Embodiments of the present disclosure relate to sidetrack drilling for hydrocarbons. In particular, this disclosure relates to a whipstock assembly for creating a window within a wellbore casing. More particularly still, this disclosure relates to a whipstock assembly having a removable sleeve for re-establishing fluid communication with wellbore.
In recent years, technology has been developed which allows an operator to drill a primary vertical well, and then continue drilling an angled lateral borehole off of that vertical well at a chosen depth. Generally, the vertical, or “parent” wellbore is first drilled and then supported with strings of casing. The strings of casing are cemented into the formation by the extrusion of cement into the annular regions between the strings of casing and the surrounding formation. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.
In many instances, the parent wellbore is completed at a first depth, and is produced for a given period of time. Production may be obtained from various zones by perforating the casing string. At a later time, it may be desirable to drill a new “sidetrack” wellbore utilizing the casing of the parent wellbore. In this instance, a tool known as a whipstock is positioned in the casing at the depth where deflection is desired, typically at or above one or more producing zones. The whipstock is used to divert milling bits into a side of the casing in order create an elongated elliptical window in the parent casing. Thereafter, a drill bit is run into the parent wellbore. The drill bit is deflected against the whipstock, and urged through the newly formed window. From there, the drill bit contacts the rock formation in order to form a new lateral hole in a desired direction. This process is sometimes referred to as sidetrack drilling.
When forming the window through the casing, an anchor is first set in the parent wellbore at a desired depth. The anchor is typically a packer having slips and seals. The anchor tool acts as a fixed body against which tools above it may be urged to activate different tool functions. The anchor tool typically has a key or other orientation-indicating member.
A whipstock is next run into the wellbore. The whipstock has a body that lands into or onto the anchor. A stinger is located at the bottom of the whipstock which engages the anchor device. At a top end of the body, the whipstock includes a deflection portion having a concave face. The stinger at the bottom of the whipstock body allows the concave face of the whipstock to be properly oriented so as to direct the milling operation. The deflection portion receives the milling bits as they are urged downhole. In this way, the respective milling bits are directed against the surrounding tubular casing for cutting the window.
In order to form the window, a milling bit, or “mill,” is placed at the end of a string of drill pipe or other working string. In some milling operations, a series of mills is run into the hole. First, a starting mill is run into the hole. Rotation of the string with the starting mill rotates the mill, causing a portion of the casing to be removed. This mill is followed by other mills, which complete the creation of the elongated window.
In some lateral wellbore completions, it is sometimes desirable to re-establish fluid communication within the parent wellbore with a producing zone at or below the depth of the whipstock. In such an instance, a perforating gun is lowered into the liner for the lateral wellbore. The perforating gun is lowered to the depth of the whipstock, and fired in the direction of the whipstock's deflection portion. The perforations are formed through a perforation plate on the whipstock and the liner of the lateral wellbore. The perforations re-establish fluid communication between the surface and the original producing formation of the parent wellbore. The presence of perforations in the perforation plate allows valuable production fluids to migrate up the parent wellbore from producing zones at or below the level of the whipstock.
To facilitate perforation, it is desirable to have a perforation plate on the whipstock made of a sufficiently thin or pliable metal to permit penetration by the perforating explosives. While such a metal composition aids in perforation of the whipstock, it also reduces the durability of the whipstock during the milling operation and the ability of the whipstock to deflect the mill bits against the casing.
There is, therefore, a need for a whipstock assembly that can be operated to re-establish fluid communication with the wellbore below the whipstock after formation of a window.
So that the manner in which the above recited features of the present disclosure are attained and can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to the drawings that follow. The drawings illustrate only selected embodiments of this disclosure, and are not to be considered limiting of its scope.
The whipstock 100 has a lower end for connecting to the packer and anchor assembly 210 and a concave shaped upper portion for guiding a drilling member such as a mill bit or a drill bit. In one embodiment, the whipstock 100 includes an outer sleeve body 31 disposed around an inner hollow body 21. As shown in
As shown in
As shown in
In one embodiment, the outer sleeve 51 of the outer body is a tubular having a bore 53 extending therethrough. The upper portion of the outer sleeve 51 has an inclined cut out 63 that exposes the bore 53. The inclined cut out 63 may be achieved using a concave cut, similar to the inner body 21. The inclined cut out 63 may begin near the upper end of the outer sleeve 51 and increases toward the lower end. The inclined cut out 63 may be used to guide the movement of the mill and set the mill's angle of attack to form the window. In one embodiment, the angle of inclined cut out 63 of the outer sleeve 51 is the same as the angle of the inclined cut out 43 of the inner body 21. In one embodiment, the inclined cut out 63 is between about 2 degrees and 15 degrees; preferably between 2 degrees and 8 degrees; and more preferably between about 2 degrees and 5 degrees. The upper end of the outer sleeve 51 may include a connection 52 for connecting to a work string and/or a mill bit or drill bit. The connection 52 may include a hole for receiving a shearable member such as a shear screw. The lower end of the outer sleeve 51 may include one or more holes 54 that can be aligned with the holes 24 of the inner body 21 for receiving a shearable member such as a shear screw. An optional retaining sleeve 73 may be disposed around holes 54 to prevent the shearable members in the holes from falling out or retain the caps of the shearable members after shearing, as shown in
The concave member 61 is disposed above and attached to the inclined cut out 63 of the outer sleeve 51. The concave member 61 forms a concave ramp to guide the path of the mill bit. In one embodiment, the concave member 61 extends along the length of the inclined cut out 63, and its width is tapered to complement the inclined cut out 63. As shown in
In another embodiment, a concave member may be disposed on the inclined cut out of the inner body 21. In this embodiment, the concave member includes one or more openings to allow fluid communication through the concave member.
In one embodiment, the outer body 31 includes a guide member 71 such as a guide key to facilitate alignment of the inner body 21 to the outer body 31. As shown in
In
The actuating sleeve 220, the sealing element 230, the plurality of slips 235, and the wedge members 241, 242 are disposed on the outer surface of the mandrel 211. The sealing member 230 is positioned between a shoulder of the mandrel 211 and an upper wedge member 241. The slips 235 are disposed between the upper wedge member 241 and the lower wedge member 242. The actuating sleeve 220 is disposed below the lower wedge member 242. An annular chamber 226 is defined between the actuating sleeve 220 and the mandrel 211. One or more seal rings may be used to seal the annular chamber 226. A hydraulic channel 228 through the mandrel 211 may be used to supply hydraulic fluid to the chamber 226. It is contemplated embodiments of the whipstock 100 may be used with any suitable packer, anchor, or a combination of packer and anchor assembly. For example, the anchor may include a plurality of slips disposed on a mandrel having a bore. The packer may include a sealing element disposed on a mandrel having a bore.
In operation, whipstock 100 is assembled with the packer and anchor assembly 210. A mill is attached to the upper end of the whipstock 100 such as via the connection 52 of the outer body 31. For example, the mill can be releasably attached to the connection using a shearable lug or screw. The whipstock 100 is lowered into the wellbore using a workstring. After reaching the location of the window to be formed, the packer and anchor assembly 210 is set below the window. Hydraulic is supplied to the chamber 226 to urge the actuating sleeve 220 upward, thereby moving the lower wedge member 242 closer to the upper wedge member 241. As a result, the slips 235 are urged up the inclined of the wedge members and outwardly into engagement with the surround casing. After setting the slips 235, weight is set down on the whipstock 100, thereby compressing the sealing element 230 between the shoulder of the mandrel 211 and the upper wedge member 241. The sealing element 230 is urged outwardly into engagement with the surrounding casing to seal off fluid communication through the annulus. Although the bore of the inner body 21 is open to fluid pressure from below the sealing element 230, the outer body 31 closes communication through the bore of the inner body 21.
Additional pressure is applied to the mill to release the mill from the whipstock. For example, sufficient pressure is applied from the surface to break the shearable lug or screw connecting the mill to the whipstock. The mill is then urged along the concave member 61 of the whipstock 100, which deflects the mill outward into engagement with the casing.
After the window is formed, the mill is retrieved. A retrieval tool is lowered into the wellbore to connect with the outer body 31. In one embodiment, the retrieval tool includes threads for mating with threads 77 on the outer surface of the outer sleeve 51 of the outer body 31. A pull force is then applied to the retrieval tool to release the outer body 31 from the inner body 21. In one embodiment, the pull force is transmitted along the outer body 31 to the shear screws 78 connecting the outer body 31 to the inner body 21. The pull force is sufficient to shear the screws 78. The outer body 31, disconnected from the inner body 21 and the packer and anchor assembly 210, is retrieved to surface. After release of the outer body 31, fluid communication between the wellbore above and the wellbore below the packer and anchor assembly 210 is re-established via the bore of the inner body 21. Because the inner body 21 includes an inclined cut out 43, the inner body 21 can also serve to guide a downhole tool such as a drill bit, a mill bit, or a wellbore tubular such as a casing toward the window. Although the outer body 31 is described as being released after forming the window, it is contemplated the outer body 31 may be released at any suitable time, such as after the drill bit has extended the lateral wellbore or anytime fluid communication is to be re-established.
The whipstock 400 has a lower end for connecting to the packer and anchor assembly 210 and a concave shaped upper portion for guiding a drilling member such as a mill bit or a drill bit. In one embodiment, the whipstock 400 includes an outer sleeve body 431 disposed around an inner hollow body 421. As shown in
The lower end of the inner body 421 may include one or more holes 424 formed on the outer surface for receiving a shearable member, as shown in
As shown in
In one embodiment, the outer sleeve 451 of the outer body 431 is a tubular having a bore 453 extending therethrough. The upper portion of the outer sleeve 451 has an inclined cut out 463 that exposes the bore 453. The inclined cut out 463 may be achieved using a concave cut, similar to the inner body 421. The inclined cut out 463 begins at the upper end of the outer sleeve 451 and increases toward the lower end. The inclined cut out 463 may be used to guide the movement of the mill and set the mill's angle of attack to form the window. In one embodiment, the angle of inclined cut out 463 of the outer sleeve 451 is the same as the angle of the inclined cut out 443 of the inner body 421. In one embodiment, the inclined cut out 463 is between about 2 degrees and 15 degrees; preferably between 2 degrees and 8 degrees; and more preferably between about 2 degrees and 5 degrees. The lower end of the outer sleeve 451 may include one or more holes 454 that can be aligned with the holes 424 of the inner body 421 for receiving a shearable member such as a shear screw. An optional retaining sleeve 473 may be disposed around holes 454 to prevent the shearable members in the holes from falling out or retain the caps of the shearable members after shearing, as shown in
The concave member 461 is disposed above and attached to the inclined cut out 463 of the outer sleeve 451. The concave member 461 includes a concave surface 464 forming a ramp to guide the path of the mill bit. The upper portion of the concave member 461 may include a connection 452 for connecting to a work string and/or a mill bit or drill bit. The connection 452 may include a hole for receiving a shearable member such as a shear screw. In one embodiment, the upper portion of the concave member 461 includes a support body 466 for supporting the upper portion in a wellbore. In this embodiment, the support body 466 is integral with the concave surface 464. A retrieval slot 482 is formed in the upper portion for retrieving the outer body 431. The concave member 461 attaches to and extends along the length of the inclined cut out 463 of the outer sleeve 451, and its width is tapered to complement the inclined cut out 463. The upper end of the outer sleeve 451 attaches to the lower end of the support body 466. As shown in
In another embodiment, a concave member may be disposed on the inclined cut out of the inner body 421. In this embodiment, the concave member includes one or more openings to allow fluid communication through the concave member.
In
While the whipstock 400 is suitable for use with the packer and anchor assembly 210, it is contemplated embodiments of the whipstock 400 may be used with any suitable packer, anchor, or a combination of packer and anchor assembly. For example, the anchor may include a plurality of slips disposed on a mandrel having a bore. The packer may include a sealing element disposed on a mandrel having a bore.
In operation, whipstock 400 is assembled with the packer and anchor assembly 210. A mill is attached to the upper end of the whipstock 400 such as via the connection 452 of the outer body 431. For example, the mill can be releasably attached to the connection using a shearable lug or screw. The whipstock 400 is lowered into the wellbore using a workstring. After reaching the location of the window to be formed, the packer and anchor assembly 210 is set below the window. After supplying hydraulic fluid to set the slips 235, weight is set down on the whipstock 400, thereby compressing the sealing element 230 between the shoulder of the mandrel 211 and the upper wedge member 241. The sealing element 230 is urged outwardly into engagement with the surrounding casing to seal off fluid communication through the annulus. Although the bore of the inner body 421 is open to fluid pressure from below the sealing element 230, the outer body 431 closes communication through the bore of the inner body 421.
Additional pressure is applied to the mill to release the mill from the whipstock 400. For example, sufficient pressure is applied from the surface to break the shearable lug or screw connecting the mill to the whipstock 400. The mill is then urged along the concave member 461 of the whipstock 400, which deflects the mill outward into engagement with the casing.
After the window is formed, the mill is retrieved. A retrieval tool is lowered into the wellbore to connect with the outer body 431. In one embodiment, the retrieval tool engages the retrieval slot 482 of the outer body 431. A pull force is then applied to the retrieval tool to release the outer body 431 from the inner body 421. In one embodiment, the pull force is transmitted along the outer body 431 to the shear screws 478 connecting the outer body 431 to the inner body 421. The pull force is sufficient to shear the screws 478. After release of the outer body 431, fluid communication between the wellbore above and the wellbore below the packer and anchor assembly 210 is re-established via the bore of the inner body 421. Because the inner body 421 includes an inclined cut out 443, the inner body 421 can also serve to guide a downhole tool such as a drill bit, a mill bit, or a wellbore tubular such as casing toward the window. Although the outer body 431 is described as being released after forming the window, it is contemplated the outer body 431 may be released at any suitable time, such as after the drill bit has extended the lateral wellbore or anytime fluid communication is to be re-established.
The whipstock 300 has a lower end for connecting to the packer and anchor assembly and a concave shaped upper portion for guiding a mill or a drill bit. In one embodiment, the whipstock 300 includes an inner hollow body 321 disposed in an outer body 331.
As shown in
As shown in
In one embodiment, the lower outer sleeve 351 of the outer body 331 is a tubular having a bore 353 extending therethrough. The lower outer sleeve 351 may be disposed around the inner body 321 and attached thereto using a one or more sharable members. As shown in
The concave member 361 is attached to the lower outer sleeve 351 and disposed over the inclined cut out of the inner body 321. The concave member 361 may have a concave cut on its sides, similar to the inner body 321. The concave member 361 may be used to guide the movement of the mill and set the mill's angle of attack to form the window. The concave member 361 forms a protective ramp over the inclined cut out 343. In one embodiment, the concave member 361 extends along the length of the inclined cut out 343, and its width is tapered to complement the inclined cut out 343. In one embodiment, the concave member 361 prevents or substantially prevents fluid communication through the upper end of the outer body 331.
The upper outer sleeve 352 is attached to the upper end of the concave member 361. The upper outer sleeve 352 has an inclined cut out that attaches to the concave member 361. The inclined cut out may be achieved using a concave cut, similar to the inner body 321. The inclined cut out may begin near the upper end of the outer sleeve 352 and extends toward the lower end. In one embodiment, the angle of inclined cut out of the upper outer sleeve 352 is the same as the angle of the inclined cut out 343 of the inner body 321. In one embodiment, the inclined cut out is between about 2 degrees and 15 degrees; preferably between 2 degrees and 8 degrees; and more preferably between about 2 degrees and 5 degrees. The upper end of the upper outer sleeve 352 may include a connection for connecting to a work string and/or a mill bit or drill bit. The connection may include a hole for receiving a shearable member such as a shear screw. The lower end of the outer
In one embodiment, the outer body 331 includes a guide member 371 such as a guide key to facilitate alignment of the inner body 321 to the outer body 331. The guide key 371 has an inclined top surface that attaches to the bottom surface of the concave member 361. The guide key 371 has a bottom surface for mating with the slot 322 of the inner body 321. In one embodiment, the guide member 371 aligns the inner body 321 to the outer body 331 so that the inclined surface of the inner body 321 directs the downhole tool toward the window formed by the mill bit moving along the inclined surface of the outer body 331. A sufficient clearance is formed between the bottom surface 372 of the guide key 371 and the inner surface of the upper outer sleeve 352 to receive the inner body 321 and the slot 322. The clearance at the bottom of the guide key 371 can be seen in
As seen in
In operation, whipstock 300 is assembled with the packer and anchor assembly, such as the packer and anchor assembly 210 in
Additional pressure is applied to the mill to release the mill from the whipstock. For example, sufficient pressure is applied from the surface to break the shearable lug or screw connecting the mill to the whipstock. The mill is then urged along the concave member 361 of the whipstock 300, which deflects the mill outward into engagement with the casing.
After the window is formed, the mill is retrieved. A retrieval tool is lowered into the wellbore to connect with the outer body 331. In one embodiment, the retrieval tool includes threads for mating with threads 377 on the outer surface of the upper outer sleeve 352 of the outer body 331. A pull force is then applied to the retrieval tool to release the outer body 331 from the inner body 321. In one embodiment, the pull force is transmitted along the outer body 331 to the shear screws 3 connecting the lower outer sleeve 351 to the inner body 321. The pull force is sufficient to shear the screws. The outer body 331, disconnected from the inner body 321 and the packer and anchor assembly, is retrieved to surface. After release of the outer body 331, fluid communication between the wellbore above and the wellbore below the packer and anchor assembly is re-established via the bore of the inner body 321. The inclined cut out 343 of the inner body is protected from the mill by the concave member 361 of the outer body 331. The inclined cut out 343 of the inner body 321 can serve to guide a downhole tool such as a drill bit, a mill bit, or a wellbore tubular such as casing toward the window. Although the outer body 331 is described as being released after forming the window, it is contemplated the outer body 331 may be released at any suitable time, such as after the drill bit has extended the lateral wellbore or anytime fluid communication is to be re-established.
A whipstock assembly includes an inner body having a bore and an inclined surface at an upper portion; and an outer body disposed around the inner body and releasably attached to the inner body, the outer body having an inclined surface and an upper portion closed to fluid communication.
In one or more of the embodiments described herein, the outer body is releasably attached to the inner body using a shearable member.
In one or more of the embodiments described herein, the inclined surface of the inner body has a concave cut on a wall of the inner body.
In one or more of the embodiments described herein, at least a portion of the inclined surface of the outer body is disposed above the inclined surface of the inner body.
In one or more of the embodiments described herein, the whipstock includes a guide member for coupling the outer body to the inner body.
In one or more of the embodiments described herein, the guide member mates with a slot formed in the inner body.
In one or more of the embodiments described herein, the guide member is attached to the inclined surface of the outer body.
In one or more of the embodiments described herein, a clearance is formed between the guide member and an outer sleeve of the outer body to at least partially receive the inner body.
In one embodiment, a method for forming a window in a wellbore includes lowering a work string having a drilling member, a whipstock assembly, a sealing element, and an anchor, wherein the whipstock assembly includes an outer body releasably attached to an inner body; setting the sealing element and the anchor; releasing the drilling member from the whipstock assembly; moving the drilling member along an inclined surface of the outer body to form the window; releasing the outer body from the inner body; and moving a downhole tool along an inclined surface of the inner body.
In one or more of the embodiments described herein, the method includes retrieving the outer body after release from the inner body.
In one or more of the embodiments described herein, releasing the outer body comprises applying a sufficient pull force to the outer body to release the outer body from the inner body.
In one or more of the embodiments described herein, releasing the outer body further comprises attaching a retrieval tool to the outer body and applying the pull force via the retrieval tool.
In one or more of the embodiments described herein, setting the anchor comprises supplying a hydraulic fluid.
In one or more of the embodiments described herein, setting the sealing element comprises applying compressive force to the sealing element.
In one or more of the embodiments described herein, fluid communication through the whipstock assembly is prevented when the outer body is attached to the inner body.
In one or more of the embodiments described herein, fluid communication in the wellbore across the whipstock assembly and the sealing element is prevented after setting the sealing element.
In one or more of the embodiments described herein, fluid communication in the wellbore across the whipstock assembly is allowed after releasing the outer body from the inner body.
In one embodiment, a downhole tool for use in forming a lateral wellbore includes a whipstock assembly having an inner body having a bore and an inclined surface at an upper portion; and an outer body disposed around the inner body and releasably attached to the inner body, the outer body having an inclined surface. The downhole tool also includes a sealing element coupled to the whipstock assembly; and an anchor coupled to the whipstock assembly, the anchor having a bore in fluid communication with the bore of the inner body.
In one or more of the embodiments described herein, the inclined surface of the inner body is aligned with inclined surface of the outer body.
In one or more of the embodiments described herein, the inclined surfaces are aligned by mating a guide member to a slot.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.