NA
NA
NA
NA
NA
The present invention relates to manually propelled wheelchairs. More particularly, the present invention relates to a non-motorized wheelchair propulsion device.
People of all ages and health profiles routinely rely on wheelchairs for their daily mobility needs. Important wheelchair selection criteria include size and weight of the chair, maneuverability, the ability to fold or lift the chair to store in a car trunk, the method by which the wheelchair is propelled, and the costs associated with purchasing the wheelchair as well as maintaining it. The ideal wheelchair is lightweight, foldable, maneuverable, easy to propel, inexpensive and easy to maintain. However, this ideal wheelchair design thus far has proven elusive.
Two main wheelchair designs are currently available: electric drive and manual propulsion. Electric drive wheelchairs use a motor and drive unit to operate the chair and are larger, heavier, less maneuverable, and expensive. The wheelchair user controls the chair's motor with a lever or button controls, and thus propulsion and maneuvering of the wheelchair is effortless, requiring very little physical exertion by the user. Unfortunately, these electric wheelchairs are so bulky they often cannot fit into standard bathrooms in private homes, have limited maneuverability in tight spaces, and require specially adapted lifts and gates as well as vehicles to transport the chair, which is often cost prohibitive to the chair user. Electric wheelchairs, given their expense, are subject to theft and potential damage when being transported. These chairs also have batteries that must be recharged and replaced. Hence, many people who have an electric wheelchair for daily use still often have a manual wheelchair for “outside” use or travel, or even for use within their houses when the electric wheelchair is too large or otherwise bulky to maneuver though specific areas of the house. For instance, a house without an elevator usually has a wheelchair on each floor of the house and few people can afford to have multiple electric wheelchairs, thus typically the second wheelchair is in fact a manually propelled one.
Manually propelled wheelchairs have one significant drawback with their design: the push or hand rim affixed to the outermost side of each rear wheel is both non-ergonomic and requiring significant arm strength to propel the chair even for short distances. To move forward or backwards, the user grabs the hand rim and either pushes or pulls the rim to turn the wheels in the desired direction. This repetitive motion causes significant strain on the arm and shoulder and can cause injury. Manually propelled wheelchairs are also not suitable for those with arm injuries or otherwise lack physical strength to use the hand rim. Ironically, people who already have physical limitations and need a wheelchair to replace ambulatory mobility discover the wheelchair design itself creates more life limitations, including isolation, dependency on other people, and the overall diminishing of the wheelchair user's independence and quality of life.
Despite existing physical limitations, most people who depend on wheelchairs on a daily basis look for ways to get exercise and thus seek manual propulsion assist devices allowing for easier manual operation of the wheelchair. The majority of manual propulsion assist devices are in fact new wheelchair designs meant to replace the classic existing wheelchair with the hand rims, and thus unsuitable for those wishing to retrofit their existing wheelchairs. These new wheelchair designs are complicated, require new and potentially professional maintenance of the parts, add extra weight, and do nothing to help out a wheelchair owner who does not want to purchase a new chair. These designs are ideally most suited for someone wanting to purchase a new chair. For instance, U.S. Pat. No. 7,520,519 to Smurthwaite, uses a transmission having multiple drive wheels operated by a lever handle attached directly to each of the rear wheels, with direction of the wheels reversed by reversing the pawls within the transmissions, and best shown in
U.S. Pat. No. 4,453,729 to Lucken similarly uses a ratchet system on the rear drive wheels and handles to allow the wheelchair user to propel forwards or backwards. While simpler than Smurthwaite, Lucken still describes a new wheelchair and is not suitable for retrofitting an existing chair.
U.S. Pat. No. 4,735,431 to Tait adds an upper drive wheel located approximately behind the arm rests of the chair, with the main rear drive wheels resized smaller and relocated further rearwards and approximately below the upper drive wheel, the sets of wheels connected using a chain as shown in
U.S. Pat. No. 4,811,964 to Horn is another new wheelchair design with a rowing level pivotally connected to the wheelchair frame, with a steering shaft with a handlebar grip mounted coaxially within the rowing lever, with a pair of ratcheted sprockets mounted on the back axle with a pair of sprocket chain segments connected by cables through pulleys to the rowing lever to allow the rowing motion to engage the ratches with the axles for propulsion.
Similarly, U.S. Pat. No. 6,889,991 to Facer, U.S. Pat. No. 7,837,219 to Kylstra, U.S. Pat. No. 10,548,785 to Vermij, U.S. Pat. No. 10,722,409 to Robins, US publication no. 2009/0283982 A1 to Thomas, and US publication no. 2012/0187649 to Bayne all detail new wheelchair designs with many parts that are either completely unsuitable for retrofitting an existing wheelchair, or which require extensive modification of an existing wheelchair as to be impractical for a wheelchair user. US publication no. 2002/0145271 A1 to Sanchez details a wheelchair and power booster assembly for converting an existing wheelchair, however, it requires the wheelchair owner to essentially disassemble the entire chair and rebuild it using the kit, which again is highly impractical and unrealistic.
What is needed is a simple manual wheelchair propulsion assist device that has few parts that require servicing, is easy and intuitive to use requiring no extensive training or learning period, can be added to an existing wheelchair easily without requiring major modifications thereto, is lightweight and removable, allowing the user to keep the assist device on the wheelchair or remove it as desired without the need of tools for the removal, and is moderately priced so as to be affordable.
In a first aspect of the invention, a propulsion assist device for a wheelchair having a manual hand rim affixed to a drive wheel of the wheelchair, the propulsion assist device having a pair of lever arms each with an upper end and a lower end, the lower end formed with a lower aperture. At the lower end of each lever arm, a frame is pivotably secured thereto by way of a flange having a flange hole, and a fastener coupling the flange to the lower end through their respective hole and aperture. Each lever arm pivots forwards and backwards about its respective fastener affixed to each frame. The frame is further comprised of a top affixed to a pair of opposed side walls in spaced apart relationship, with an underside of the top and the spaced apart relationship of the side walls defining a channel sized and shaped to receive the manual hand rim. A portion of grip material is positioned on the underside of the top inside the channel.
In a second aspect of the invention, an upper end of the each lever arm is comprised of a handle sized and shaped to be gripped by a human hand and allow a user to ergonomically push and pull the lever arms in a rowing-like motion.
In a third aspect of the invention, the lever arm is further comprised of a telescopically adjustable upper arm and a lower arm, whereby a total length of the lever arm is adjustable.
In a fourth aspect of the invention, each of the side walls is formed with a bottom lip in spaced apart relationship with one another so as to create a gap between the bottom lips.
In a fifth aspect of the invention, a replacement rim having a flattened profile adapted to replace an original manufacturer hand rim of the wheelchair using existing fasteners of the original manufacturer hand rim is included and is sized and shaped to fit into the chamber of the frame. The frame is positioned onto the replacement rim by positioning the rim inside the gap between the bottom lips and rotating the replacement rim into place, or alternatively by removing one or both side walls, positioning the replacement rim against the underside of the top, and replacing the side walls.
In a sixth aspect of the invention, a propulsion assist kit for a manual wheelchair having a hand rim is included, the kit comprising a lever arm with an upper handle end and an opposed lower flange, and a c-shaped frame pivotably affixed to the lower flange. The c-shaped frame is further comprised of a channel sized and shaped to slideably receive the hand rim. A kit with an optional replacement rim with a flattened rim profile sized and shaped to replace an existing hand rim of a manual wheelchair is included, with the replacement rim affixed to a drive wheel of the wheelchair using existing fasteners or new fasteners included in the kit.
The features and advantages of the invention will become apparent from a consideration of the subsequent detailed description presented in connection with accompanying drawings, in which:
The following is a list of reference labels used in the drawings to label components of different embodiments of the invention, and the names of the indicated components.
A manual wheelchair propulsion assist device or assist according to the invention 100 is shown in
A frame 20 has a top 22, and a pair of side walls 24 affixed to the top 22, the side walls 24 sized and shaped to mirror one other. In the Figures, each side wall 24 is further formed with a receiving aperture aligned with a corresponding frame aperture 22b to allow the top 22 to be removably affixed to the side walls 24 via the frame fasteners 22a. The top 22 is formed with an upright or top flange 18, the top flange 18 formed with a flange hole or hole 18a. The lower aperture 16 of the lower arm 12e is aligned with the hole 18a and the lower fastener 16a couples the top flange 18 to the lower arm 12e. The top flange 18 and the lever arm 12 are in hingeable relationship, where the lever 12 at its lowermost end can rock forwards and backwards about the lower fastener 16b and in relation to the top flange 18 and where moving the lever arm 12 also moves the frame 20 forwards or backwards along a hand rim 30.
Each side wall 24 has a bottom lip 24a, where the side walls 24 and the underside of the top 26a define an interior channel 26. In the embodiment shown in the Figures, the channel 26 is sized and shaped to receive the hand rim 30, as shown in
A gap 24b separates the bottom lip 24a of each side wall 24 and in
Finally, a piece of rubber or grip material 28 or other similarly durable material with gripping capability, is affixed to the underside of the top 26a, facing the channel 26 and is typically a same length or longer length than the channel 26.
To install the assist 100 shown in the Figures, the handle 10, lever arm 12, top 22 and one side wall 24 are preassembled, with the remaining side wall 24 and frame fasteners 22a to be secured. The lever arm 12 length is adjusted by telescoping the upper arm 12a to a desired length and inserting the adjustable fastener 12b into the adjustment hole 12c and through the arm hole 12d. The OEM hand rim 42 is removed and the hand rim 30 is secured to each drive wheel 44 of the wheelchair 40 using existing fasteners of the OEM hand rim 42. The partially assembled frame 20 is positioned onto the hand rim 30. The remaining side wall 24 is then secured to the top 22 by coupling the frame fasteners 22a into the frame apertures 22b. The hand rim 30 is thus now positioned inside the channel 26 of the frame 20. Alternatively, for a frame 20 that is a single piece, the hand rim 30 is slipped into the channel 26 via the gap 24b and then rotated to position the top flange 18 and lever arm 12 upwards. The gap 24b provides a convenient method by which to install/uninstall the assist 100 without the need for tools and allows debris or moisture that might otherwise collect to be removed from the channel 26.
Turning to
The inventor's assist 100 has many advantages over the prior art. It is comprised of few parts and is easily installed and uninstalled, as desired. This design is economical to manufacture and maintain. The components are all made of metal in the embodiment shown, however are lightweight and thus do not add any significant extra weight to the wheelchair that would further burden the user 46. In the embodiment using the existing OEM hand rim 42, removal of the assist 100 allows the user 46 the full option of propelling the wheelchair using existing means. The inventor notes that his hand rim 30 can also be used without the assist 100 to hand propel the wheelchair 40 and his hand rim 30 design maximizes the surface area by which the hand rim 30 contacts the underside of the top 26a for maximum propulsion of the drive wheels 44. In the case of the OEM hand rim 42, the channel 26 is most optimally configured with an elongated cross section to minimize lateral shifting of the OEM hand rim 42 inside the channel 26, which also optimizes the compression force of the frame 20 against the OEM hand rim 42 to propel the drive wheels 44. For the hand rim 30 shown in the embodiment in the Figures, side to side movement of the hand rim 30 within the chamber 26 is less critical given the flattened cross section of the hand rim 30, and thus less exacting machining is required for the frame 20, reducing manufacturing complexity and cost. The inventor believes his assist 100, sold as a kit with or without the hand rim 30, is ideal for retrofitting existing wheelchairs, and provides sufficient mechanical leverage allowing the most feeble-strength user 46 to nevertheless propel the wheelchair 40 easily and independently.
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the scope of the present invention. For instance, the lever arms 12 are currently shown as having a standard length, but they could easily be configured to be telescoping or otherwise adjustable to accommodate different body sizes, etc. With the exception of the grip material 28, the lever arms 12, handles 10 and the frame 20, currently shown in the Figures as being made of metal, can also be made of any durable material including structural plastic, or a combination of materials could be used together for the assist 100 to minimize weight, decrease cost, etc. as desired. The inventor notes that his assist 100 is lightweight, easy to use and install and requires limited tools and learning time to use. He believes his simple, elegant solution is both cost effective and ergonomic, allowing anyone of any income level a simple and useful way to manually propel an existing wheelchair. In particular, the assist 100 permits the user to have a tight turning radius to redirect the wheelchair 40 as desired, something that current assist devices and electric chairs currently cannot perform. As the assist 100 is completely manual in nature, the user 46 has complete control over the movement, direction and speed of the wheelchair, and additionally, the frame 20 can also be used for supplemental braking or maintenance of position on hills, or other non-level surfaces. The inventor notes too that the hinging relationship between the lever arm 12 and the frame 20 can be configured in many other ways, and the only criticality in any new arrangement is that the frame 20 maintain its ability to clamp onto the hand rim 30 or OEM hand rim 42 and then lift off when the lever arm position is adjusted. The tilting action of the frame 20 is not the only way this engagement/disengagement of the frame to the hand rim can be performed, and the inventor notes there are other ways this can still be implemented and not change the overall function of the assist 100.
Number | Name | Date | Kind |
---|---|---|---|
3877725 | Barroza | Apr 1975 | A |
4453729 | Lucken | Jun 1984 | A |
4735431 | Tait | Apr 1988 | A |
4811964 | Horn | Mar 1989 | A |
5988661 | Garfinkle | Nov 1999 | A |
6889991 | Facer et al. | May 2005 | B1 |
7296811 | Pettit | Nov 2007 | B2 |
7520519 | Smurthwaite | Apr 2009 | B2 |
7837210 | Kylstra et al. | Nov 2010 | B2 |
10548785 | Vermij et al. | Feb 2020 | B2 |
10722409 | Robins | Jul 2020 | B2 |
20020043781 | Mitchell | Apr 2002 | A1 |
20020145271 | Sanchez | Oct 2002 | A1 |
20090283982 | Thomas | Nov 2009 | A1 |
20120186764 | Bayne et al. | Jul 2012 | A1 |
20120267873 | Joo | Oct 2012 | A1 |
Entry |
---|
Scire Community Team; Wheelchair Propulsion Assist Devices; Jang, Sharon; May 15, 2020; scireproject.com/community/topic/propulsion-assist-devices. |