The invention relates to a wheelchair having a chassis on which there are arranged opposite each other at least one drive unit which has a drive wheel and an electric drive, a front wheel which is arranged on a front pivot arm and a rear wheel and the drive unit and the front pivot arm are pivotably arranged in a vertical plane relative to the chassis and are connected to each other by a first coupling means.
Such a six-wheel wheelchair is, for example, known from U.S. Pat. No. 9,308,143 B2. The coupling of the drive unit and front pivot arm can be carried out by means of a spring/damper unit. This unit is supported in an articulated manner at both of the ends thereof, wherein the bearing locations are arranged with respect to each other in such a manner that, when the wheelchair travels on a straight horizontal plane, the main portion of the force applied by the spring/damper unit acts on the drive wheel in order obtain good traction.
A wheelchair having a central wheel drive is distinguished by a very small turning circle. As a result of the fact that the center of gravity, that is to say, the body rotation point, of the user is located above the drive axis, this wheelchair can also be driven in the tightest of spaces. Furthermore, such a wheelchair also provides optimum traction as a result of the weight distribution. As a result of the coupling of the front pivot arm to the drive, when travelling over obstacles, such as, for example, pavement edges, only small movements are introduced into the seat and consequently into the driver.
An object of the invention is to improve the known wheelchair in terms of its travel properties and in terms of its ability to mount curbs.
The object is achieved in that the drive unit and the front pivot arm are additionally connected to each other by a second coupling means.
As a result of the second coupling means, it is possible to decouple the front wheel and drive unit at two locations so that, as a result of the additional possibility of decoupling, fewer hard impacts when driving over an uneven substrate (paving stone) reach the drive carrier and consequently the seat of the wheelchair. The driving behavior consequently becomes substantially more pleasant for the user, which in particular for the most severely disabled users is a significant gain in terms of comfort.
The front and/or the rear wheel may be a steering wheel.
DE 20 2010 005 233 U1 discloses a generic electric wheelchair which has a drive frame which receives the drive unit, a front wheel frame and a chassis. Between the front wheel frame and the drive frame a front bumper is provided as a single coupling means. An auxiliary bumper is arranged between the drive frame and the chassis. When travelling over an obstacle, the front wheel pivots upward, wherein the front bumper is pressed together and forces the drive frame onto the substrate, whereby the tension spring in the auxiliary bumper is tensioned.
US 2005/0127631 A1 and US 2008/0264702 A1 disclosed electric wheelchairs in which the front pivot arm with the drive unit are connected to each other by means of a bumper as a coupling means.
The first and/or second coupling means may be a spring and/or damper unit. When the second coupling means is a spring and/or damper unit, it may be completely sufficient for the first coupling means to be formed by a rigid connection rod or the like.
Preferably, the second coupling means is a swing arm which is secured to the chassis so as to be able to be pivoted about a first pivot axis A and a second pivot axis B and in which the front pivot arm is pivotably supported about a third pivot axis C and the drive unit is pivotably supported about a fourth pivot axis D.
When the first pivot axis A and the second pivot axis B are located on a notional line which extends with respect to the vertical at an angle α of from 0° to 45°, there is produced a parallelogram of the pivot locations which leads to the pivot locations of the pivot arm and the drive unit being variable both in their horizontal position and in their vertical position, therefore the position thereof changing during a movement.
The swing arm is preferably formed by two opposing yokes which are connected to each other by means of at least one upper plate which receives the first pivot axis A and at least one lower plate which receives the second pivot axis B.
Each yoke can be formed by two plates which are arranged in a parallel manner and which can be constructed in a substantially triangular manner and which are connected to each other by means of a bolt.
In this instance, it is advantageous for each plate which forms the yoke to be connected to an upper plate and a lower plate and for the upper plates to be connected by means of a first bolt and the lower plates to be connected by means of a second bolt. The first and the second bolts may be constructed identically.
The upper plate and lower plate may be resiliently supported in a housing which is secured to the chassis. The upper plate and the lower plate may also be resiliently connected to each other. Such a connection can be produced, for example, by means of at least one resilient element, which in particular may be a torsion spring.
The connection of the upper plate to the lower plate may, however, also be carried out by means of at least one element which comprises an elastomer material (for example, a rubber buffer).
Preferably, the rear wheel is also arranged on a rear pivot arm which is pivotably connected to the chassis. If a third spring/damper unit is arranged between the rear pivot arm and the chassis, excessive oscillations when travelling over uneven ground are effectively prevented from being introduced into the chassis.
The rear pivot arm and the drive unit are preferably not coupled to each other in terms of their movements.
Preferably, the third pivot axis is arranged at one side of the notional line and the fourth pivot axis is arranged at the opposite side of the notional line.
If the third pivot axis is arranged lower with respect to a substrate on which the wheels are standing, that is to say, the carriageway, than the fourth pivot axis, the introduction of the movement into the front pivot arm or the drive unit is carried out gently.
Preferably, the resilient means are provided in the swing arm at the articulation location of the front pivot arm. The resilient means may also be arranged in the swing arm at the articulation location of the drive unit, wherein the resilient means may be arranged both at the articulation location of the pivot arm and at the articulation location of the drive unit.
In a preferred embodiment, the resilient means surround the first and the second pivot axes.
If the first and second bolts have at least two diametrically arranged projections and the resilient means surround the first and second pivot axes, the upper and lower plates which connect the two yokes can pivot.
Preferably, the projections are embedded in the element which comprises an elastomer material.
The upper plate may be connected to the lower plate in a preferred embodiment by means of two resilient elements. The first resilient element can then be arranged in the region of the third pivot axis and the second resilient element can then be arranged in the region of the fourth pivot axis.
The wheelchair preferably has a seat and in a preferred embodiment a pivot arm may be formed on the drive unit. Preferably, the seat is arranged on the chassis.
Embodiments of the invention are intended to be described in greater detail below with reference to a wheelchair and drawings. In the drawings:
The wheelchair 100 substantially comprises the seat 50 which is arranged on the chassis 1, the drive wheels 21 which are arranged at both sides on the chassis 1, the front steering wheels 3 and the rear support wheels 7. Since the arrangement and suspension of the wheels 3, 21, 7 is symmetrical to the left and right of the chassis 1, the subsequent description is carried out only with reference to a single-sided construction. For the opposing portion, this then applies accordingly. The front steering wheel 3 is rotatably supported in a fork 30 about a horizontal axis. The fork 30 is rotatably arranged about a vertical axis in the front pivot arm 4. The support wheel 7 is arranged on a rear pivot arm 6, which is pivotably fitted to the chassis 1 and which is supported via a spring/damper unit 9 on the chassis 1. The drive unit 20 which drives the drive wheel 21 is connected via a spring/damper unit 8 to the front pivot arm 4. Another connection between the drive unit 20 and front pivot arm 4 is carried out via a second spring/damper unit 10 which is pivotably secured to the chassis 1 about a first pivot axis A and a second pivot axis B. The front pivot arm 4 is pivotably supported about a third pivot axis C in the spring/damper unit 10 and the drive unit 20 is pivotably supported about a fourth pivot axis D in the spring/damper unit 10.
The steering wheel 3 can, when driving over uneven surfaces, as formed, for example, by a pavement edge, be raised or lowered with respect to the carriageway F so that the drive wheel can then be raised from the wheel contact surface F (carriageway) (cf.
If the swing arm 10 is rotated about the pivot axes A and B, there is formed a parallelogram by means of which the pivot axis C of the front pivot arm 4 and the pivot axis D of the drive unit 20 change their vertical and horizontal position relative to the chassis.
The swing arm 10 is, as illustrated in
The system operates with a redirection/rotation of the upper and lower plates 16, 17 from +10° to −10°.
An alternative embodiment of an element 13 which comprises an elastomer material is shown in
A third alternative for the construction of a torsion spring is shown in
Number | Date | Country | Kind |
---|---|---|---|
102016118037.8 | Sep 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/072489 | 9/7/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/054694 | 3/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6134748 | Kuo | Oct 2000 | A |
6428022 | Namiki | Aug 2002 | B1 |
9308143 | Bekoscke et al. | Apr 2016 | B2 |
20050000742 | Mulhern et al. | Jan 2005 | A1 |
20050077694 | Levi | Apr 2005 | A1 |
20050127631 | Schaffner | Jun 2005 | A1 |
20060201723 | Hsu et al. | Sep 2006 | A1 |
20070039766 | Jackson | Feb 2007 | A1 |
20070252354 | Chen | Nov 2007 | A1 |
20080264702 | Cheng | Oct 2008 | A1 |
20110012316 | Cheng | Jan 2011 | A1 |
20130207364 | Bekoscke et al. | Aug 2013 | A1 |
20180008493 | Danielsson | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
102006035490 | Mar 2008 | DE |
202010005233 | Sep 2010 | DE |
102015101552 | Aug 2016 | DE |
9615752 | May 1996 | WO |
Entry |
---|
PCT International Search Report for PCT International Patent Application No. PCT/EP2017/072489, dated Dec. 12, 2017. |
Number | Date | Country | |
---|---|---|---|
20210282987 A1 | Sep 2021 | US |