
Foreign Referenced Citations (130)
Number Date Country
2254372 May 2000 CA
1138825 Dec 1996 CN
1839779 Oct 2006 CN
101636139 Jan 2010 CN
152186 Sep 1903 DE
2256934 May 1973 DE
1399822 Aug 1977 DE
69519943 Aug 2001 DE
19806500 Mar 2002 DE
10136368 May 2003 DE
10136369 May 2003 DE
18101 Oct 1980 EP
127929 Dec 1984 EP
268960 Jun 1988 EP
312969 Apr 1989 EP
339500 Nov 1989 EP
369791 May 1990 EP
419085 Mar 1991 EP
445171 Sep 1991 EP
511113 Oct 1992 EP
677285 Oct 1995 EP
702945 Mar 1996 EP
829247 Mar 1998 EP
841052 May 1998 EP
908165 Apr 1999 EP
908166 Apr 1999 EP
927551 Jul 1999 EP
988848 Mar 2000 EP
1118531 Jul 2001 EP
1118531 Jul 2001 EP
1147969 Oct 2001 EP
1279391 Jan 2003 EP
1279392 Jan 2003 EP
1434545 Jul 2004 EP
1479362 Nov 2004 EP
1493418 Jan 2005 EP
1513479 Mar 2005 EP
1522292 Apr 2005 EP
1522295 Apr 2005 EP
1582189 Oct 2005 EP
1349739 Jun 2010 EP
2226048 Sep 2010 EP
2111203 Jan 2011 EP
2111204 Apr 2011 EP
2364868 Sep 2011 EP
2364868 Sep 2011 EP
2272478 May 2012 EP
2295017 May 2012 EP
2332506 Aug 2012 EP
2340800 Apr 2013 EP
2332753 Jan 2014 EP
2070744 Apr 2014 EP
2327572 Jul 2014 EP
2277490 Jan 2015 EP
2409674 Dec 2015 EP
2485698 May 2017 EP
2814441 Jul 2017 EP
3238682 Nov 2017 EP
27505 Jul 1924 FR
2215054 Aug 1974 FR
2399822 Mar 1979 FR
2455886 Dec 1980 FR
2498925 Aug 1982 FR
2738147 Jul 1997 FR
2749502 Dec 1997 FR
2858764 Feb 2005 FR
151915 Oct 1920 GB
154369 Dec 1920 GB
265885 Feb 1927 GB
474349 Oct 1937 GB
841175 Jul 1960 GB
1503910 Mar 1978 GB
2040237 Aug 1980 GB
2061197 May 1981 GB
2141980 Jan 1985 GB
2224980 May 1990 GB
57-186589 Nov 1982 JP
03-011978 Dec 1989 JP
04-158864 Jun 1992 JP
07-328073 Dec 1995 JP
08-038552 Feb 1996 JP
410248877 Sep 1998 JP
11059506 Mar 1999 JP
2000 102569 Apr 2000 JP
2000 288032 Oct 2000 JP
2001 070347 Mar 2001 JP
2001 104391 Apr 2001 JP
2001 212181 Aug 2001 JP
2001 258948 Sep 2001 JP
2001 327545 Nov 2001 JP
2002 143223 May 2002 JP
2002 165841 Jun 2002 JP
2004 202264 Jul 2004 JP
431393 Nov 1983 SE
8200445 Feb 1982 WO
8404451 Nov 1984 WO
8706205 Apr 1987 WO
8906117 Jul 1989 WO
9005515 May 1990 WO
9006097 Jun 1990 WO
9209463 Jun 1992 WO
9324342 Dec 1993 WO
9413241 Jun 1994 WO
9415567 Jul 1994 WO
9615752 May 1996 WO
9744206 Nov 1997 WO
9876184 Oct 1998 WO
9917700 Apr 1999 WO
0008910 Feb 2000 WO
0009356 Feb 2000 WO
0012040 Mar 2000 WO
0054718 Sep 2000 WO
0066060 Nov 2000 WO
0101914 Jan 2001 WO
0234190 May 2002 WO
03030800 Apr 2003 WO
03034969 May 2003 WO
03049664 Jun 2003 WO
03101364 Dec 2003 WO
0416451 Feb 2004 WO
0437569 May 2004 WO
0711668 Jan 2007 WO
0722387 Feb 2007 WO
0779346 Jul 2007 WO
08124953 Mar 2008 WO
0884462 Jul 2008 WO
0897879 Aug 2008 WO
08100759 Aug 2008 WO
2008134898 Nov 2008 WO
2017053689 Mar 2017 WO
Non-Patent Literature Citations (353)
Entry
Notice of Allowance from U.S. Appl. No. 12/330,554 dated Nov. 15, 2011.
Notice of Allowance from U.S. Appl. No. 12/330,554 dated Feb. 14, 2012.
Office Action from U.S. Appl. No. 12/522,837 dated Feb. 15, 2011.
Amendment from U.S. Appl. No. 12/522,837 dated Jun. 15, 2011.
Notice of Allowance from U.S. Appl. No. 12/522,837 dated Jul. 26, 2011.
Notice of Allowance from U.S. Appl. No. 12/522,837 dated Jun. 28, 2012.
Office Action from U.S. Appl. No. 12/523,630 dated Dec. 21, 2011.
Response from U.S. Appl. No. 12/523,630 dated Mar. 15, 2012.
Notice of Allowance from U.S. Appl. No. 12/523,630 dated Jun. 11, 2012.
Restriction /Election Requirement for U.S. Appl. No. 12/524,476 dated Dec. 31, 2012.
Office Action from U.S. Appl. No. 12/524,476 dated May 22, 2013.
Amendment in U.S. Appl. No. 12/524,476 dated Nov. 20, 2013.
Final Office Action in U.S. Appl. No. 12/524,476 dated Feb. 27, 2014.
Notice of Allowance from U.S. Appl. No. 12/524,476 dated Aug. 15, 2014.
Office Action from U.S. Appl. No. 12/568,728 dated Jun. 10, 2010.
Response from U.S. Appl. No. 12/568,728 dated Nov. 5, 2010.
Office Action from U.S. Appl. No. 12/568,728 dated Jan. 24, 2011.
Notice of Allowance from U.S. Appl. No. 12/568,728 dated Oct. 26, 2011.
Examiner-Initiated Interview Summary from U.S. Appl. No. 12/568,728 dated Dec. 8, 2011.
RCE with Remarks (Amendments to Specification) from U.S. Appl. No. 12/568,728 dated Jan. 9, 2012.
Notice of Allowance from U.S. Appl. No. 12/568,728 dated Jan. 24, 2012.
Office Action from U.S. Appl. No. 13/413,839 dated Sep. 26, 2013.
Response to Office Action from U.S. Appl. No. 13/413,839 dated Feb. 26, 2014.
Notice of Allowance from U.S. Appl. No. 13/413,839 dated May 1, 2014.
Restriction Requirement in U.S. Appl. No. 13/465,404 dated Jan. 3, 2013.
Response to Restriction Requirement in U.S. Appl. No. 13/465,404 dated Feb. 4, 2013.
Office Action in U.S. Appl. No. 13/465,404 dated Apr. 11, 2013.
Response to Office Action in U.S. Appl. No. 13/465,404 dated Jul. 11, 2013.
Notice of Allowance in U.S. Appl. No. 13/465,404 dated Sep. 27, 2013.
Office Action from U.S. Appl. No. 13/465,268 dated Jul. 19, 2012.
Response to Office Action from U.S. Appl. No. 13/465,268 dated Jan. 22, 2013.
Final Office Action in U.S. Appl. No. 13/465,268 dated Apr. 15, 2013.
Amendment with RCE, terminal disclaimer for U.S. Appl. No. 13/465,268 dated Oct. 15, 2013.
Non-Final Office Action in U.S. Appl. No. 13/465,268 dated Apr. 15, 2014.
Notice of Allowance for U.S. Appl. No. 13/465,268 dated Oct. 24, 2014.
First Office Action in U.S. Appl. No. 13/566,473 dated Dec. 6, 2012.
Response in U.S. Appl. No. 13/566,473 dated Apr. 8, 2013.
Office Action in U.S. Appl. No. 13/568,623 dated Feb. 1, 2013.
Response to Office Action in U.S. Appl. No. 13/568,623 dated Jun. 19, 2013.
Notice of Allowance in U.S. Appl. No. 13/568,623 dated Oct. 9, 2013.
Notice of Allowance in U.S. Appl. No. 13/568,623 dated Apr. 2, 2014.
Restriction Requirement in U.S. Appl. No. 12/900,548 dated Jun. 28, 2013.
Response to Restriction Requirement in U.S. Appl. No. 12/900,548 dated Jul. 29, 2013.
Office Action in U.S. Appl. No. 12/900,548 dated Sep. 9, 2013.
Response to Office Action in U.S. Appl. No. 12/900,548 dated Jan. 28, 2014.
Office Action in U.S. Appl. No. 12/900,548 dated Jun. 2, 2014.
RCE and Amendment Filed in U.S. Appl. No. 12/900,548 dated Oct. 1, 2014.
Notice of Allowance in U.S. Appl. No. 12/900,548 dated Dec. 18, 2014.
Restriction Requirement from U.S. Appl. No. 13/768,878 dated Jun. 4, 2014.
Response to Restriction Requirement in U.S. Appl. No. 13/768,878 dated Sep. 4, 2014.
U.S. Patent Office Action from U.S. Appl. No. 09/698,481 dated Jun. 27, 2002.
Response from U.S. Appl. No. 09/698,481 dated Oct. 29, 2002.
U.S. Patent Office Advisory Action from U.S. Appl. No. 09/698,481 dated Nov. 13, 2002.
Supplemental Amendment after Final from U.S. Appl. No. 09/698,481 dated Nov. 27, 2002.
Notice of Allowance from U.S. Appl. No. 09/698,481 dated Dec. 12, 2002.
Office Action from U.S. Appl. No. 09/712,547 dated May 23, 2001.
Response from U.S. Appl. No. 09/712,547 dated Aug. 23, 2001.
Office Action from U.S. Appl. No. 09/712,547 dated Oct. 30, 2001.
Response from U.S. Appl. No. 09/712,547 dated Jan. 28, 2002.
Notice of Allowance from U.S. Appl. No. 09/712,547 dated Mar. 11, 2002.
Office Action from U.S. Appl. No. 09/974,348 dated Feb. 27, 2003.
Response from U.S. Appl. No. 09/974,348 dated Jul. 28, 2003.
Office Action from U.S. Appl. No. 09/974,348 dated Oct. 22, 2003.
Interview Record from U.S. Appl. No. 09/974,348 dated Oct. 28, 2003.
Response from U.S. Appl. No. 09/974,348 dated Jan. 26, 2004.
Advisory Action from U.S. Appl. No. 09/974,348 dated Feb. 27, 2004.
Response from U.S. Appl. No. 09/974,348 dated Apr. 16, 2004.
Notice of Allowance from U.S. Appl. No. 09/974,348 dated May 11, 2004.
Notice of Allowance from U.S. Appl. No. 09/974,348 dated May 20, 2005.
Office Action from related U.S. Appl. No. 10/044,826, dated Apr. 29, 2003.
Response from U.S. Appl. No. 10/044,826 dated Oct. 29, 2003.
Notice of Abandonment from U.S. Appl. No. 10/044,826 dated Nov. 18, 2003.
Response from U.S. Appl. No. 10/044,826 dated Jan. 20, 2004.
Response from U.S. Appl. No. 10/044,826 dated Aug. 16, 2004.
Notice of Allowability from U.S. Appl. No. 10/044,826 dated Jun. 14, 2005.
Notice of Allowance from U.S. Appl. No. 10/044,826 dated Apr. 3, 2006.
U.S. Patent Office Action from U.S. Appl. No. 10/390,133 dated Aug. 8, 2003.
Response from U.S. Appl. No. 10/390,133 dated Feb. 11, 2004.
U.S. Patent Office Action from U.S. Appl. No. 10/390,133 dated Jun. 16, 2004.
Response from U.S. Appl. No. 10/390,133 dated Dec. 20, 2004.
Supplemental Notice of Allowance from U.S. Appl. No. 10/390,133 dated Mar. 30, 2005.
Notice of Allowance from U.S. Appl. No. 10/390,133 dated Jan. 11, 2005.
U.S. Patent Office Action from U.S. Appl. No. 10/390,386 dated Aug. 8, 2003.
Response from U.S. Appl. No. 10/390,386 dated Nov. 11, 2003.
U.S. Patent Office Action from U.S. Appl. No. 10/390,386 dated Jan. 28, 2004.
Response from U.S. Appl. No. 10/390,386 dated May 28, 2004.
U.S. Patent Office Action from U.S. Appl. No. 10/390,386 dated Oct. 12, 2004.
Response from U.S. Appl. No. 10/390,386 dated Mar. 16, 2005.
Notice of Allowance from U.S. Appl. No. 10/390,386 dated Apr. 7, 2005.
Notice of Allowance from U.S. Appl. No. 10/643,010 dated Sep. 30, 2004.
Office Action from U.S. Appl. No. 10/695,045 dated Feb. 22, 2005.
Response from U.S. Appl. No. 10/695,045 dated Jul. 25, 2005.
Office Action from U.S. Appl. No. 10/695,045 dated Oct. 20, 2005.
Response from U.S. Appl. No. 10/695,045 dated Jan. 17, 2006.
Notice of Allowance from U.S. Appl. No. 10/695,045 dated Apr. 11, 2006.
Office Action from U.S. Appl. No. 10/762,977 dated Jan. 18, 2005.
Response from U.S. Appl. No. 10/762,977 dated May 18, 2005.
Office Action from U.S. Appl. No. 10/762,977 dated Aug. 11, 2005.
Response from U.S. Appl. No. 10/762,977 dated Oct. 3, 2005.
Office Action from U.S. Appl. No. 10/762,977 dated Oct. 25, 2005.
Notice of Allowance from U.S. Appl. No. 10/762,977 dated Feb. 23, 2006.
Notice of Allowance from U.S. Appl. No. 11/077,483 dated Aug. 9, 2007.
Office Action from U.S. Appl. No. 11/145,477 dated Mar. 28, 2006.
Office Action from U.S. Appl. No. 11/145,477 dated Sep. 8, 2006.
Response from U.S. Appl. No. 11/145,477 dated Dec. 12, 2006.
Notice of Allowance from U.S. Appl. No. 11/145,477 dated Jan. 8, 2007.
U.S. Patent Office Action from U.S. Appl. No. 11/209,001 dated Jul. 25, 2006.
Office Action from U.S. Appl. No. 11/209,001 dated Nov. 8, 2006.
Notice of Abandonment from U.S. Appl. No. 11/209,001 dated Jul. 10, 2007.
Office Action from U.S. Appl. No. 11/429,687 dated Apr. 9, 2008.
Response from U.S. Appl. No. 11/429,687 dated Jun. 17, 2008.
Notice of Allowance from U.S. Appl. No. 11/429,687 dated Sep. 8, 2008.
Office Action from U.S. Appl. No. 11/472,509 dated May 4, 2007.
Interview Summary from U.S. Appl. No. 11/472,509 dated Aug. 3, 2007.
Response from U.S. Appl. No. 11/472,509 dated Aug. 3, 2007.
Office Action from U.S. Appl. No. 11/472,509 dated Nov. 30, 2007.
Response from U.S. Appl. No. 11/472,509 dated Apr. 30, 2008.
Response from U.S. Appl. No. 11/472,509 dated Jul. 22, 2008.
Office Action from U.S. Appl. No. 11/472,509 dated May 15, 2009.
Response from U.S. Appl. No. 11/472,509 dated Nov. 15, 2009.
Office Action from U.S. Appl. No. 11/472,509 dated Sep. 2, 2010.
Response from U.S. Appl. No. 11/472,509 dated Jan. 3, 2011.
Notice of Appeal and Pre-Appeal Brief Request and Statement from U.S. Appl. No. 11/472,509, filed Mar. 2, 2011.
Interview Summary from U.S. Appl. No. 11/472,509, filed Mar. 2, 2011.
Non-Final Rejection from U.S. Appl. No. 11/472,509 dated Mar. 3, 2011.
Pre-Brief Appeal Conference Decision from U.S. Appl. No. 11/472,509 dated Mar. 23, 2011.
Non-Final Rejection from U.S. Appl. No. 11/472,509 dated Apr. 7, 2011.
Response from U.S. Appl. No. 11/472,509 dated Aug. 8, 2011.
Notice of Allowance from U.S. Appl. No. 11/472,509 dated Nov. 14, 2011.
Supplemental amendment identifying cross-references to related applications from U.S. Appl. No. 11/472,509 dated Aug. 7, 2012.
Notice of Allowance from U.S. Appl. No. 11/472,509 dated Oct. 19, 2012.
Office Action from U.S. Appl. No. 11/474,834 dated Mar. 21, 2007.
Response from U.S. Appl. No. 11/474,834 dated Jun. 28, 2007.
Office Action from U.S. Appl. No. 11/474,834 dated Sep. 20, 2007.
Response from U.S. Appl. No. 11/474,834 dated Nov. 20, 2007.
Notice of Allowance from U.S. Appl. No. 11/474,834 dated Jan. 17, 2008.
Office Action from U.S. Appl. No. 11/490,899 dated Nov. 8, 2006.
Office Action from U.S. Appl. No. 11/490,899 dated Jan. 9, 2007.
Response from U.S. Appl. No. 11/490,899 dated Mar. 20, 2007.
Notice of Allowance from U.S. Appl. No. 11/490,899 dated Jun. 6, 2007.
Notice of Allowance from U.S. Appl. No. 11/490,899 dated Feb. 10, 2009.
Notice of Allowance from U.S. Appl. No. 11/490,899 dated May 26, 2009.
Office Action from U.S. Appl. No. 12/118,099 dated Oct. 28, 2010.
Response to Office Action from U.S. Appl. No. 12/118,099 dated Apr. 25, 2011.
Notice of Allowance from U.S. Appl. No. 12/118,099 dated Jul. 28, 2011.
International Search Report and Written Opinion from PCT/US2021/018648 dated May 4, 2021.
Notice of Allowance from U.S. Appl. No. 12/118,099 dated Jul. 3, 2013.
Office Action from U.S. Appl. No. 12/330,554 dated Apr. 11, 2011.
Response to Office Action from U.S. Appl. No. 12/330,554 dated Jul. 11, 2011.
Notice of Allowance from U.S. Appl. No. 12/330,554 dated Sep. 23, 2011.
Response to Office Action from Control No. 90/007,491 dated Sep. 11, 2006.
Office Action dated Sep. 21, 2006 from Control No. U.S. Appl. No. 90/007,491.
Response from Control No. 90/007,491 dated Nov. 9, 2006.
Notice of Appeal from Control No. 90/007,491 dated Nov. 9, 2006.
Advisory Action from Control No. 90/007,491 dated Nov. 22, 2006.
Appeal Brief from Control No. 90/007,491 dated Jan. 16, 2007.
Advisory Action from Control No. 90/007,491 dated Apr. 20, 2007.
Amended Appeal Brief from Control No. 90/007,491 dated Jun. 29, 2007.
Examiner's Answer from Control No. 90/007,491 dated Sep. 24, 2007.
Reply Brief from Control No. 90/007,491 dated Nov. 21, 2007.
Supplemental Examiner's Answer from Control No. 90/007,491 dated Dec. 18, 2007.
Request for Oral Hearing from Control No. 90/007,491 dated Feb. 19, 2008.
Reply Brief from Control No. 90/007,491 dated Feb. 19, 2008.
Office communication from Control No. 90/007,491 dated Mar. 14, 2008.
Office communication from Control No. 90/007,491 dated Jul. 3, 2008.
Notice of Hearing from Control No. 90/007,491 dated Aug. 22, 2008.
Hearing Attendance Confirmation from Control No. 90/007,491 dated Sep. 17, 2008.
Record of Oral Hearing from Control No. 90/007,491 dated Nov. 13, 2008.
Decision on Appeal from Control No. 90/007,491 dated Nov. 19, 2008.
Amendment for U.S. Appl. No. 09/698,481 dated Mar. 27, 2002.
Complaint for Patent Infringement Demand for Jury Trial, Case No. 1:06CV0517 dated Mar. 7, 2006 (9 pages).
Request for Reexamination of U.S. Pat. No. 6,196,343, filed Apr. 28, 2006, 17 pgs.
Affidavit, executed Apr. 3, 2006 by Mark Sullivan, Invacare Corporation Vice President of Rehab submitted in reexamination Control No. 90/007,491, 5 pgs.
Affidavit, executed Apr. 3, 2006 by Gerold Goertzen Invacare Corporation Director of Research & Development submitted in reexamination Control No. 90/007,491, 7 pgs.
Office Action from U.S. Appl. No. 08/228,584 dated Apr. 14, 1995.
Response from U.S. Appl. No. 08/228,584 dated Jul. 6, 1995.
Office Action from U.S. Appl. No. 08/228,584 dated Sep. 28, 1995.
Interview Summary from U.S. Appl. No. 08/228,584 dated Nov. 30, 1995.
Response from U.S. Appl. No. 08/228,584 dated Dec. 28, 1995.
Office Action from U.S. Appl. No. 08/228,584 dated Mar. 29, 1996.
Response from U.S. Appl. No. 08/228,584 dated Jun. 3, 1996.
Notice of Allowance from U.S. Appl. No. 08/228,584 dated Jun. 24, 1996.
Office Action from U.S. Appl. No. 08/694,484 dated Dec. 2, 1996.
Response from U.S. Appl. No. 08/694,484 dated Apr. 2, 1997.
Office Action from U.S. Appl. No. 08/694,484 dated Jul. 7, 1997.
Office Action from U.S. Appl. No. 08/694,484 dated Dec. 3, 1997.
Office Action from U.S. Appl. No. 08/694,484 dated Feb. 10, 1998.
Response from U.S. Appl. No. 08/694,484 dated May 4, 1998.
Notice of Allowance from U.S. Appl. No. 08/694,484 dated Jul. 31, 1998.
Office Action from U.S. Appl. No. 09/191,332 dated Jan. 19, 2000.
Response from U.S. Appl. No. 09/191,332 dated Apr. 18, 2000.
Notice of Allowance from U.S. Appl. No. 09/191,332 dated Jul. 3, 2000.
Notice of Allowance from U.S. Appl. No. 09/426,369 dated Oct. 20, 2000.
Office Action from U.S. Appl. No. 09/607,468 dated Sep. 26, 2001.
Response from U.S. Appl. No. 09/607,468 dated Dec. 21, 2001.
Office Action from U.S. Appl. No. 09/607,468 dated Apr. 18, 2002.
Response from U.S. Appl. No. 09/607,468 dated Jun. 21, 2002.
Notice of Allowance from U.S. Appl. No. 09/607,468 dated Jun. 28, 2002.
U.S. Patent Office Action from U.S. Appl. No. 09/698,481 dated Nov. 27, 2001.
Response from U.S. Appl. No. 09/698,481 dated Mar. 27, 2002.
Office Action in U.S. Appl. No. 13/970,794 dated Oct. 22, 2013.
Response to Office Action in U.S. Appl. No. 13/970,794 dated Jan. 22, 2014.
Notice to Applicant Regarding Non-Compliant in U.S. Appl. No. 13/970,794 dated Feb. 4, 2014.
Response to Office Action in U.S. Appl. No. 13/970,794 dated Mar. 5, 2014.
Notice of Allowance in U.S. Appl. No. 13/970,794 dated Jun. 9, 2014.
Amendment from U.S. Appl. No. 16/594,544 dated Aug. 27, 2021.
Notice of Allowance from U.S. Appl. No. 16/594,544 dated Sep. 22, 2021.
Notice of Allowance from U.S. Appl. No. 16/740,785 dated Apr. 26, 2021.
Notice of Allowance from U.S. Appl. No. 16/740,785 dated Jun. 30, 2021.
Response to Office Action from U.S. Appl. No. 16/726,562 dated Jul. 15, 2021.
Notice of Allowance from U.S. Appl. No. 16/726,562 dated Jul. 22, 2021.
Notice of Allowance from U.S. Appl. No. 16/726,562 dated Aug. 25, 2021.
Notice of Allowance for U.S. Appl. No. 17/169,975 dated May 13, 2022.
Amendment After Notice of Allowance for U.S. Appl. No. 17/169,975 dated Jun. 29, 2022.
Notice of Allowance for U.S. Appl. No. 17/395,565 dated Jun. 23, 2022.
Notice of Allowance for U.S. Appl. No. 17/395,565 dated Aug. 15, 2022.
Notice of Allowance for U.S. Appl. No. 13/768,878 dated Dec. 11, 2015.
Office Action from U.S. Appl. No. 13/768,878 dated Dec. 3, 2014.
Response to Office Action from U.S. Appl. No. 13/768,878 dated Jan. 21, 2015.
Notice of Allowance from U.S. Appl. No. 14/162,955 dated May 26, 2015.
Office Action from U.S. Appl. No. 14/446,735 dated Jan. 14, 2016.
Response to Office Action from U.S. Appl. No. 14/446,735 dated Apr. 12, 2016.
Notice of Allowance from U.S. Appl. No. 14/446,735 dated Jul. 15, 2016.
Notice of Allowance from U.S. Appl. No. 14/446,735 dated Nov. 16, 2016.
Restriction Requirement from U.S. Appl. No. 14/486,766 dated Jun. 8, 2015.
Response to Restriction Requirement from U.S. Appl. No. 14/486,766 dated Aug. 10, 2015.
Office Action from U.S. Appl. No. 14/486,766 dated Sep. 16, 2015.
Response to Office Action from U.S. Appl. No. 14/486,766 dated Dec. 8, 2015.
Notice of Allowance from U.S. Appl. No. 14/486,766 dated Feb. 9, 2016.
Office Action from U.S. Appl. No. 14/566,899 dated Sep. 17, 2015.
Response to Office Action from U.S. Appl. No. 14/566,899 dated Dec. 10, 2015.
Notice of Allowance from U.S. Appl. No. 14/566,899 dated Jan. 21, 2016.
Office Action from U.S. Appl. No. 14/585,393 dated Sep. 3, 2015.
Response to Office Action from U.S. Appl. No. 14/585,393 dated Jan. 21, 2016.
Notice of Allowance from U.S. Appl. No. 14/585,393 dated Feb. 22, 2016.
Office Action from U.S. Appl. No. 14/690,678 dated Nov. 16, 2015.
Office Action from U.S. Appl. No. 16/390,618 dated Jun. 24, 2020.
Response to Office Action from U.S. Appl. No. 16/390,618 dated Sep. 24, 2020.
Notice of Allowance from U.S. Appl. No. 16/390,618 dated Oct. 9, 2020.
Office Action from U.S. Appl. No. 16/594,544 dated May 27, 2021.
Office Action from U.S. Appl. No. 16/740,785 dated Sep. 14, 2020.
Response to Non-Final OA from U.S. Appl. No. 16/740,785 dated Dec. 14, 2020.
Office Action from U.S. Appl. No. 16/726,562 dated Apr. 15, 2021.
Notice of Allowance from U.S. Appl. No. 15/918,730 dated Apr. 28, 2021.
Oct. 1999 user manual for Quickie@ S-626 (User Instruction Manual & Warranty) 51 pages.
English Translation of Nullity Suit filed by Sunrise Medical GmbH in European Publication No. 2070744 B1, dated Mar. 1, 2021, 53 pages.
Nichtigkeitsklage re dt. Teil EP744 Sunrise Medical GmbH_01032021 (German Nullity Complaint) dated Mar. 1, 2021, 75 pages.
Quickie@ S-626 figure compilation ( 2 pages), provided as exhibit with Nullity Suit filed by Sunrise Medical GmbH in European Publication No. 2070744 B1, dated Mar. 1, 2021.
“All-Terrain Wheelchair, Designer's Corner”, Design News, Feb. 24, 1992, cover page and p. 54.
“Big Bounder Power Wheelchair: Conventional “Tubular” Style Frame”; http://www.wheelchair.com/bigbounderpage.htm, Accessed on the World Wide Web on Dec. 17, 2003, p. 1-4.
“Bounder Plus Power Wheelchair: Convention “Tubular” Style Frame”; http://www.wheelchairs.com/plus.htm, Accessed on the World Wide Web on Dec. 17, 2003, p. 1-4.
“Frog Legs: Smooth Ride Ahead”; http://www.froglegsinc.com/index.php, Accessed on the World Wide Web on Dec. 17, 2003, p. 105.
“Frog Legs Tires”, http://mdtap.org/tt/1999.09/prod.html, Accessed on the World Wide Web on Dec. 17, 2003, p. 1-3.
Golden Technologies Advertisement Video https://www.youtube.com/watch?v=nexltKOWBS8, accessed Jul. 26, 21 (copyrighted 2011 indicated on video).
“Invacare pronto M7I jr. Power Wheelchair Manual”; Accessed on the World Wide Web on Dec. 17, 2003.
“Invacare Storm Series TDX Power Wheelchairs Manual”; Accessed on the World Wide Web on Dec. 17, 2003, p. 1-24.
“Invacare Xterra Series GT Power Wheelchair Manual”, Accessed on the World Wide Web on Dec. 17, 2003, p. 1-4.
“Jazzy 1122”, Pride Mobile Products Corp., Accessed on the World Wide Web on Dec. 17, 2003, p. 1-2.
“Jazzy 1133”, Pride Mobile Products Corp., Accessed on the World Wide Web on Dec. 17, 2003, p. 1-2.
“Jazzy 1170XL”, Pride Mobile Products Corp., Accessed on the World Wide Web on Dec. 17, 2003, p. 1-2.
Kauzlarich, J. et al., “Wheelchair Caster Shimmy II: Damping”, Journal for Rehabilitative Research and Development, May/Jun. 2000, vol. 37, No. 3, pp. 305-314.
McLauren, C., “Future Developments—Current Directions in Wheelchair Research”, Journal for Rehabilitative Research and Development, Jul./Aug. 1985, vol. 42, No. 4 Suppl. No. 2, pp. 88-99.
“Bruno Independent Living Aids ISP 9001 Certified”; http://www.bruno.com/power_chairs.htm, Accessed on the World Wide Web on Dec. 17, 2003, p. 1-5.
“Top End Terminator SS Sports Wheelchair”, http://phc-online.com/terminator_ss.htm, Accessed on the World Wide Web on Dec. 17, 2003, p. 1-5.
“TransActions of the Institute of Measurement and Control”, The British Library of Science Technology and Business, vol. 24, Nov. 5, 2002, 15 pgs.
M.J. Lawn, et al., “Modeling of a Stair-Climbing Wheelchair Mechanism with High Single-Step Capability”, IEEE TransActions on Neutral Systems and Rehabilitation Engineering, vol. 11, No. 3, Sep. 2003, pp. 323-332.
Quickie G-424 User Instruction Manual & Warranty, 930484 Rev. A (27 sheets) (alleged date not later than 2000).
10 photographs (8.5 x 11) of Quickie G-424 Wheelchair obtained Nov. 24, 2004.
Sunrise Medical, Inc., Power Products Parts Manual, 930307 Rev. K (264 double sided sheets), Jul. 2004. (Note: various dates are alleged therein based on wheelchair products listed including the Quickie G-424).
Permobil Chairman HD3 Owner's Manual dated May 2003, 52 pages.
Permobil C400 Power Wheelchair, Owner's Manual, version 6, 2010, Permobil AB, Sweden, 100 pgs.
Permobil C500 Power Wheelchair, Owner's Manual, version 6, 2010, Permobil AB, Sweden, 100 pgs.
Pride Mobility, Jet 3 Ultra Owner's Manual dated Jun. 2007, 43 pages.
Quantum Series Owner's Manual dated Feb. 2009, 43 pages.
“Bike” magazine article, “Ten Underrated Products You Probably Don't Own but Maybe Should” (in part), Jan. 1994, pp. 82 and 83.
“Bike” magazine article “Softride Contour”, Mar. 1994, pp. 64-65.
“Mountain Bike Action”, picture and caption describing “Body Shock”, Jan. 1994, p. 48.
International Search Report from PCT/US98/07543 dated Aug. 19, 1998.
International Search Report from PCT/US01/42656 dated Jan. 14, 2003.
International Search Report from PCT/US02/29996 dated Jun. 24, 2003, 2 pgs.
International Preliminary Examination Report from PCT/US02/29996 dated Dec. 11, 2003.
International Search Report from PCT/US02/29998 dated Dec. 12, 2002.
International Preliminary Examination Report from PCT/US02/29998 dated Jan. 13, 2004.
International Search Report and Written Opinion from PCT/US03/25736 dated Dec. 28, 2004.
International Search Report from PCT/US03/34124 dated Dec. 28, 2004.
International Preliminary Examination Report from PCT/US03/34124 dated Aug. 25, 2006.
International Search Report and Written Opinion from PCT/IB08/050111 dated Jun. 4, 2008.
Amendments under Article 34(2)(b) PCT and Comments from PCT/IB08/050111 dated Oct. 2, 2008.
International Preliminary Report on Patentability for International Patent Application No. PCT/IB08/050111 dated Apr. 22, 2009.
International Search Report and Written Opinion from PCT/US08/52878 dated Jul. 3, 2008.
International Search Report and Written Opinion from PCT/US08/53242 dated Sep. 3, 2008.
International Search Report and Written Opinion from PCT/US10/51888 dated Dec. 6, 2010.
International Search Report and Written Opinion for PCT/US13/026441 dated Apr. 23, 2013.
Office Action dated Feb. 2, 2006 from Control No. 90/007,491.
Interview Summary from Control No. 90/007,491 dated Mar. 23, 2006.
Statement as to the substance of an Interview from Control No. 90/007,491, filed Apr. 3, 2006.
Response from Control No. 90/007,491 dated Apr. 3, 2006.
Office Action dated Jul. 5, 2006 from Control No. 90/007,491.
Response to Office Action from U.S. Appl. No. 14/690,678 dated Mar. 16, 2016.
Office Action from U.S. Appl. No. 14/690,678 dated Jul. 15, 2016.
Pre-Brief Conference Request and Notice of Appeal from U.S. Appl. No. 14/690,678 dated Dec. 19, 2016.
Pre-Brief Appeal Conference Decision from U.S. Appl. No. 14/690,678 dated Feb. 3, 2017.
Office Action from U.S. Appl. No. 14/690,678 dated May 10, 2017.
Amendment from U.S. Appl. No. 14/690,678 dated Jul. 31, 2017.
Notice of Allowance from U.S. Appl. No. 14/690,678 dated Oct. 26, 2017.
Office Action from U.S. Appl. No. 14/875,110 dated May 20, 2016.
Response to Office Action from U.S. Appl. No. 14/875,110 dated Sep. 20, 2016.
Final Office Action from U.S. Appl. No. 14/875,110 dated Feb. 15, 2017.
Response to Office Action from U.S. Appl. No. 14/875,110 dated May 15, 2017.
Office Action from U.S. Appl. No. 14/875,110 dated May 24, 2017.
Amendment from U.S. Appl. No. 14/875,110 dated Sep. 25, 2017.
Final Office Action from U.S. Appl. No. 14/875,110 dated Dec. 11, 2017.
Response to Office Action from U.S. Appl. No. 14/875,110 dated Jan. 23, 2018.
Notice of Allowance from U.S. Appl. No. 14/875,110 dated Feb. 16, 2018.
Office Action from U.S. Appl. No. 15/060,121 dated Oct. 31, 2016.
Response to Office Action from U.S. Appl. No. 15/060,121 dated Jan. 31, 2017.
Notice of Allowance from U.S. Appl. No. 15/060,121 dated May 17, 2017.
Office Action from U.S. Appl. No. 15/146,260 dated Apr. 10, 2017.
Amendment from U.S. Appl. No. 15/146,260 dated Jun. 22, 2017.
Notice of Allowance from U.S. Appl. No. 15/146,260 dated Jul. 27, 2017.
Ex Parte Quayle Action from U.S. Appl. No. 15/151,929 dated Aug. 8, 2017.
Response to Ex Parte Quayle Action from U.S. Appl. No. 15/151,929 dated Oct. 9, 2017.
Office Action from U.S. Appl. No. 15/159,264 dated Nov. 17, 2016.
Notice of Allowance from U.S. Appl. No. 15/151,929 dated Nov. 16, 2017.
Response to Office Action from U.S. Appl. No. 15/159,264 dated Feb. 17, 2017.
Final Office Action from U.S. Appl. No. 15/159,264 dated Jun. 13, 2017.
Response After Final from U.S. Appl. No. 15/159,264 dated Sep. 12, 2017.
Advisory Action from U.S. Appl. No. 15/159,264 dated Sep. 28, 2017.
Office Action from U.S. Appl. No. 15/159,264 dated Dec. 26, 2017.
Amendment from U.S. Appl. No. 15/159,264 dated Apr. 26, 2018.
Final Office Action from U.S. Appl. No. 15/159,264 dated Aug. 10, 2018.
Office Action from U.S. Appl. No. 15/447,988 dated Aug. 7, 2018.
Amendment from U.S. Appl. No. 15/447,988 dated Nov. 7, 2018.
Notice of Allowance from U.S. Appl. No. 15/447,988 dated Dec. 14, 2018.
Ex Parte Quayle Action from U.S. Appl. No. 15/645,749 dated Aug. 7, 2018.
Response to Ex Parte Quayle Action from U.S. Appl. No. 15/645,749 dated Oct. 24, 2018.
Notice of Allowance from U.S. Appl. No. 15/645,749 dated Feb. 6, 2019.
Notice of Allowance from U.S. Appl. No. 15/645,749 dated May 28, 2019.
Office Action from U.S. Appl. No. 15/822,967 dated Apr. 8, 2019.
Amendment from U.S. Appl. No. 15/822,967 dated Jul. 31, 2019.
Notice of Allowance from U.S. Appl. No. 15/822,967 dated Aug. 28, 2019.
Office Action from U.S. Appl. No. 15/935,538 dated Mar. 26, 2019.
Response to Office Action from U.S. Appl. No. 15/935,538 dated Jun. 26, 2019.
Notice of Allowance from U.S. Appl. No. 15/935,538 dated Aug. 9, 2019.
Office Action from U.S. Appl. No. 16/390,618 dated Aug. 22, 2019.
Response to Office Action from U.S. Appl. No. 16/390,618 dated Nov. 22, 2019.
Office Action from U.S. Appl. No. 16/390,618 dated Mar. 4, 2020.
Response to Office Action from U.S. Appl. No. 16/390,618 dated Jun. 4, 2020.
Office Action for U.S. Appl. No. 17/900,925 dated Dec. 20, 2022.
Notice of Allowance for U.S. Appl. No. 17/394,525 dated Jul. 20, 2023.
Notice of Allowance for U.S. Appl. No. 17/900,925 dated Jul. 12, 2023.
Notice of Allowance for U.S. Serial No. 17/979, 107 dated Sep. 20, 2023.
Amendment for U.S. Appl. No. 17/900,925 dated Jun. 13, 2023.
Related Publications (1)
Number Date Country
20210259898 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62981265 Feb 2020 US