This application claims priority to Japanese Patent Application No. 2019-146762 filed on Aug. 8, 2019, which is incorporated herein by reference in its entirety including the specification, drawings and abstract.
The present disclosure relates to a wheelchair carrying vehicle.
In terms of a wheelchair carrying vehicle configured to carry a wheelchair such that a wheelchair boarding space is formed by folding a rear seat and the wheelchair is put on the space, there has been conventionally known a structure in which a hand rail including a gripper to be gripped by an occupant of the wheelchair is provided in the wheelchair boarding space (e.g., see Japanese Unexamined Patent Application Publication No. 2005-192740 (JP 2005-192740 A)). The hand rail is configured to be switchable between a first state where the gripper is placed at a position (on a lateral side of the wheelchair) that does not disturb boarding of the wheelchair and a second state where the gripper is placed at a position (on the rear side of a seatback) where the gripper retracts from the lateral side of the rear seat when the rear seat is placed.
In the meantime, the occupant of the wheelchair may change the hand rail from a stored position on the lateral side of the wheelchair to a usage position near the chest of the occupant so that the occupant can easily support himself or herself during running of the vehicle. However, at the time of heavy braking or a collision of the vehicle, the occupant of the wheelchair may hit the hand rail fixed at the usage position due to an inertia action, so that the occupant may receive an impact from the hand rail. Also, such a possibility is conceivable that the hand rail deforms due to the impact, so that the occupant falls from the wheelchair.
In view of this, an object of the present disclosure is to provide a wheelchair carrying vehicle that can relieve an impact to be received by an occupant of a wheelchair from a hand rail even when an inertia is applied to the occupant.
In order to achieve the above object, a wheelchair carrying vehicle according to a first aspect of the present disclosure includes a hand rail and an impact absorption mechanism. The hand rail is provided in a support shaft, and the hand rail is configured to be switchable between a usage position and a stored position when the support shaft rotates, the usage position being a position where the hand rail is placed in a vicinity of a chest of an occupant of a wheelchair, the stored position being a position where the hand rail is placed along a side wall of a vehicle cabin. The impact absorption mechanism is configured to, when a load equal to or more than a predetermined value is input from the occupant into the hand rail placed and fixed at the usage position, absorb at least part of the load by rotating the hand rail.
In the first aspect, when a load equal to or more than the predetermined value is input from the occupant of the wheelchair into the hand rail placed and fixed at the usage position due to an inertial action along with a collision or the like of the vehicle, for example, the hand rail is rotated by the impact absorption mechanism, and at least part of the load (impact energy) is absorbed. This accordingly relieves an impact to be received by the occupant from the hand rail even when an inertia is applied to the occupant of the wheelchair. Note that, the “vicinity of the chest” in the present disclosure indicates the front side of the chest of the occupant of the wheelchair when the chest is viewed from the occupant.
Further, the “wheelchair carrying vehicle” in the present disclosure indicates a general vehicle that can travel with an occupant of a wheelchair being carried by the vehicle regardless of whether the occupant needs to pay the fare or not. A vehicle for so-called mobility as a service (MaaS) including a self-driving bus or the like as an example is also included in the “wheelchair carrying vehicle” in the present disclosure.
Further, a wheelchair carrying vehicle according to a second aspect is as follows. That is, in the wheelchair carrying vehicle according to the first aspect, the impact absorption mechanism may be provided in the support shaft.
In the second aspect, the impact absorption mechanism is provided in the support shaft of the hand rail. This makes it possible to downsize the impact absorption mechanism, so that a large mounting space for the impact absorption mechanism is not required in the vehicle cabin.
Further, a wheelchair carrying vehicle according to a third aspect is as follows. That is, in the wheelchair carrying vehicle according to the first aspect or the second aspect, the hand rail may be configured to rotate to a vicinity of knees of the occupant when the load equal to or more than the predetermined value is input into the hand rail.
In the third aspect, when the hand rail rotates toward the vicinity of the knees of the occupant, at least part of the load (impact energy) input into the hand rail is absorbed. Further, it is possible to prevent the occupant from falling from the wheelchair by the hand rail rotating to the vicinity of the knees of the occupant. Note that, the “vicinity of the knees” in the present disclosure indicates a region from the thighs of the occupant of the wheelchair to the upper sides of the knees when the knees are viewed from the occupant.
Further, a wheelchair carrying vehicle according to a fourth aspect is as follows. That is, in the wheelchair carrying vehicle according to the third aspect, the hand rail may include at least either one of a hand rail for an occupant of a wheelchair who is seated in a forward facing posture relative to an advancing direction and a hand rail for an occupant of a wheelchair who is seated in a rearward facing posture relative to the advancing direction. The support shaft provided with the hand rail for the occupant of the wheelchair who is seated in a forward facing posture may be inclined outward in the vehicle width direction and forward in the vehicle front-rear direction from the vertical direction. The support shaft provided with the hand rail for the occupant of the wheelchair who is seated in a rearward facing posture may be inclined outward in the vehicle width direction and rearward in the vehicle front-rear direction from the vertical direction.
In the fourth aspect, with just a simple configuration to incline the support shaft, it is possible to prevent the occupant from falling from the wheelchair by the hand rail provided in the support shaft.
As described above, with the present disclosure, even when an inertia is applied to an occupant of a wheelchair, it is possible to relieve an impact to be received by the occupant from the hand rail.
Features, advantages, and technical and industrial significance of exemplary embodiments of the disclosure will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
The following describes an embodiment of the present disclosure in detail with reference to the drawings. Note that, for purposes of this description, an arrow UP illustrated appropriately in each drawing indicates the upper side in the vehicle up-down direction, an arrow FR indicates the front side in the vehicle front-rear direction, and an arrow RH indicates the right side in the vehicle width direction. Accordingly, in the following description, in a case where the upper and lower sides, the front and rear sides, and the right and left sides are described without any special description, they respectively indicate the upper and lower sides in the vehicle up-down direction, the front and rear sides in the vehicle front-rear direction, and the right and left sides in the vehicle right-left direction (the vehicle width direction).
Further, a view from the vehicle width direction is referred to as a “side view.” Further, the present embodiment will be described by taking, as an example, a self-driving bus (hereinafter just referred to as a “bus”) 10 as a wheelchair carrying vehicle. Further, in the following description, a state (posture) facing forward along an advancing direction of the bus 10 is referred to as a “forward facing posture,” and a state (posture) facing rearward along the advancing direction of the bus 10 is referred to as a “rearward facing posture.”
As illustrated in
As illustrated in
Further, as illustrated in
Further, as illustrated in
The front seat 46 includes a seating face 46A on which the occupant is seated, and a flat-shaped positioning portion 46B integrally extending downward from a front end portion of the seating face 46A. Similarly, the rear seat 48 includes a seating face 48A on which the occupant is seated, and a flat-shaped positioning portion 48B integrally extending downward from a front end portion of the seating face 48A.
Accordingly, the occupant P of the wheelchair 40 boarding the bus 10 is seated behind the front seat 46 in a rearward facing posture or is seated in front of the rear seat 48 in a forward facing posture. At this time, a part (e.g., a pair of right and left main wheels 42) of the wheelchair 40 is brought into contact with a corresponding one of the positioning portions 46B, 48B. Hereby, the wheelchair 40 is placed in a positioned (fixed) state.
Further, a support member (not shown) configured to rotatably support a support shaft 34 is provided at a predetermined position on each of an inner wall surface 24A, of the second pillar 24, that faces inward in the vehicle width direction and an inner wall surface 26A, of the third pillar 26, that faces inward in the vehicle width direction. A hand rail 30 for the occupant P of the wheelchair 40 boarding at the above position is integrally attached to the support shaft 34. The support member is formed to have a generally “C-shaped” section into which the support shaft 34 is inserted in a movable manner in the axial direction, for example.
Note that, since the hand rail 30 placed on the inner wall surface 24A side of the second pillar 24 and the hand rail 30 placed on the inner wall surface 26A side of the third pillar 26 have the same configuration, the following description deals with the hand rail 30 placed on the inner wall surface 26A side of the left third pillar 26 as an example. That is, the following describes the hand rail 30 provided for the occupant P of the wheelchair 40 boarding on the left side in front of the rear seat 48 in a forward facing posture.
As illustrated in
The support shaft 34 is rotatably supported by the support member (not shown) provided to project from the inner wall surface 26A of the third pillar 26. In a front view illustrated in
As illustrated in
More specifically, as illustrated in
The fixing shaft 36 is formed to have a diameter smaller than that of the support shaft 34 and is placed coaxially with the support shaft 34. A lower part of the support shaft 34 is configured such that the upper part of the fixing shaft 36 is relatively insertable into the lower part of the support shaft 34. One or more recessed grooves (not shown) along the axial direction are formed on an inner peripheral surface of the lower part of the support shaft 34, and one or more projecting portions (not shown) fitted into the recessed grooves are formed on an outer peripheral surface of the upper part of the fixing shaft 36.
Accordingly, when the upper part of the fixing shaft 36 is relatively inserted into the lower part of the support shaft 34, the projection portions of the fixing shaft 36 are fitted into the recessed grooves of the support shaft 34. Thus, the support shaft 34 is locked (fixed) by the fixing shaft 36 such that the support shaft 34 is non-rotatable by a load (impact energy) less than a predetermined value (e.g., 250 N).
That is, when the support shaft 34 is slid upward in the axial direction, the upper part of the fixing shaft 36 is not relatively inserted into the lower part of the support shaft 34. Accordingly, the support shaft 34 rotates while the support shaft 34 is supported by the support member, so that the support shaft 34 can take the usage position and the stored position. At the usage position, the support shaft 34 is slid downward in the axial direction, and the upper part of the fixing shaft 36 is relatively inserted into the lower part of the support shaft 34. Hereby, the support shaft 34 is locked so that the hand rail 30 does not rotate unexpectedly.
Further, the fixing shaft 36 is a so-called torsion bar spring, and a support base 38 having a diameter larger than that of the fixing shaft 36 is integrally and coaxially provided in a lower end portion of the fixing shaft 36. The support base 38 is fixed to the vehicle body 12. Accordingly, when a load equal to or more than the predetermined value (e.g., 250 N) is input into the hand rail 30 toward the front side, the fixing shaft 36 elastically deforms to twist as illustrated in
That is, the fixing shaft 36 relatively inserted into the support shaft 34 (provided in the support shaft 34) constitutes an impact absorption mechanism configured to, when a load equal to or more than the predetermined value is input from the occupant P of the wheelchair 40 into the hand rail 30 placed and fixed at the usage position, absorb at least part of the load by rotating the hand rail 30. Note that, at this time, since the support shaft 34 is inclined, the hand rail 30 rotates toward the vicinity of the knees of the occupant P as illustrated in
Next will be described operations in the bus 10 configured as described above.
As illustrated in
In this state, the occupant P of the wheelchair 40 moves the hand rail 30 from the stored position to the usage position. That is, when the hand rail 30 placed on the inner wall surface 26A side of the left third pillar 26 as illustrated in
At this time, the support shaft 34 is rotated in a state where the support shaft 34 is supported by the support member. When the occupant P rotates the hand rail 30 downward to the usage position in a state where the occupant P is gripping the hand rail main body 32, the occupant P then slides the hand rail 30 downward in the axial direction of the support shaft 34. Hereby, the upper part of the fixing shaft 36 is relatively inserted into the lower part of the support shaft 34, so that the projection portions of the fixing shaft 36 are fitted into the recessed grooves of the support shaft 34.
Thus, as illustrated in
In the meantime, when the bus 10 has a front end collision, for example, the occupant P of the wheelchair 40 who is seated in front of the rear seat 48 in a forward facing posture is to move forward due to an inertial action along with the front end collision. That is, a load equal to or more than the predetermined value (e.g., 250 N) is input from the occupant P into the hand rail 30 toward the front side, the hand rail 30 being placed at the usage position.
As a result, as illustrated in
Hereby, at least part of the load (impact energy) input into the hand rail 30 is absorbed by the elastic deformation of the fixing shaft 36 that allows the hand rail 30 to rotate, thereby reducing an injury level to be received by the occupant P from the hand rail 30. That is, even when an inertia directed forward is applied to the occupant P of the wheelchair 40 due to a collision or the like of the bus 10, it is possible to relieve an impact to be received by the occupant P from the hand rail 30.
Note that, since the support shaft 34 is inclined as described above, the hand rail 30 (the hand rail main body 32) absorbs the load (impact energy) while the hand rail 30 is rotating to the vicinity of the knees of the occupant P. Further, since the hand rail 30 rotates toward the vicinity of the knees of the occupant P, it is possible to prevent, by the hand rail 30 (the hand rail main body 32) thus rotating, the occupant P to move forward due to the inertial action from falling from the wheelchair 40.
Besides, such an effect can be yielded only by a simple configuration to incline the support shaft 34, thereby also making it possible to restrain an increase in a manufacturing cost. Further, as described above, the fixing shaft 36 as the impact absorption mechanism is just provided for the support shaft 34 of the hand rail 30, and this can achieve downsizing of the impact absorption mechanism. That is, there is such an advantage that a large mounting space for providing the impact absorption mechanism is not required in the vehicle cabin 18 of the bus 10.
Further, the impact absorption mechanism is not limited to the fixing shaft 36 as a torsion bar spring illustrated in
As illustrated in
Two blade members 39 are provided on an outer peripheral surface of a lower end portion of the fixing shaft 37 so as to project toward the opposite sides by 180 degrees, and a through-hole 56A through which the lower end portion of the fixing shaft 37 is inserted is formed in a central part of an upper wall 56 of the case 52 (see
Further, in a plan view, the projecting length of the partition wall 54 toward the center and the projecting length of the blade member 39 along the radial direction are slightly shorter than a length obtained by subtracting the radius of the fixing shaft 37 from the radius of the case 52 on its inner peripheral side. That is, the partition wall 54 and the blade member 39 are formed to have respective lengths that allow them to overlap each other in the radial direction.
Accordingly, even if the fixing shaft 37 is to rotate inside the case 52, the oil L present between the blade member 39 and the partition wall 54 serves as a rotational resistance. Thus, the fixing shaft 37 does not rotate when the fixing shaft 37 receives an input of a load (impact energy) less than the predetermined value (e.g., 250 N). In the meantime, the fixing shaft 37 is configured to rotate against the rotational resistance when the fixing shaft 37 receives an input of a load equal to or more than the predetermined value. That is, the damper mechanism 50 functions as an oil damper.
With the damper mechanism 50 configured as described above, when a load equal to or more than the predetermined value (e.g., 250 N) is input from the occupant P into the hand rail 30 toward the front side, the fixing shaft 37 rotates against the rotational resistance caused by the oil L and allows the hand rail 30 to rotate, as described above, for example.
Hereby, at least part of the load (impact energy) input into the hand rail 30 is absorbed by the damper mechanism 50 that allows the hand rail 30 to rotate, thereby reducing an injury level to be received by the occupant P from the hand rail 30. That is, even when an inertia directed forward is applied to the occupant P of the wheelchair 40 due to a collision or the like of the bus 10, it is possible to relieve an impact to be received by the occupant P from the hand rail 30.
The bus (wheelchair carrying vehicle) 10 according to the present embodiment has been described above with reference to the drawings. However, the bus (wheelchair carrying vehicle) 10 according to the present embodiment is not limited to the bus illustrated in the figures, and its design is modifiable appropriately within a range that does not deviate from the gist of the present disclosure. For example, the impact absorption mechanism is not limited to the aspects (the fixing shaft 36 as a torsion bar spring or the damper mechanism 50) illustrated in
Further, in a case of the hand rail 30 provided on the inner wall surface 26A side of the third pillar 26, a load is input from the occupant P of the wheelchair 40 into the hand rail 30 toward the front side at the time of a front end collision (or heavy braking) or the like of the bus 10, as described above. On this account, the support shaft 34 in this case is placed to be inclined outward in the vehicle width direction and forward from the vertical direction.
In the meantime, in a case of the hand rail 30 provided on the inner wall surface 24A side of the second pillar 24, a load is input from the occupant P of the wheelchair 40 into the hand rail 30 toward the rear side at the time of a rear end collision or the like of the bus 10. On this account, the support shaft 34 in this case is placed to be inclined outward in the vehicle width direction and rearward from the vertical direction.
Note that the bus 10 is not limited to the configuration including both an area in which the occupant P of the wheelchair 40 is seated in a forward facing posture and an area in which the occupant P of the wheelchair 40 is seated in a rearward facing posture. That is, the bus 10 may have a configuration including either the area in which the occupant P of the wheelchair 40 is seated in a forward facing posture or the area in which the occupant P of the wheelchair 40 is seated in a rearward facing posture. That is, the bus 10 is provided with at least either one of the hand rail 30 for the occupant P of the wheelchair 40 who is seated in a forward facing posture and the hand rail 30 for the occupant P of the wheelchair 40 who is seated in a rearward facing posture.
Further, the front seats 46 and the rear seats 48 may be foldable seats. In this case, the positioning portions with which the main wheels 42 of the wheelchairs 40 are brought into contact should be set appropriately in the folded front seats 46 and the folded rear seats 48. Further, the wheelchair 40 may be configured such that, after the wheelchair 40 is positioned by the positioning portion 46B of the front seat 46 or the positioning portion 48B of the rear seat 48, the wheelchair 40 is fixed by a seat belt device (not shown) or the like provided in the vehicle cabin 18.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-146762 | Aug 2019 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20120219395 | Inaguma | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
H11113966 | Apr 1999 | JP |
2000-043718 | Feb 2000 | JP |
2004-168115 | Jun 2004 | JP |
2005-192740 | Jul 2005 | JP |
2014-188162 | Oct 2014 | JP |
2015-080658 | Apr 2015 | JP |
2015080658 | Apr 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20210038448 A1 | Feb 2021 | US |