The invention relates to a chair. The invention particularly relates to a wheelchair with one or more mechanical arms. Such a wheelchair is known from practice.
People with limited mobility often need to rely on the use of a wheelchair. This can be driven manually or electrically. If, in addition, the user has no or a limited arm and/or hand function, the wheelchair can be provided with a mechanical arm with which certain functions such as gripping functions can be taken over. Such a mechanical arm is known by the name of MANUS or ARM and is offered by Exact Dynamics, The Netherlands.
MANUS or ARM is an electrically driven, articulated arm built up from a series of segments, pivotally connected with one another. A basic segment is formed by a tube with a longitudinal axis extending approximately vertically, in which tube drive motors are provided for the different segments. Via toothed belts and/or drive shafts, these motors are connected with the different connecting points between the segments, for adjustment thereof. The tube is connected with the wheelchair such that it can rotate about the longitudinal axis.
In the known wheelchair, MANUS or ARM is attached to the front side of the chair, in front of the front edge of one of the armrests thereof. This causes the mechanical arm to take up relatively much space, which is, for instance, disadvantageous when passing through doorways, pulling up the wheelchair to a table (for instance dining table) and maneuvering with the wheelchair in small spaces and it is very vulnerable, both in an unfolded operative position and in a retracted storage position.
This known mechanical arm further has the disadvantage that, in use, the arm passes and/or needs to pass singular points, so that control is hampered, in particular as a result of the forces occurring near those singular points and the speeds to be realized there.
A further disadvantage of this known mechanical arm is that particularly the transition between a first and second segment, counted from the basic segment, operatively moves within the user's field of vision and the view of, for instance, a worktop on the wheelchair and/or for instance a table and/or the view of the surroundings and/or conversation partner is hindered.
A still further disadvantage of this known mechanical arm is that the range thereof is relatively limited due to the fact that always a compromise is chosen between the available length of the arm, in particular between the basic segment and a gripper, on the one hand and the available space for the mechanical arm on the wheelchair, requiring a compact arm, on the other hand.
The invention contemplates providing a chair, in particular a wheelchair, provided with an articulated mechanical arm, in which at least a number of the above-mentioned disadvantages of the known combination are obviated, while maintaining the advantages thereof.
The invention particularly contemplates providing a wheelchair in which the mechanical arm is included in a retracted or storage position such that it does not adversely affect the outside dimensions of the wheelchair.
The invention further contemplates providing a wheelchair of the type described in the opening paragraph in which, in operative position, the mechanical arm has a relatively large range and a great freedom of movement, while it can be stored relatively compactly.
A further object of the invention is to provide such a wheelchair in which the position of the mechanical arm, at least the attachment thereof is adjustable with respect to the user and/or is adjustable with the seat height.
A still further object of the present invention is to provide a wheelchair with a mechanical arm which can avoid singular points and offers a great freedom for control of the gripper.
At least a number of these and further objects are achieved according to the invention with a chair, particularly a wheelchair according to claim 1.
With a chair according to the invention, the mechanical arm can be stored virtually wholly inside the outer contour of the wheelchair. In this context, the outer contour is substantially determined by two contact surfaces on both sides along the outermost parts of the wheelchair, namely a contact surface along the back side of a backmost extending part of the wheelchair and a contact surface on the front side of a foremost part of the wheelchair, viewed in top plan view, while the contact surfaces extend vertically. Due to this compact and suitable storage position, the advantage is achieved that, particularly during riding with the wheelchair, the mechanical arm is well protected from collisions with the surroundings and, in addition, the maneuverability and the freedom of movement of the wheelchair are increased. A further advantage is that the mechanical arm is less visible so that it will be less stigmatizing.
With a wheelchair according to the invention, the mechanical arm is preferably designed such that it has at least seven degrees of freedom, at least offers this to a gripper of the mechanical arm, in addition to the open/close function of the gripper and an optional lift.
In this manner, it is advantageously achieved that singular points can be avoided in the control of the arm, that a greater freedom of movement is obtained, and that the different parts of the arm can simply be kept out of the user's primary field of vision during use. Thus, view is always maintained of, for instance, the gripper, an object present therein, a worktop on the wheelchair and/or a worktop or table at which the wheelchair is present or another object or a person with which the user of the wheelchair desires interaction or, conversely, desires to avoid this.
In a further advantageous embodiment, a wheelchair according to the invention is characterized in that the mechanical arm is displaceable with respect to the wheelchair, in particular along a side of the wheelchair. To this end, a displacement device is provided with which the whole mechanical arm can be displaced, in a storage position and/or in an operative position. An important advantage of such a wheelchair is that the position of the mechanical arm can in each case be adjusted, for instance to a desired function for the user, to a situation of use of the wheelchair and to a desired storage position and/or operative position of the mechanical arm.
Here, it is particularly advantageous if a control of the mechanical arm is provided, in particular at least partly software-mediated, so that the displacement device and the segments of the mechanical arm can be controlled jointly and in mutual connection with one another. In this manner, with the displacement device, singular points can be avoided, the range and the freedom of movement of the mechanical arm can be improved considerably, even with a relatively short arm, and in each case the most suitable position for the mechanical arm can be chosen.
The invention further relates to a mechanical arm, in particular suitable for use within a wheelchair according to the invention.
Moreover, the invention relates to a control unit for a mechanical arm according to the invention.
In addition, the invention relates to a wheelchair where, during use, a shoulder of the mechanical arm, i.e. the transition between a basic segment and the first segment of the arm, extends near a shoulder of the user. In this manner, the mechanical arm is positioned in a suitable manner to cause minimum hindrance particularly during displacement of the wheelchair and, in addition, the mechanical arm will operatively roughly extend like a normal arm of the user if he or she would be capable of using his or her arm, which may be particularly advantageous to the user at least physically, motorically, cognitively and/or psychologically, particularly also in training situations.
In the subclaims, further advantageous embodiments of the invention are described. By way of explanation of the invention, advantageous embodiments thereof will be explained in more detail with reference to the drawing, in which:
FIGS. 6A-C show the views of a wheelchair according to
FIGS. 7A-D show four positions of a mechanical arm according to the invention on a wheelchair in a first alternative embodiment;
FIGS. 8A-D show a wheelchair with mechanical arm similar to the one according to
FIGS. 9A-H show a wheelchair with a mechanical arm in an alternative position, in eight conditions;
FIGS. 12A-B show two possible storage positions for a mechanical arm on a displacement device according to
In this description, a number of embodiments are shown by way of illustration. These should not be taken as being limitative in any way. In this description and the drawings, same or corresponding parts have same or corresponding reference numerals. The embodiments shown all relate to electric or electrically supported wheelchairs, since a mechanical arm according to the invention will generally be used on such wheelchairs. However, it will be clear that the mechanical arm, hereinafter also referred to as arm, can also be used with other chairs or other furniture, such as manually drive and/or push wheelchairs, beds, normal chairs, autonomous mobile base and the like.
On the seat part 6, a mechanical arm 13 is provided. This arm 13 is shown in more detail in
On the second part 16 of the basic segment 14, a shoulder joint 21 is provided which is rotatable through 360° about a second axis 22. An upper arm is connected as first segment 23 with the shoulder joint via a third axis 24, which includes an angle α with the second axis 22. At the opposite end of the upper arm, in an elbow 25, a forearm is connected as second segment 26 with the first segment, so as to be pivotable about a fourth axis 27, which extends approximately parallel to the third axis 24. The second segment 26 is subdivided into a first subsegment 28 and a second subsegment 29, which are interconnected in a rotation bearing 30 so that the second subsegment 29 is rotatable relative to the first subsegment 28, about a fifth axis 31 which extends approximately parallel to a longitudinal direction of the second segment. On the end of the second subsegment 29 remote from the first segment 23, a wrist is provided as third segment 32, rotatably connected with the second subsegment 29 about a sixth axis 33 which extends approximately parallel, preferably in a plane with the fifth axis 31. The third segment 32 has a longitudinal direction which includes an angle β with the longitudinal direction of the second segment 26. At the end of the second segment 26 remote from the third segment 32, a gripper 34 is provided, pivotally connected with the second segment 26 via a seventh axis 35, which extends approximately perpendicular to the sixth axis 33. The angles α and β can be chosen as desired. β is preferably chosen such that the gripper is not in line with the lengths of the adjacent segment.
In the arm 13, a series of motors are provided for controlling the different segments relative to one another and relative to the seat part 6. In
It will be clear that the cable work needed for the excitation and control of the different motors and optionally sensors, operating elements, information elements such as screens, (LED) displays, cameras and the like provided on and/or in the arm 13 can extend through and/or along the arm 13. This cable work is not shown for reasons of simplicity.
The lengths of the different segments 23, 26, 32 and the gripper 34 as well as the positions of the different axes 17, 22, 24, 27, 31, 33, 35 are chosen such that the arm 13 can be moved from, for instance, an unfolded position shown in
The upper arm in
At the opposite end of the upper arm, in an elbow 25, a forearm is connected as second segment 26 with the first segment, so as to be pivotable about an axis 27, which extends approximately parallel to the axis 24.
The second segment 26 is subdivided into a first subsegment 28 and a second subsegment 29, which are interconnected in a rotation bearing 30 so that the second subsegment 29 is rotatable relative to the first subsegment 28 about an axis 31 which extends approximately parallel to a longitudinal direction of the second segment. On the end of the second subsegment 29 remote from the first segment 23, a wrist is provided as third segment 32, rotatably connected with the second subsegment 29 about an axis 33 which extends approximately parallel with axis 27. At the end of the third segment 32 remote from the second segment 26, a gripper 34 is provided, pivotally connected with the second segment 26 via an axis 35, which extends approximately at right angles to axis 33. As a result of the seven axes 17, 24, 23D, 27, 31, 33 and 35, the arm 13, at least the gripper 34, has seven degrees of freedom.
In the arm 13, a series of motors are provided for controlling the different segments relative to one another and relative to the seat part 6. In
The seat 7 determines a first level N1. As the drawing clearly shows, in the folded position shown, the mechanical arm 13 is completely below a second level determined by the armrest 9, indicated by the plane N2. A tabletop or worktop 70 extends approximately at the second level N2, while, in the embodiment shown, on the tabletop 70, a control means 71 is provided in the form of a joystick for control of, for instance, the wheelchair 1 and the mechanical arm 13. Of course, all kinds of other control means can be provided, in addition to or instead of the joystick.
In the folded condition shown (
As a result of the seven axes 17, 22, 24, 27, 31, 33, 35, the arm 13, at least the gripper 34, has seven degrees of freedom with respect to the basic segment 14. With suitable control of the arm 13, singular points can simply be avoided, while preserving the orientation of the gripper 34, so that collisions of the gripper 34 with the arm 13 or of the arm 13 with the surroundings can be avoided. Also, “avoiding” singular points entails the effect that the arm 13 in the neighborhood of singular points moves naturally, with constant speed and while preserving orientation. Without wishing to be bound to any theory, the disadvantage of having to traverse singular points is in fact that in, and in the neighborhood of, a singular point, certain motors have to rotate very fast (in theory even infinitely fast) to be able to allow the gripper 34 to pass the singular point with constant speed and whilst preserving orientation. Often, the respective motors 36 are limited in power and thus cannot rotate very fast. This results in a slow-moving gripper 34 in (and in the neighborhood of) a singular point. It is important to note here that with additional, though at least seven, degrees of freedom, singular points can be “avoided” while maintaining the speed and orientation (the three rotations) of the gripper 34. In addition, the gripper 34 can, in each case, be displaced in a particularly suitable manner, while the different segments 23, 26, 32 can, in each case, be so moved, for instance with the elbow 25, up, down or to any intermediate position, that they are kept substantially out of the user's primary field of vision and whilst maintaining the position and orientation of the gripper. This can, for instance, ensure that the user always keeps a good view of the gripper 34, of the tabletop 70, of the operating means 71, of the object to be gripped or operated, of a conversation partner or of another relevant object or person in his or her vicinity. This can actively be controlled by the user, but preferably a regulating device 60 is provided with which this can be controlled (semi-)automatically by a suitable algorithm. For instance, in or on the arm 13 and the wheelchair 1, sensors such as a (video) camera or force sensors can be provided which detect the position and/or direction of movement of the gripper, while the control unit controls the different motors on the basis thereof and/or on the basis of pre-entered movement patterns, goals and the like, on the one hand to avoid singular points and/or obstacles, and on the other hand to (permanently) offer the user the best view, or to (semi-)automatically grip and manipulate objects. For instance, during drinking from a cup with the aid of the mechanical arm, control can take place such that the first an second segment 23, 26 are directed downwards as much as possible. This is advantageous for the user, for instance also because it seems relatively natural and is little stigmatizing. Currently (with the current robot), the greatest “view problem” occurs when the user drinks. Then the gripper is near the mouth and, in that position, upper and fore arm hinder the view of the surroundings.
In practice, the user can employ the possibilities of the seventh degree of freedom as follows. The user or the programmer sets the angular displacement (or position) of the seventh degree of freedom for a particular position “by hand”. Next, the user controls the gripper 34 to the desired positions and orientations, with the assistance of the algorithm of the control unit, while the seventh degree of freedom remains fixed, that is, is not changed by the algorithm of the control unit.
The angular displacement of the seventh degree of freedom is continuously determined by the algorithm of the control unit. This holds for each additional degree of freedom in excess of the sixth, there may also be more than seven degrees of freedom for instance including the degrees of freedom of the wheelchair itself. The algorithm needs additional boundary conditions for this:
One of the tasks of the algorithm in the control unit is to calculate the required positions of the motors (degrees of freedom), called θ1 to θn, given the desired position of the gripper, which is usually expressed in six coordinates (3 positions X, Y, Z and 3 rotations “Yaw”, “Pitch” and “Roll”). If the arm consists of six degrees of freedom, the six unknowns (θ1 to θ6) can be calculated through six equations with the six knowns (X, Y, Z, Yaw, Pitch, Roll). If the arm consists of seven degrees of freedom, the calculation consists of 6 equations with seven unknowns (θ1 to θ7) and six knowns (X, Y, Z, Yaw, Pitch, Roll):
X=f1(θ1−θ7)
Y=f2(θ1-θ7)
Z=f3(θ1-θ7)
Roll=f4(θ1-θ7)
Pitch=f5(θ1-θ7)
Yaw=f6(θ1-θ7)
Herein f1 to f6 represent the six equations (mathematical functions). Solving this set of equations to calculate all seven unknowns θ1 to θ7 is not possible, unless additional boundary conditions (in this case equations) are defined. The algorithm of the control unit 60 provides for this by additional boundary conditions (in this case an additional equation f7(θ1-θ7)). An example of this is a condition whereby the elbow of the arm may not exceed a particular level, or must remain within a particular volume, so that the elbow does not hinder the user's field of vision of the surroundings. Another example of an additional equation, which may or may not be combined with the above condition, is an equation in which it is defined that the arm must keep away from a singular point. More generally, if the mechanical arm is provided with n>6 degrees of freedom, n−6 additional boundary conditions need to be formulated.
The shoulder, elbow and wrist and/or the subsegments can be designed such that the different segments can rotate relative to one another over more than 360 degrees. However, limitations on the freedom of movement about one or more axes can be provided, so that, for instance, cable work can be used more easily. Of course, incidentally, the motors can also be remote-controlled.
In
In the embodiment shown in
In the embodiment according to
Of course, many variations hereof are possible, for instance by mounting one of the other embodiments of mechanical arm 13 shown and/or described. A same solution with a displacement device may also be combined with the known mechanical arm such as MANUS. The rail may also comprise two guide rails on top of and/or next to each other, for instance for more stability and better controllability.
It will be clear that, for different wheelchairs 1, this outer contour will be determined differently. In principle, we assume here that any swiveling wheels are directed in a direction forwards. As the drawing clearly shows, in the embodiments shown, the arm 13 will in each case be substantially inside this outer contour. In this context, substantially is to be understood to mean such that, in stored position, no more than 20%, more in particular less than 10% and preferably less than 5% of the volume of the arm 13 extends outside this contour in that stored position. It will be clear that preferably no volume of the arm 13 extends outside the contour.
Controlling, in addition to the mechanical arm 13, the whole electrically controlled drive of the wheelchair 1 or individual elements thereof provides that the working range of the mechanical arm 13 is enlarged and that the number of degrees of freedom increases. If for instance the robot arm 13 comes, or threatens to come, to the end of its working range, for instance because the arm 13 is (almost) completely extended, then, without intervention of the user, the wheelchair 1 can proceed to ride in the direction of the extending arm 1 (or for instance seat 7 can proceed to move) to reach the desired point in space (with the gripper 34). All connections can be wired as well as wireless.
In an embodiment with a displacement device 50, this is also connected with the control unit 60. It will be clear that, with the aid of the algorithm, then in each case the most suitable position of arm 13 along the rails 51 will be set. Likewise, the most suitable storage position can in each case be chosen with the aid of the algorithm. Preferably, a control unit 60 according to the invention is designed as a (self-)learning system, so that it gets increasingly better geared to the user. Here, it is preferred that information for multiple users can be stored in the database.
The invention is by no means limited to the exemplary embodiments shown in the description and drawing. Many variations thereof are possible within the framework of the invention set forth in the claims.
For instance, an arm 13 according to the invention may be connected with the wheelchair in a different manner, for instance with the undercarriage or to the tabletop, if present. Of course, the wheelchair may be provided with different wheels, for instance hoop wheels at the rear, for manually supported drive, or as a foot-propelled working chair. In addition, more than one arm may be provided or the arm may be provided on a separate cart, i.e. so as to be displaceable separately from the wheelchair, for instance on a mobile base which can, for instance, be stored under a wheelchair. Of course, any of the embodiments shown and/or described of an arm 13 according to the invention may also be used with a different wheelchair 1 or with a different supporting element, such as table, bed or “normal” chair, while, also in the storage position, the arm may also extend outside the contour of such a supporting element. The different axes 17, 22, 24, 27, 31, 33, 35 may be in a different order, for instance axis 35 between the axes 31 and 33, while the angle β may of course also be approximately 0°. The form of the arm 13 shown is only shown by way of illustration. One or more of the segments of an arm according to the invention may be adjustable for length, for obtaining extra range. Also, a traditional arm such as MANUS can be mounted on displacement means as described in the invention.
Number | Date | Country | Kind |
---|---|---|---|
1026282 | May 2004 | NL | national |
This application is a continuation of PCT application no. PCT/NL2005/000391, designating the United States and filed May 27, 2005; which claims the benefit of the filing date of Dutch application no. NL 1026282, filed May 27, 2004; both of which are hereby incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/NL05/00391 | May 2005 | US |
Child | 11563363 | Nov 2006 | US |