This application claims priority from Taiwan Patent Application No. 102127683, filed Aug. 1, 2013, the content of which are hereby incorporated by reference in their entirety for all purposes.
1. Field of the Invention
The present invention relates to a white light-emitting diode with high uniformity and wide angle intensity distribution, and particularly relates to a color temperature tunable white light-emitting diode with high uniformity and wide angle intensity distribution.
2. Description of the Prior Art
Now, the white LED is fabricated by adhering a yellow phosphor (or a green phosphor or a red phosphor) on a light emitting surface of a blue LED.
However, the conventional white LED 10 has many shortcomings. First, a light emitted from the LED 14 is directional. The white light formed by the conventional white LED is directional because the light emitted from the LED 14 is directional and the sealant 12 formed by mixing a phosphor with a glue is horizontally coated on the light emitting surface of the LED 14. It results in non-uniform intensity of the white light emitted from the conventional white LED 10 at different angles. In the conventional white LED 10, the white light has a highest intensity at the angle directly facing the light emitting surface of the LED 14 and the white light has a lower intensity at other angles which do not directly face the light emitting surface of the LED 14. It means that the intensity of the white light emitted through the top side of the lampshade 18 is strongest and the intensity of the white light emitted through the sides and backside of the lampshade 18 is weaker.
Next, most raw materials of the phosphor used in the conventional white LED 10 are rare earth elements, and most of the phosphors have bigger size than micro-scale. So, when the phosphor is coated on the light emitting surface of the LED 14 to form a phosphor film, the phosphor film has a certain thickness and it is not thin enough. After the phosphor (or phosphor film) is excited by the light emitted from the LED 14 and the light emitted from the phosphor (or phosphor film) is mixed with the light emitted from the LED 14 to form the white light, portion of the white light will be absorbed by phosphor (or phosphor film) when the white light pass through the phosphor film. It is because the phosphor film is not thin enough to prevent the phosphor film from absorbing the white light generated by the conventional white LED 10. Therefore, the phosphor (or phosphor film) has an absorbing effect to the white light generated by the conventional white LED 10 and the white light generated by the conventional white LED 10 becomes weaker. Besides, it is difficult to precisely control the thickness of the phosphor film to form the phosphor film having a special or predetermined thickness, such as the thickness is thin enough to prevent the phosphor film from absorbing the white light generated by the conventional white LED 10, because most of phosphors used in the conventional white LED 10 have bigger size than micro-scale.
Furthermore, in the conventional white LED 10, a blue LED is often adopted to be the LED 14 and a yellow phosphor is adopted to be the phosphor in sealant 12. The white light of the conventional white LED 10 is formed by mixing a blue light emitted from the blue LED and a yellow light generated by exciting the yellow phosphor with the blue light. The blue light has different intensity at different angles because the blue light emitted from the blue LED is directional. Therefore, in the white light emitted from the conventional white LED 10, the intensity of the blue light at different angles is not the same. It results in non-uniform color temperature of the white light at different angles. For example, the area (in the white light) having more blue light has higher color temperature, and the area (in the white light) having less blue light has lower color temperature.
Besides, in the conventional white LED 10, the phosphor (such as a yellow phosphor) is adhered on the LED 14 (such as a blue LED). Therefore, once the conventional white LED 10 is used for a long time, the temperature of the LED 14 (such as a blue LED) will rise and the temperature of the phosphor will rise following the temperature rising of the LED 14. The temperature rising of the phosphor results in destruction or invalidation of the phosphor. Therefore, the luminous efficiency and the light color of the phosphor are seriously influenced, and the conventional white LED 10 can not be used for a long time and provide a stable white light because of the serious influence of the luminous efficiency and the light color of the phosphor. Furthermore, in the conventional white LED 10, the white light emitted from the LED 14 is shielded by the LED 14 itself and the pedestal of the conventional white LED 10 because the phosphor (such as a yellow phosphor) is horizontally coated on the LED 14 (such as a blue LED). Therefore, the illumination area of the conventional white LED 10 is not wide enough to provide an all-dememtional illumination or a 360 degree illumination.
Therefore, it has a need of a white light-emitting diode with high uniformity and wide angle intensity distribution, which can provide a stable white light with big illumination area, uniform intensity and color temperature, and good illuminance.
In view of the foregoing, one object of the present invention is to provide a white light-emitting diode with high uniformity and wide angle intensity distribution for overcoming above-mentioned shortcomings to provide a stable white light with big illumination area, uniform intensity and color temperature, and good illuminance. Further, the color temperature of the white light generated by the white light-emitting diode can be adjusted.
According to one of the objects above, a white light-emitting diode with high uniformity and wide angle intensity distribution is disclosed herein. The white light-emitting diode with high uniformity and wide angle intensity distribution comprises a base, a UV LED array, a lampshade, and a white light phosphor layer wherein the UV LED array is deposed on the base, the lampshade is integrated with the base to form a space inside the combination of the lampshade for covering and holding (or containing) the UV LED array therein, and the white light phosphor layer is coated on one surface of the lampshade. The white light phosphor layer is formed by coating a nano-phosphor material on the surface of the lampshade. The white light phosphor layer (or the nano-phosphor material) can be excited by a UV light to form many pointolites (or point light sources) arranged on the surface of the lampshade. Therefore, the white light-emitting diode can provide a stable white light with big illumination area, uniform intensity and color temperature, and good illuminance. Furthermore, the UV LED array comprises two set of UV LEDs, which emit UV lights having different wavelengths respectively, for controlling or adjusting color temperature of the white light-emitting diode. Or, the color temperature of the white light-emitting diode can be adjusted by changing the ratio of compositions of white light phosphor layer.
Therefore, the present invention provides a white light-emitting diode with high uniformity and wide angle intensity distribution. In the white light-emitting diode, there are many pointolites (or point light sources) formed on the lampshade by the white light phosphor layer, which is formed by coating the nano-phosphor material on the surface of the lampshade, when a UV light illuminates the white light phosphor layer. Therefore, the white light-emitting diode can provide a stable white light with big illumination area, uniform intensity and color temperature, and good illuminance. Further, the color temperature of the white light generated by the white light-emitting diode can be adjusted by different combinations of the UV LEDs respectively having different wavelengths, and different ratio of compositions of white light phosphor layer.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
The detailed description of the present invention will be discussed in the following embodiments, which are not intended to limit the scope of the present invention, but can be adapted for other applications. While drawings are illustrated in details, it is appreciated that the quantity of the disclosed components may be greater or less than that disclosed, except expressly restricting the amount of the components. Although specific embodiments have been illustrated and described, it will be appreciated by those skilled in the art that various modifications may be made without departing from the scope of the present invention, which is intended to be limited solely by the appended claims.
The base 102 comprises a heat dissipation device for quickly transferring the heat, which is generated when the UV LED array 104 emit UV lights, to external environment. It prevents the UV LED array 104 (or the white light-emitting diode 100) from break or damage caused by high temperature. As shown in
The UV LED array 104 comprises a plurality of UV LEDs 106 and the UV LEDs 106 are arranged on the base 102 to form the UV LED array 104. Although the UV LEDs 106 showed in
The lampshade 110 is hard lampshade made of glass, Poly(methyl methacrylate) (PMMA), Polyethylene terephthalate (PET), PolyproPylene (PP), Polyurethane (PU), Polyethylene (PE), Polycarbonate (PC), or Polystyrene (PS), or the lampshade 110 is soft lampshade made of a flexible material. Although, in the embodiment showed in
The white light phosphor layer 108 is a film formed by coating a nano-phosphor material on the surface (inner surface or outer surface) of the lampshade 110. The white light phosphor layer 108 can be excited by the UV light, which is emitted from the UV LED 104 or the UV LEDs 106, to form a white light. In one embodiment of the present invention, the nano-phosphor material, of which the white light phosphor layer 108 is made, comprises a blue light organic material and a zinc oxide nano structure. It means that the white light phosphor layer 108 is made of the blue light organic material and the zinc oxide nano structure. The blue light organic material is an organic material which can be excited by a UV light to emit a blue light, for example poly(fluorine) (PF), Alq2. Aromatic oligomer containing pyrimidine, Fluorene Oligomers, Aromatic oligomer containing Furan, distearyl allylene (DSA), stilbenes, or coumarins. The zinc oxide nano structure is a zinc oxide nanoparticle, a zinc oxide nanoisland, a zinc oxide nanorod, a zinc oxide nanoline, a zinc oxide nanotube, or a zinc oxide nano-porous structure. When a UV light emit to the interfacial defects formed by the blue light organic material and the zinc oxide nano structure, a green light is generated by recombination of electrons at interfacial defects which are formed by the blue light organic material and the zinc oxide nano structure. Therefore, when the UV light, which is emitted from the UV LED 104 or the UV LEDs 106, emits to the white light phosphor layer 108 coated on the lampshade 110, the white light phosphor layer 108 is excited to simultaneously emit a blue light and a green light. And then, the blue light and the green light are mixed with each other to form a white light. Therefore, the white light-emitting diode 100 can emit a white light.
The nano-phosphor material made of the blue light organic material and the zinc oxide nano structure is coated on the surface (inner surface or outer surface) of the lampshade 110 by spin coating, dip coating, ink printing, thermal evaporation, sputtering, spray coating, or roll-to-roll, and then, the nano-phosphor material coated on the surface (inner surface or outer surface) of the lampshade 110 is annealed to form the white light phosphor layer 108 on the surface (inner surface or outer surface) of the lampshade 110. The color temperature of the white light emitted from the white light phosphor layer 108 is influenced by the ratio (or the intensity) of the blue light and the green light in the white light because the white light phosphor layer 108 is made of the blue light organic material and the zinc oxide nano structure, and the white light emitted from the white light phosphor layer 108 is formed by mixing the blue light, which is generated by exciting the blue light organic material with the UV light, and the green light, which is generated by exciting interfacial defects formed by the blue light organic material and the zinc oxide nano structure with the UV light. The more blue light the white light emitted from the white light phosphor layer 108 contains, the higher color temperature the white light emitted from the white light phosphor layer 108 has. The ratio of the blue light and the green light in the white light emitted from the white light phosphor layer 108 is influenced by the ratio of the blue light organic material and the zinc oxide nano structure in the nano-phosphor material (or the white light phosphor layer 108). The higher ratio of the blue light organic material the white light phosphor layer 108 (or the nano-phosphor material) contains, the higher ratio (or intensity) of the blue light the white light, which is generated by exciting the white light phosphor layer 108 with the UV light, has. Therefore, the white light emitted from the white light-emitting diode 100 of the present invention can have higher color temperature. Besides, the ratio of the green light in the white light emitted from the white light phosphor layer 108 is influenced by the number of the interfacial defects formed by the blue light organic material and the zinc oxide nano structure in the nano-phosphor material (or the white light phosphor layer 108). The more interfacial defects formed by the blue light organic material and the zinc oxide nano structure the white light phosphor layer 108 has, the higher ratio (or intensity) of the green light the white light, which is generated by exciting the white light phosphor layer 108 with the UV light, has. Therefore, the white light emitted from the white light-emitting diode 100 of the present invention can have lower color temperature. The number of the interfacial defects formed by the blue light organic material and the zinc oxide nano structure is influenced by the temperature of annealing, and so the temperature of annealing further influences and changes the intensity of the green light. The higher the temperature of annealing is, the more interfacial defects formed by the blue light organic material and the zinc oxide nano structure the white light phosphor layer 108 has and the higher intensity the green light has. By this way, the color temperature of the white light emitted from the white light-emitting diode 100 of the present invention can be lowered. Therefore, the intensity of the green light can be controlled and changed by changing the temperature of annealing, and further the changing of the green light in the white light can be controlled by changing the temperature of annealing. By this way, the color temperature of the white light emitted from the white light-emitting diode 100 of the present invention can be controlled and adjusted. Therefore, the color temperature of the white light emitted from the white light-emitting diode 100 of the present invention can be adjusted efficiently and the emitting character (such as CRI) of the white light-emitting diode 100 of the present invention can be changed by changing and adjusting the ratio of the blue light organic material and the zinc oxide nano structure in the white light phosphor layer 108 (or the nano-phosphor material) and the temperature of annealing the blue light organic material and the zinc oxide nano structure in the white light phosphor layer 108 (or the nano-phosphor material).
Or, in another embodiment of the present invention, the nano-phosphor material, of which the white light phosphor layer 108 is made, comprises a blue light organic material and a zinc oxide nano structure, and a metal-ion-doped zinc sulfide nanoparticle in which the metal ion is capable of being used as a luminous center of a red light. It means that the white light phosphor layer 108 is made of the blue light organic material, the zinc oxide nano structure, and the metal-ion-doped zinc sulfide nanoparticle in which the metal ion is capable of being used as a luminous center of a red light. The blue light organic material and the zinc oxide nano structure are described above in detail, and so they are not mentioned herein again. In the metal-ion-doped zinc sulfide nanoparticle, in which the metal ion is capable of being used as a luminous center of a red light, the metal ion maybe a manganese ion, iron ion, cobalt ion, copper ion, or other metal ion capable of being used as a luminous center of a red light. The metal ion is preferably a manganese ion. When a UV light illuminates the metal-ion-doped zinc sulfide nanoparticle in which the metal ion is capable of being used as a luminous center of a red light, the metal ions capable of be used as a luminous center of a red light are used as luminous centers of red light by electronic transitions of these metal ions. For example electronic transition 4T1->6A1 of a manganese ion can be used as a luminous center of a red light by electronic transition 4T1->6A1 and manganese ion can emit a red light by electronic transition 4T1->6A1. Therefore, when the UV LED array 104 (or the UV LEDs 106) emits UV light(s) to the white light phosphor layer 108 coated on the lampshade 110, the white light phosphor layer 108 is excited by the UV light(s) to emit (or generate) a blue light, a green light, and a red light simultaneously. And then, the blue light, the green light, and the red light are mixed with each other for form a white light. Therefore, the white light-emitting diode 100 can emit a white light. The metal-ion-doped zinc sulfide nanoparticle is prepared by hydrothermal method, solid-state reaction, spin coating, dip coating, electrochemical method, precipitation in liquid phase, thermal evaporation, chemical vapor deposition, molecular beam epitaxy, metal-organic chemical vapor deposition (MOCVD), or pulsed laser deposition (PLD).
The nano-phosphor material made of the blue light organic material, the zinc oxide nano structure, and the metal-ion-doped zinc sulfide nanoparticle in which the metal ion is capable of being used as a luminous center of a red light is coated on the surface (inner surface or outer surface) of the lampshade 110 by spin coating, dip coating, ink printing, thermal evaporation, sputtering, spray coating, or roll-to-roll, and then, the nano-phosphor material coated on the surface (inner surface or outer surface) of the lampshade 110 is annealed to form the white light phosphor layer 108 on the surface (inner surface or outer surface) of the lampshade 110. The color temperature of the white light emitted from the white light phosphor layer 108 is influenced by the ratio (or the intensity) of the blue light, the green light, and the red light in the white light because the white light phosphor layer 108 is made of the blue light organic material, the zinc oxide nano structure, and the metal-ion-doped zinc sulfide nanoparticle in which the metal ion is capable of being used as a luminous center of a red light, and the white light emitted from the white light phosphor layer 108 is formed by mixing the blue light, which is generated by exciting the blue light organic material with the UV light, the green light, which is generated by exciting the interfacial defects formed by the blue light organic material and the zinc oxide nano structure with the UV light, and the red light, which is generated by exciting the metal-ion-doped zinc sulfide nanoparticle with the UV light. The more blue light the white light emitted from the white light phosphor layer 108 contains, the higher color temperature the white light emitted from the white light phosphor layer 108 has. The more green light and red light the white light emitted from the white light phosphor layer 108 contains, the lower color temperature the white light emitted from the white light phosphor layer 108 has. The methods of adjusting the ratio of the blue light and the green light in the white light emitted from the white light phosphor layer 108 are described above in detail, and so they are not mentioned herein again. The ratio of the red light in the white light emitted from the white light phosphor layer 108 can be adjusted by controlling and adjusting the ratio of the metal-ion-doped zinc sulfide nanoparticle in white light phosphor layer 108 or (the nano-phosphor material). The higher ratio of the metal-ion-doped zinc sulfide nanoparticle the white light phosphor layer 108 (or the nano-phosphor material) contains, the higher ratio (or intensity) of the red light the white light, which is generated by exciting the white light phosphor layer 108 with the UV light, has. By this way, the white light emitted from the white light-emitting diode 100 of the present invention can have lower color temperature. Therefore, the ratio (or intensity) of the blue light, the green light, and the red light in the white light emitted from the white light-emitting diode 100 can be adjusted by controlling and adjusting the ratio of the blue light organic material, the zinc oxide nano structure, and the metal-ion-doped zinc sulfide nanoparticle in the white light phosphor layer 108 (or the nano-phosphor material) and the temperature of annealing the blue light organic material, the zinc oxide nano structure, and the metal-ion-doped zinc sulfide nanoparticle in the white light phosphor layer 108 (or the nano-phosphor material). By these ways, the color temperature of white light emitted from the white light-emitting diode 100 can be controlled and adjusted, and the emitting character (such as CRI) of the white light-emitting diode 100 can be adjusted.
Or, in still another embodiment of the present invention, the nano-phosphor material, of which the white light phosphor layer 108 is made, comprises a blue phosphor (such as ZnO, ZnS, CdSe/ZnS, etc.), a green phosphor (such as (Ba,Sr)SiO4:Eu2+, LuAG:Ce3+, etc.), and a red phosphor (such as (Sr,Ba)2Si5N4:Eu2+, (Sr,Ca)SiAlN3:Eu2+, etc.). It means that the white light phosphor layer 108 is made of the blue phosphor, thr green phosphor, and the red phosphor. When a UV light illuminates the blue phosphor, thr green phosphor, and the red phosphor, the blue phosphor is excited to emit a blue light, the green phosphor is excited to emit a gree light, and the red phosphor is excited to emit a red light respectively. Therefore, when the UV light, which is emitted from the UV LED 104 or the UV LEDs 106, emits to the white light phosphor layer 108 coated on the lampshade 110, the white light phosphor layer 108 is excited to simultaneously emit the blue light, the green light, and the red light. And then, the blue light, the green light, and the red light are mixed with each other to form a white light. Therefore, the white light-emitting diode 100 can emit a white light.
The nano-phosphor material made of the blue phosphor, the green phosphor, and the red phosphor is coated on the surface (inner surface or outer surface) of the lampshade 110 by spin coating, dip coating, ink printing, thermal evaporation, sputtering, spray coating, or roll-to-roll for forming the white light phosphor layer 108 on the surface (inner surface or outer surface) of the lampshade 110. The color temperature of the white light emitted from the white light phosphor layer 108 is influenced by the ratio (or the intensity) of the blue light, the green light, and the red light in the white light because the white light phosphor layer 108 is made of the blue phosphor, the green phosphor, and the red phosphor, and the white light emitted from the white light phosphor layer 108 is formed by mixing the blue light, which is generated by exciting the blue phosphor with the UV light, the green light, which is generated by exciting the green phosphor with the UV light, and the red light, which is generated by exciting the red phosphor with the UV light. The more blue light the white light emitted from the white light phosphor layer 108 contains, the higher color temperature the white light emitted from the white light phosphor layer 108 has. The more green light and red light the white light emitted from the white light phosphor layer 108 contains, the lower color temperature the white light emitted from the white light phosphor layer 108 has. When the white light phosphor layer 108 (or the nano-phosphor material) has higher ratio of the blue phosphor, the white light, which is emitted from the white light phosphor layer 108 when the white light phosphor layer 108 is excited with the UV light, has higher ratio (or intensity) of the blue light. Therefore, it results in higher color temperature of the white light emitted from the white light-emitting diode 100 of the present invention. When the white light phosphor layer 108 (or the nano-phosphor material) has higher ratio of the gree phosphor or the red phosphor, the white light, which is emitted from the white light phosphor layer 108 when the white light phosphor layer 108 is excited with the UV light, has higher ratio (or intensity) of the green light or the red light. Therefore, it results in lower color temperature of the white light emitted from the white light-emitting diode 100 of the present invention. Therefore, the ratio (or intensity) of the blue light, the green light, and the red light in the white light emitted from the white light-emitting diode 100 can be adjusted by controlling and adjusting the ratio of the blue phosphor, the green phosphor, and the red phosphor in the white light phosphor layer 108 (or the nano-phosphor material). By this way, the color temperature of white light emitted from the white light-emitting diode 100 can be controlled and adjusted, and the emitting character (such as CRI) of the white light-emitting diode 100 can be adjusted.
As showed in
Referring to
The luminescent mechanism of the white light-emitting diode 100 illustrated in
Furthermore, the phosphor(s) coated on the LED (such as a blue LED) of the conventional white LED is the location of the conventional white LED for emitting a white light. Therefore, the white light of the conventional white LED is shielded by the LED (such as a blue LED) itself or the base (or the pedestal) of the conventional white LED. It results in narrow angle intensity distribution and narrow illumination area of the conventional white LED. However, in the white light-emitting diode 100, 100′ of the present invention, the white light phosphor layer 108, 108′ is directly coated on the lampshade 110. Therefore, white light phosphor layer 108, 108′ is the location of the white light-emitting diode 100, 100′ of the present invention for emitting a white light, and the nano-phosphor material(s) at every location in the white light phosphor layer 108, 108′ is a pointolite (or point light source) for emitting a white light toward all directions. There are many pointolites (or point light sources) formed in the white light phosphor layer 108, 108′ because the nano-phosphor material(s) at every location in the white light phosphor layer 108, 108′. The shape arranged by these pointolites (or point light sources) is corresponded to (or the same with) the shape of the lampshade 110 because the white light phosphor layer 108, 108′ (or the nano-phosphor material(s)) is coated on surface of the lampshade 110 and these pointolites (or point light sources) is arranged on the surface of the lampshade 110. Therefore, the white light phosphor layer 108, 108′ (the white light-emitting diode 100, 100′) emits a white light corresponding to the shape of the lampshade 110 at all directions, and the white light is not shielded by the LED itself or the base of the white light-emitting diode 100, 100′. By this way, the white light-emitting diode 100, 100′ of the present invention can have wider angle intensity distribution and wider illumination area than the conventional white LED, and the problem of narrow angle intensity distribution and narrow illumination area of the conventional white LED can be solved and overcame. Therefore, the white light-emitting diode 100, 100′ of the present invention can provide a white light with wide angle intensity distribution and wide illumination area. Furthermore, the temperature of the white light phosphor layer 108, 108′ does not rise following the temperature rising of the UV LEDs 106 because the white light phosphor layer 108, 108′ are not directly coated or adhered on the UV LEDs 106. Therefore, the white light phosphor layer 108, 108′ will be not destroyed or invalidated by the rising temperature of the UV LEDs 106, and the white light-emitting diode 100, 100′ of the present invention can provide a stabe white light.
The white light phosphor layer 108, 108′ can be precisely controlled to have pre-determined thickness because the nano-phosphor material, of which the white light phosphor layer 108, 108′ is made, is nano-scaled, for example the blue light organic material, the zinc oxide nano structure, and the metal-ion-doped zinc sulfide nanoparticle in which the metal ion is capable of being used as a luminous center of a red light, the blue phosphor, the green phosphor, and the red phosphor. Even the white light phosphor layer 108, 108′ formed at all locations of the lampshade 100 can have the same thickness by these the nano-phosphor materials. These nano-phosphor materials are nano-scaled and they are small enough to have no absorbing effect to the white light generated by the white light-emitting diode 100, 100′ (or the white light phosphor layer 108, 108′). Therefore, the white light generated by the white light-emitting diode 100, 100′ will not become weaker and the illuminance of the white light-emitting diode 100, 100′ of the present invention will not become worse by the absorbing effect. Furthermore, the white light-emitting diode 100, 100′ of the present invention can provide a white light with good illuminance. The UV LEDs 106 in the UV LED array 104 are arranged to form an n-shaped array. By this n-shaped array, the UV LED array 104 provides UV lights having the same intensity toward all directions for generating a white light, and particularly the UV lights emitted to the upside and two sides (such as left side and right side) of the white light-emitting diode 100, 100′ have enough or the same intensity. As showed in
Referring to
Besides, referring to
Although the white light phosphor layer 208 of the planar white light-emitting diode 200 illustrated in
According to foregoing embodiments, the present invention provides a white light-emitting diode with high uniformity and wide angle intensity distribution. In the white light-emitting diode, there are many pointolites (or point light sources) formed on the lampshade by the white light phosphor layer, which is formed by coating the nano-phosphor material on the surface of the lampshade, when a UV light illuminates the white light phosphor layer. Therefore, the white light-emitting diode can provide a stable white light with big illumination area, uniform intensity and color temperature, and good illuminance. Further, the color temperature of the white light generated by the white light-emitting diode can be adjusted by different combinations of the UV LEDs respectively having different wavelengths, and different ratio of compositions of white light phosphor layer.
Number | Date | Country | Kind |
---|---|---|---|
102127683 | Aug 2013 | TW | national |