The present invention generally relates to mobile assistive support devices. More particularly, the present invention relates to a quad-wheeled and quad-legged cane with retractable wheels, adjustable handles, and rigid support structures that provides fail-safe braking.
Infirmed, injured, ill, and aged people often require additional support or stability assistance from walking aid canes. Walking aid canes are generally designed in two basic configurations: canes with fixed, blunt-end ferrules and canes with various wheel configurations. Canes that utilize fixed, blunt-end ferrules generally lack any wheels, but typically offer the most stability. However, the user of these canes typically must be lift the cane off the ground and repositioned himself or herself with each step. This, in turn, may cause a brief period of non-support, during which the infirmed user may fall. Weak users of these canes may also tire due to the prolonged use of the constant lifting for repositioning. This, in turn, may also lead to repetitive stress injury and limited mobility. On the other hand, canes with wheels and/or support legs generally do not require a user to lift the cane for repositioning the cane during use. Thus, these types of canes can provide continuous support while minimizing the potential for repetitive stress injury.
Ordinary wheeled canes often require the user to have an intact sense of balance. When leaning on the cane, or applying a force in the direction where the wheels are facing, the user may cause the cane to unexpectedly roll in that direction, thereby causing the user to fall and/or become injured. Some of the canes have tried to mitigate this issue by adding user actuated breaking systems, such as with a hand brake, spring mounted leg brake, or a brake activated by significant applied downward force while the cane is perpendicular to the ground.
Current wheeled canes are significantly limited because they rely on the user's physical and mental response capacity to activate the brake to prevent a slide or fall. Unfortunately, the infirmed persons who need canes frequently do not have the reflexes necessary to activate the brakes in a consistently safe manner. Instead of stopping and stabilizing an off kilter infirm user, the canes frequently continue the momentum and cause even more injury than if the user had no cane at all. The spring-mounted leg brakes currently available do not stop the cane from sliding because the user does not react in the split second given to properly actuate the break.
This same problem also applies to canes with hand brakes. When the wheel(s) with the brake is off the ground (because the cane is not perpendicular to the ground due to the user leaning or loss of balance) the brake system is rendered ineffective. Indeed, the chances that the user will actually have time to use the brake is remote during a fall. Rather that activate the brake, most people react to the imbalance by tightly griping the cane handle(s) to try and stop a fall. Because wheeled canes with brakes require the user to react extraordinarily quickly, these wheeled canes do not passively arrest the imbalance and eventual fall of a user. That is, they are not “fail safe.”
Another problematic situation arises when a user tries to utilize wheeled canes at an angle such as attempting to exit a vehicle, climb a curb, climb stairs, or go up or down a hill or ramp. In these situations, the wheel(s) is often the first and only surface to initially contact the ground. If the wheel does not have a fully engaged brake applied or if the support leg/brake is not fully actuated and touching the ground at the same time as the wheel, any force applied to that wheel will cause the cane to slide in the direction of the wheel, resulting in a potential serious fall and injury.
Accordingly, there is a need for an improved fail safe wheeled cane that aids in mobility, is easy to use, and that will, when utilized at an angle other than perpendicular to the ground surface or with a minimal downward force, cause the wheels to retract, such that the legs or base of the cane comes into contact with the ground and arrests the sliding of the wheels. Preferably, the leg or base of the cane is a stable, blunt-end ferrule or platform.
Regarding references that disclose wheeled and non-wheeled canes that fail to overcome the deficiencies discussed above, U.S. Pat. No. 4,044,784, issued to Smith, discloses a walking aid with a quad cane configuration blunt tipped legs without wheels. Smith is solely intended for support and not increased mobility or ease of use.
U.S. Pat. No. 4,997,001, issued to DiCarlo, discloses a convertible cane with one to multiple leg configurations through addition of legs to the base nexus by means of a fastener. DiCarlo lacks wheels on the ends and is solely for support and does not enhance mobility and is not easy to use.
U.S. Pat. No. 5,390,687, issued to Tsai, discloses a quad cane with detachable quadrupeds. Tsai has no wheels and thus fails to enhance the mobility of the user.
U.S. Pat. No. 2,244,869, issued to Jennings, discloses a walking cane with a plurality of legs including wheels. Jennings is very bulky and not very maneuverable. The legs of the Jennings cane are widely spaced apart and the wheels and legs are set up like a bike with a kickstand. This configuration requires the user to lean to the side in order to engage the ferrule. This unnecessary and dangerous leaning by the user diminishes stability and safety.
U.S. Pat. No. 5,271,422, issued to Sorrell, discloses a safety walker having front legs and rear wheels with backward resistant motion. The Sorrell walker also has a seat to prevent falling when using the device. This device is not a cane; is very bulky and heavy; and is designed for a much less mobile person.
U.S. Pat. No. 5,692,533, issued to Meltzer, discloses a combination quad walking cane with two wheels in the front and two blunt legs in the back. Meltzer discloses no means to safely disengage the wheels if the user were to use the cane on stairs or other surface non-level surface. Furthermore, if the user tilts the can away from the blunt legs, a slip may result while only the wheels are engaged.
U.S. Pat. No. 6,158,453, issued to Nasco, discloses a quad-wheeled cane with a front mounted brake. Essentially the base of Nasco looks like the old four-wheeled skates with a brake in front that is engaged by tilting the back of the skate upward. Nasco is very unstable and takes significant coordination to use safely. Simply put, the Nasco may create more problems than it solves.
U.S. Pat. No. 7,252,105, issued to Otis, discloses a two-wheeled cane, wherein the wheels are in-line and very spaced apart. The wheels are not retractable and have a front and back brake that are engaged by tilting the cane. Not only does this device is lack the stability of a quadruped, but it is hard to imagine the user being able to engage the brakes because it is almost impossible to tilt the cane while using the cane for support. Again, this cane creates more problems than it solves.
U.S. Pat. No. 6,708,705 issued to Nasco, discloses a tri-wheeled cane with a breaking method that is utilized when a downward force is applied to the wheelbase. Pyramidal canes have a higher center of gravity and are therefore less stable than quad canes. Since no legs or bumpers extend beyond the wheelbase, utilizing this three-wheeled cane at an angle will cause slippage without the ability to safely engage the brake.
U.S. Pat. No. 7,261,114, issued to Karasin, and U.S. Pat. No. 7,334,592, issued to Tartagila, disclose similar breaking, four-wheeled canes with a spring mounted brake and dual cane handle extending from the wheelbase. Downward force applied, or similar method, triggers a blunt foot attachment to drop down between the two front wheels thus acting like a brake. These references are deficient because they have no passive failsafe brake. The user must trigger the brake using quick reflexes that most cane users lack. If a slip or loss of balance occurs when the user is not in a position to properly actuate the brake thru downward force on the front handle or through the trigger mechanism, the brake will not be applied and the user will be injured in a bad fall.
The limitations of the currently available canes are further discussed in Bateni H, Maki B E., Assistive Devices for Balance and Mobility: Benefits, Demands, and Adverse Consequences, Arch Phys Med Rehabil 2005, 86:134-45, the contents of which are expressly incorporated herein by this references.
Thus, what is need is a quad wheeled and quad footed cane with retractable wheels and a fail-safe brake.
To minimize the limitations in the prior art, and to minimize other limitations that will become apparent upon reading and understanding the present specification, the present invention discloses a quad-wheeled and quad-legged cane, wherein the wheels are retractable and overhang a rigid support structure that allows for fail-safe braking and wherein the cane has one or more adjustable handles.
One embodiment of the invention is a cane comprising: at least one substantially vertical member; at least one handle; a base; at least one wheel; and at least one rigid supporting structure. The base is comprised of at least one wheel base; wherein the at least one handle is attached to a top end of the at least one substantially vertical member. The at least one vertical member is attached to a top surface of the base. The at least one wheel is attached to the at least one wheel base. The at least one rigid supporting structure is attached to the base distally to the at least one wheel. The at least one wheel extends from a bottom surface of the base and wherein the at least one wheel extends further away from the base than the at least one rigid supporting structure such that the cane rolls along a ground surface being traversed by a user without the at least one rigid supporting structure contacting the ground surface, and such that when the cane is tilted away from a substantially vertical position the at least one rigid supporting structure contacts the ground surface. The at least one wheel is retractable into the at least one wheel base such that when a force is applied downward on the at least one substantially vertical member, the at least one wheel retracts into the at least one wheel base such that the at least one rigid support structure contacts the ground surface; and wherein the at least one rigid supporting structure is a fail-safe brake. Preferably, there are four wheels, four wheel bases, and four rigid supporting structures. Preferably, the base is substantially rectangular and has four corners. Preferably, the four wheel bases are positioned substantially at the four corners of the base. Preferably, the four rigid supporting structures are positioned substantially at the four corners of the base and extend distally beyond the four wheels such that when the cane is tilted away from the substantially vertical position in any direction one or more of the four rigid supporting structures will come into contact with the ground surface. Preferably, each of the four rigid support structures is comprised of a flexible base and a substantially flat bottom, such that the four rigid support structures provide substantial braking and stability when one or more of the four wheels are retracted. Preferably, the at least one vertical member is comprised of two vertical shafts, wherein a height of each of the two vertical shafts is independently adjustable. Preferably, the handle is slideably attached to the two vertical shafts such that the handle may shift from a substantially level position to one or more tilted positions. Preferably, the two vertical shafts are removeably attached to the top surface of base. Preferably, the base is further comprised of a shaft connector. Preferably, the shaft connector is adjustable, such that the shaft connector shifts between a plurality of positions on the base, such that the cane may be used by both right handed and left handed users. Preferably, the two vertical shafts are removeably attached to the shaft connector of the base. Preferably, the one or more of the four wheel bases are comprised of an adjustment device. Preferably, the one or more adjustment devices allow a user to adjust the downward force needed to retract the wheels into the wheel bases. Preferably, the two of the four wheels are fixed axle wheels and wherein two of the four wheels are swivel wheels. The cane preferably further comprises one or more shaft stability bars; wherein the one or more shaft stability bars are slideably attached to both of the two vertical shafts and positioned below the handle. Preferably, the four wheel bases are further comprised of a compression spring; wherein the compression spring allows the four wheels to retract within the four wheel bases.
Another embodiment of the invention is a cane comprising: two substantially vertical shafts; at least one handle; a base; four wheels; and four supporting structures; wherein the base has four corners and is comprised of four wheel bases and a shaft connector; wherein the four wheel bases are positioned substantially at the four corners of the base; wherein the at least one handle is attached to a top end of each of the two substantially vertical members; wherein a lower end of each of the two vertical members are removeably attached to the shaft connector; wherein each of the four wheels is attached to the one of the four wheel bases; wherein the four rigid supporting structures are positioned substantially at the four corners of the base and extend distally beyond the four wheels; wherein the four wheels extend from a bottom surface of the base and wherein the four wheels extend further away from the base than the four rigid supporting structures such that the cane rolls along a ground surface being traversed by a user without the at least one rigid supporting structure contacting the ground surface, and such that when the cane is tilted away from a substantially vertical position in any direction one or more of the four rigid supporting structures will come into contact with a ground surface; wherein each of the four wheels retract into one of the four wheel bases such that when a force is applied downward on the vertical shafts, one or more of the wheels retract into the corresponding wheel base such that one or more of the four rigid support structures contact the ground surface; wherein the four rigid supporting structures are a fail-safe brake; and wherein a height of each of the two vertical shafts is independently adjustable. Preferably, the base is further comprised of a shaft connector. Preferably, the shaft connector is adjustable, such that the shaft connector shifts between a plurality of positions on the base, such that the cane may be used by both right handed and left handed users. Preferably, the two vertical shafts are removeably attached to the shaft connector of the base. Preferably, the handle is slideably attached to the two vertical shafts such that the handle may shift from a substantially level position to one or more tilted positions. Preferably, the one or more of the four wheel bases are comprised of an adjustment device. Preferably, the one or more adjustment devices allow a user to adjust the downward force needed to retract the wheels into the wheel bases. Preferably, the each of the four rigid support structures is comprised of a flexible base and a substantially flat bottom, such that the four rigid support structures provide substantial braking and stability when one or more of the four wheels are retracted. Preferably, the cane also includes one or more shaft stability bars; wherein the one or more shaft stability bars are slideably attached to both of the two vertical shafts and positioned below the handle. Preferably, the four wheel bases are further comprised of a compression spring; wherein the compression spring allows the four wheels to retract within the four wheel bases. Preferably, two of the four wheels are fixed axle wheels and wherein two of the four wheels are swivel wheels.
In another embodiment there is a cane attached to a base having at least one wheel and one vertical support shaft; the support shaft having an adjustable length and at least one handle at the top having an adjustable collar for level, inclined, and declined orientations; the base being comprised of a rigid material having a connection to the bottom of at least one support shaft; the shaft-base connection being adjustable allowing the user to adjust or attach a shaft proximal or distal along the base midline in either a left or right orientation allowing for left and right hand use; every wheel having contact with the ground surface and attached to a wheel assemble; a wheel assemble fixed to the bottom of the base allowing the wheel to retract when a downward force is applied with the cane in a position perpendicular to the ground surface, and with a front, in-line fined caster and rotatable rear wheel caster when in configurations of at least two wheels; at least one rigid structure fixed to the base and extending from the base to beyond the wheels in all directions and down to a small vertical distance above the ground such that each wheel is essentially surrounded by a fixed, rigid structure with a bottom of hard, non-slip material such a rubber for contact with the ground surface upon wheel retraction and forming a small angle as measure between the base of a wheel where it contacts the ground surface and the bottom edge of the nearest rigid structure when the wheel is not retracted.
In another embodiment of the present invention there is a cane with a fixed handle with a single shaft connecting to a rigid base; the base having at least one wheel assemble in which the wheel retracts into a rigid base support assemble in response to downward force applied thru the handle by the user; the distance from the contact point of the wheel against the ground surface in a non-retracted position to the proximal bottom edge of the surrounding support assemble forming a small angle and the distance between the surrounding support assemble edge and the ground surface being a small distance. The result being a safe and stable retractable wheel into a rigid support assemble allowing wheeled motion or stable support with downward pressure.
The present invention overcomes the limitations of the prior art and other deficiencies described by the prior art. In the aspect of the present invention, an assistive cane with adjustable collar/handles and one or more removable and adjustable shafts attached to a base comprised of a fixed based with one or more blunt ferrules extending beyond, or a surrounding platform, proximate to one or more adjustable tension, actuating, forward facing, rotating front wheels assemblies and fixed, in-line rear wheel assemblies. The ferrules or surrounding platforms extend past the wheel assemblies at the same relatively small angle in all directions relative to the center of the cane in its perpendicular position relative to the ground surface. Each ferrule or support platform is relatively close to the ground thus creating a small angle between the contact point of the wheel at the ground and the proximal ferrule or support base in its raised position. It is this small angle that provides greater safety to users since a wheel can only be in contact with the contact surface if the cane is at or very near perpendicular in orientation. In addition, if a small downward force is applied to the cane, the wheel will retract. The small distance between the rigid structure surrounding the wheel in all directions and the ground and relatively small downward force required means a reduced reaction time and force required to disengage any wheel in contact with the ground surface. This results in the current invention of a wheeled cane that offers added safety and easy disengagement of any wheel when used at any angle other than the intended perpendicular orientation of the cane relative to the ground surface. Furthermore, in an emergency situation like a slip or fall, there are no confusing actuations like applying a handbrake or other braking actions since a natural reaction by a user in that situation would be to simply grab the handle tightly to try and regain stability. Furthermore, it isn't likely that a user would be holding a wheeled cane in a perfectly perpendicular position relative to the ground during a fall, which would be required for optimum actuation of ordinary wheeled canes with this type of braking. It is more likely that they or the cane would be at an angle that may make it impossible to actuate a spring mounted brake with a downward force thus creating a potential for injury.
Having an adjustable compression force to the wheel retraction in both the front and rear wheels allows users of different weights and physical abilities to use this cane with the correct amount of force required to disengage the retractable wheels. The user will not easily alter the adjustment of the force during normal usage to prevent persons with impaired mental function from altering the correct settings based on the intended user's physical state and ability. Fixed rear wheels and rotating front wheels allows the greatest balance of control and mobility. Fixed rear wheels prevent rear sliding outward during usage while rotating front wheels allow for easy of turning without lifting the cane.
Duel, adjustable shafts with multiple handles will allow for a variety of configurations for handle position as well as correct adjustments for users of different heights. This allows the user to utilize the device in either a cane or crutch configuration.
It is an object of the present invention to overcome the limitations of the prior art. Many of these limitations are discussed in the Assistive Devices for Balance and Mobility: Benefits, Demands, and Adverse Consequences article that has been expressly incorporated herein.
It is an object of the present invention to provide an easy to use, sturdy, adjustable, and inexpensive walking aid cane. The cane has a fail-safe brake that is activated by a substantially downward force or the cane tilting past a certain angle.
These, as well as other components, steps, features, objects, benefits, and advantages, will now become clear from a review of the following detailed description of illustrative embodiments, the accompanying drawings, and the claims.
The drawings are of illustrative embodiments. They may not illustrate all embodiments. Other embodiments may be used in addition or instead. Details that may be apparent or unnecessary may be omitted either to save space or to provide more effective illustration. Some embodiments may be practiced with additional components or steps and/or without all of the components or steps that are illustrated. When the same numeral appears in different drawings, it refers to the same or like components or steps.
In the following detailed description of various embodiments of the invention, numerous specific details are set forth in order to provide a thorough understanding of various aspects of one or more embodiments of the invention. However, one or more embodiments of the invention may be practiced without some or all of these specific details. In other instances, well-known methods, procedures, and/or components have not been described in detail so as not to unnecessarily obscure aspects of embodiments of the invention.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the screen shot figures, and the detailed descriptions thereof, are to be regarded as illustrative in nature and not restrictive. Also, the reference or non-reference to a particular embodiment of the invention shall not be interpreted to limit the scope of the invention.
The term “ferrule” is preferably defined herein as any stable and substantially blunt ended leg, foot, cap, or rigid supporting structure. The ferrule may be of any shape, but typically the bottom portion of the ferrule is substantially flat and generally wider than the top portion.
Preferably, the cane 100 has two substantially vertical shafts 400, 410, but may comprise of more than two shafts without deviating from the scope of the invention. Furthermore, the upper shafts 401, 411 may interconnect telescopically with lower shafts 402, 412, by using a hole and (spring) pin system for adjusting the length of the vertical shafts 400, 410. Although
Additionally, although not shown in
Preferably, the wheel is retracted by a retraction system, which is preferably performed by the compression spring 605. However, other mechanisms for providing compression force against the top caster retraction into the wheel base 650 may be used. A connection 606 may be used to allow each caster to attach to the wheel base 650 and may be constructed of any metal, alloy or other significantly rigid and strong pin, bolt, or other mechanism. The wheel base 650 is preferably constructed from a rigid material such as metal, plastic, alloy, or composite, and may be cylindrical or other shape to accommodate the caster 602 and compression mechanism. Additionally, the wheel is preferably comprised of a tension adjustment knob 615 or other mechanism for manually increasing the compression force within each wheel base 650. The compression bar 608 may be constructed from a material that can withstand the forces applied and is appropriate to the design of the compression mechanism. The mechanism for providing significant compression force for retractable wheels assemblies are typically determined by force actuation requirements for typical users, quality of construction, costs, and size requirements. Although a compression spring 605 is shown as the preferred mechanism for providing the retraction, other systems and configurations for providing compression resistance may be used such as a gas or hydraulic filled chambers, or materials under compression.
Regarding the base 500, the base 500 is preferably asymmetrical which allows the cane to be usable by both left and right hands, without requiring significant structural changes, such as movement of vertical shafts 400, 410. The asymmetry also provides significant support without the base, wheels, and rigid support structures from interfering with the walking motion of the user.
Preferably, handle 200 is constructed from wood, polyurethane, plastic, polymer metal, fiberglass, or any other combination of thereof to provide a rigid, comfortable, and stable handle. The front section 201, middle section 202, and elbow-rest 203 are preferably axially disposed around handle 200 and may be constructed of any material, such as a polymer (as preferred) and may include other materials as well such as plastic, padding, foam, fabric, hook and loop fabrics, polymer, thermoplastic polymer, or any material that provides both comfort and low wear qualities. Portions of the handle 200 may also be shaped to provide proper orientation for the user's hand and ergonomic safety and comfort for long and repeated use. The grip 205 is preferably made of a resilient material such as Thermoplastic Elastomer (TPE), silicone, or urethane, and is preferably used to allow the user to control the direction of travel. While,
Unless otherwise stated, all measurements, values, ratings, positions, magnitudes, sizes, locations, and other specifications which are set forth in this specification, including in the claims which follow, are approximate, not exact. They are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain.
The foregoing description of the preferred embodiment of the invention has been presented for the purposes of illustration and description. While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the above detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the detailed description is to be regarded as illustrative in nature and not restrictive. Also, although not explicitly recited, one or more embodiments of the invention may be practiced in combination or conjunction with one another. Furthermore, the reference or non-reference to a particular embodiment of the invention shall not be interpreted to limit the scope the invention. It is intended that the scope of the invention not be limited by this detailed description, but by the claims and the equivalents to the claims that are appended hereto.
Except as stated immediately above, nothing which has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.