WHOLE-BODY INFLATABLE AIRBAG SYSTEM WITH PNEUMATIC LOWER BODY GARMENT

Information

  • Patent Application
  • 20200329789
  • Publication Number
    20200329789
  • Date Filed
    April 15, 2020
    4 years ago
  • Date Published
    October 22, 2020
    4 years ago
Abstract
In one example, a system includes an airbag inflating system, a control system operably coupled to the airbag inflating system, and a pair of pants and/or other lower-body garments that include one or more airbags configured to be removably coupled to the airbag inflating system. The airbag inflating system can be operated manually by the user, and/or automatically based on input from one or more sensors. The airbags may be inflated by a compressed gas, or by a flow of air from a mechanism such as a fan.
Description
FIELD OF THE INVENTION

The present disclosure is generally concerned with safety systems for use by snow sports participants and others. More specifically, at least some of the disclosed embodiments are concerned with a backpack-integrated whole-body airbag system, including wearable inflatable lower body/lower extremity garments to provide whole-body flotation during avalanche incidents and/or potentially catastrophic high-impact crashes.


BACKGROUND

Many outdoor activities, sports, recreations and pastimes pose inherent risks and dangers, especially while participating in such activities in avalanche-prone areas. In particular, snow sports enthusiasts and those engaged in mountaineering, that is, endeavors such as mountain hiking and climbing, face the real dangers of becoming involved in an avalanche incident and/or high-impact crashes.


In the more recent past, there has been a significant increase in participation in sports and recreational activities in avalanche-prone areas as well as other venues where high-impact crashes can occur. In an attempt to attenuate the inherent risks of such activities, participants dedicate considerable efforts to minimize such risks and avail themselves of various risk-mitigating avalanche protective equipment, including: mechanical gear such as avalanche shovels, portable collapsible probes; avalanche transceivers such as beacons; Avalung air filtration systems; and, RECCO® rescue system reflectors.


In addition to these items, back-pack avalanche airbag systems have become increasingly prominent. These airbag systems use either compressed air released from cartridges contained in the backpack apparatus, or are inflated with ambient air by an electric fan, to inflate an airbag which is released from the backpack apparatus and surround the upper portion of the body of the wearer.


The deployed airbag provides 2 functions: it may help the wearer to stay afloat atop the cascading avalanche debris by utilizing the buoyancy factor of the airbag (see FIG. 1), and the airbag may provide some degree of physical protection to the wearer, though such protection is limited to, at most, the head, neck, shoulders and upper torso, of the user.


Usage of airbags, particularly in the backcountry and on off-piste terrain, has increased dramatically primarily because of perceived effectiveness. Industry reports tout extraordinary initial survival rates upwards of 97%. However, the ultimate long-term survival rates are much lower, around 50%. Among the most likely reasons for this disparity is that victims who survive the initial avalanche or other traumatic event may later succumb to an immense degree of polytrauma to the lower abdominal/pelvic region, lower torso and lower extremities, including osseous and soft-tissue trauma (i.e., ligaments, tendons, muscles, internal hemorrhaging) from which the victims cannot recover. However, little to no emphasis has been placed on protection of the lower body of a user, or on systems for providing such protection.


ASPECTS OF SOME EXAMPLE EMBODIMENTS

It should be noted that the embodiments disclosed herein do not constitute an exhaustive summary of all possible embodiments, nor does this brief summary constitute an exhaustive list of all aspects of any particular embodiment(s). Rather, this brief summary simply presents selected aspects of some example embodiments. It should further be noted that nothing herein should be construed as constituting an essential or indispensable element of any invention or embodiment. Rather, various aspects of the disclosed embodiments may be combined in a variety of ways so as to define yet further embodiments. Such further embodiments are considered as being within the scope of this disclosure. As well, none of the embodiments embraced within the scope of this disclosure should be construed as resolving, or being limited to the resolution of, any particular problem(s). Nor should such embodiments be construed to implement, or be limited to implementation of, any particular technical effect(s) or solution(s).


In general, disclosed embodiments are concerned with a whole-body airbag system that may provide consistent protection not just to the caput, shoulders and upper torso, but comprehensive protection to the entire body, including the lower torso, pelvic region and lower extremities. This is accomplished by way of a selectively inflatable lower body garment that, depending upon the embodiment, may or may not, be integrated together with an upper body protection/flotation system. Such embodiments may optimize short and long-term survivability in avalanche situations, high-impact falls, or other traumatic events.


Example embodiments of the invention may provide any one or more of the various features and elements disclosed herein. Such features and elements include, but are not limited, those discussed immediately below.


The disclosed whole-body airbag system may be configured in a variety of ways and configurations (as disclosed in FIGS. 3-8, discussed below). Example embodiments of the whole-body inflatable airbag system may include any one or more of the following components and technologies:


1. airbag deployment system contained in an internal compartment within a dedicated backpack;


2. airbag inflating system configured to provide sufficient simultaneous deployment of the main airbag for the caput, neck, shoulders and upper torso, as well as internal bifurcated tubing that would exit the bottom/lateral aspects of the backpack;


3. lower body garment made from any one or more of a variety of textiles and materials, with separate airbag compartments on the lateral and/or medial aspects of the lower extremities above and below the knee;


4. integrated tubing within the lower-body garment to deliver air simultaneously to each separate compartment, with such tubing connecting to the backpack tubing using any type of quick connect/disconnect connections such as, for example, quick-connect hose fittings;


5. manual deployment system utilizing a mechanical draw cord approach or comparable system/device, such as an actuating push button, positioned within the whole-body inflatable airbag system for easy access by the wearer;


6. automatic deployment system utilizing appropriate accident detection/sensing technologies (e.g., motion sensors, spatial orientation sensors, directional velocity sensors, angular velocity sensors (i.e., gyrometer sensors), rotation sensors, shock sensors, collision sensors, accelerometers, etc.);


7. threshold parameters for automatic deployment of the airbag system will be determined and programmed into a processor that is integrated in the airbag system;


8. automatic deployment of the airbag system can also be effected by rapid separation of the rider from the vehicle upon which the user is riding (e.g., skis, snowboard or snowmobile), with such a tethering mechanism automatically signaling the actuator to deploy the airbag system;


9. all, or any of the above, accident detection/sensing or any other technologies known by one of skill in the art may be housed in the sensory unit housed within any portion of the backpack;


10. the airbag-containing garments will allow deployment of each separate airbag through a lateral window or slit secured via a common hook-and-loop fastener (e.g., Velcro®), such that each deployed airbag can be subsequently refitted for future use;


11. manual or automatic deployment of the whole-body airbag system may be integrated with a manual or automatic emergency alerting system (e.g., AvR Alert System™) to communicate with avalanche search and rescue teams, ski patrol and/or other emergency responders the precise location of the victim using a current global positioning system (GPS) or similar technologies;


12. embodiments of the invention may include a wireless activation feature—for example, a wearable activation device may be attached to clothing, gloves, a helmet or independently to the wearer, for example, that is operable to wirelessly activate the airbag deployment system, such as by a communication system conforming to the Bluetooth or other short range communication protocols, the whole-body airbag system;


13. one or more inflating systems operable to inflate some or all compartments of the airbag system by a fan, compressed gas, or both, or any other mechanism(s) of comparable functionality—where a fan or fans are used, the whole-body airbag system may be deployed repeatedly during a single outing;


14. one or more of the airbags may be configured in a modular fashion so that they can be readily removed and replaced, on an individual basis, if/when needed;


15. embodiments may provide a degree of protection against hypothermia—particularly, because one or more portions of the whole-body airbag system may be configured and arranged so that the system may prevent or reduce, when deployed, direct contact between a portion of the body of the user and the snow, heat transfer from the user to the snow/environment may be relatively less than would be the case if the user were in direct contact with the snow to illustrate, an inflated bag such as those disclosed herein is a poor conductor of heat, so that placement of such an inflated bag between the user and the snow will tend to reduce the rate of heat transfer from the user to the surrounding environment which may comprise snow and/or exposure to the atmosphere;


16. the airbag(s) of the lower body garment, in combination with an inflatable air bag in a backpack or similar configuration, provides additional flotation capability, in the event of an avalanche, beyond what a backpack airbag might solely provide; and


17. separately from, or in addition to, the lower-body garment, one or more additional airbags and associated compartments may be provided that may be connected, releasably or permanently, to a bottom portion within, or external to, a backpack, which may or may not include its own airbag(s), so that the additional airbags may provide protection to the rear and lateral aspects of the lower body and lower extremities portions of the user such additional airbags may extend down as far as the inferior-most portions of the lower extremities of the user and up to the middle portion of the back of the user. The additional airbags may be contained within and released from the backpack or attached to the backpack with straps, buckles, clips, or other suitable devices. The additional airbags would be released, activated and inflated simultaneously by the airbag deployment system.





BRIEF DESCRIPTION OF THE DRAWINGS

The appended drawings contain figures of some example embodiments to further explain various aspects of the present disclosure. It will be appreciated that these drawings depict only some embodiments of the disclosure and are not intended to limit its scope in any way. The disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings.



FIGS. 1 and 2 disclose aspects of airbag deployment and functionality.



FIG. 3 is a rear view of an example embodiment of the invention.



FIG. 4 is a left side view of an example embodiment of the invention.



FIG. 5 is a rear view of an example embodiment of the invention, disclosing proximal and distal inflation tubes.



FIG. 6 is a side view of an example embodiment of the invention with one or more airbags inflated.



FIG. 7 is a side view of another example embodiment of the invention with one or more airbags inflated.



FIG. 8 is a rear view of an example embodiment of the invention with one or more airbags inflated.



FIG. 8 is a rear view of an example embodiment of the invention with one or more airbags inflated.



FIG. 9 is a section view of an example embodiment of the invention disclosing deployed shapes of various airbags.



FIGS. 10a-10c disclose aspects of an example embodiment that includes one or more airbags associated with a backpack.



FIG. 11 is a diagram of an example airbag deployment control system.





DETAILED DESCRIPTION OF SOME EXAMPLE EMBODIMENTS

The present disclosure is generally concerned with systems and devices designed to enhance long-term survivability while participating in activities in avalanche-prone venues (for example, alpine downhill skiing, snowboarding, snowmobiling, and mountaineering), and in activities posing a risk for high-impact crashes.


A. General Aspects of Some Example Embodiments

As noted, current technologies intended to provide protection for avalanche/high-impact crash survival, including current versions of the avalanche airbag systems, do not offer genuine long-term survivability.


Accordingly, in order to provide enthusiasts engaged in outdoor activities in avalanche-prone venues (where such activities may include, but are not limited to, downhill skiing, snowboarding, snowmobiling, and mountaineering) with greater potential for true long-term survival beyond the immediate period of avalanche involvement or high-impact fall, embodiments of the invention embrace, among other things, an apparatus comprising a specialized wearable pneumatic lower body garment (which may be referred to herein as ‘avypants’) integrated with an upper-body avalanche airbag flotation system to provide whole-body protection during avalanche involvement, increase whole-body buoyancy and flotation above the careening avalanche, thereby decreasing whole-body injuries, and thus increasing long-term avalanche/crash survivability and maximizing recovery of pre-incident quality of life.


Various materials can be used in the construction of the disclosed embodiments. For soft and flexible elements of such embodiments, such as the airbags, clothing pieces, backpacks, and other garments, materials that can be used include, but are not limited to, any combination of textiles, plastic in sheet or other forms, and rubber. Tubing, such as that used to convey gas to an inflatable bladder or bag, can made of rubber, plastic, silicone, and/or other suitable materials. In some embodiments at least, the tubing is crush-resistant. Where metal is employed in an embodiment, such metal may be a metal or metals, including alloys, that is relatively light and strong, such as, but not limited to, titanium or aluminum, for example. As well, some embodiments may employ composite materials including, but not limited to, carbon-based composites or fiberglass composites, wherever relatively light weight, strength, and some degree of stiffness, are needed in a component of an embodiment.


B. Structural and Operation Aspects of Some Embodiments

It should be noted that while example embodiments are referred to as including “airbags” and using “air” (which refers to atmospheric air), the scope of the invention is not so limited. Rather, and more broadly, any non-explosive and non-toxic gas(es) or combinations of gases, including inert gases such as nitrogen for example, may be used in various embodiments of the invention for the purpose of inflating one or more airbags.


As indicated in FIGS. 1 and 2, an inflatable airbag worn by a user may provide various functionalities. The deployed airbag may provide various functions, including: it allows the wearer to stay afloat atop, or at least in the upper zone of, the cascading avalanche debris utilizing the buoyancy factor of the airbag, and the airbag provides varying degrees of physical protection to head, neck, shoulders and upper torso of the wearer, as indicated in the Phase 1, Phase 2, and Phase 3, attitudes of a skier as the skier is caught and carried in an avalanche. These functions may be particularly useful where the user is performing an activity in rocky and/or treed areas where blunt force trauma is a potential concern as the user is being carried by an avalanche. FIG. 2 illustrates possible outcomes when a user is wearing, and deploys, an airbag (upper arrow), and when a user is not wearing, or does not deploy, an airbag (lower arrow). In the former case, the user may end up in an upper portion of, or above, avalanche debris, while in the latter case, the user may be fully buried.


With reference now to FIG. 3, an embodiment of the invention 100 includes various internal components of the airbag system contained in a backpack 102, including the airbag inflating system 104, main airbag 106 for upper body coverage and descending connecting tube 108 emanating from the airbag inflating system 104. As further indicated, the connecting tube 108 splits into 2 tubes 108a and 108b, which each extend to a respective side of the user. These tubes 108a and 108b join respective proximal portion of the avypant tubes 110a and 110b via quick-connect hose fittings 112, or other suitable coupling/uncoupling mechanism. The backside of the avypants illustrates the laterally-positioned avybag compartments 114a (lateral of the thigh), 114b, 114c (lateral of the fibula) and 114d above and below the knee in the undeployed state. In operation, the airbag inflating system 104 serves to inflate the laterally-positioned avybag compartments 114a, 114b, 114c and 114d.


It is noted that any of the avybag airbag compartments included in garments or backpacks disclosed herein may be closed with a suitable closure that is adequate to retain the airbag in the compartment, but which will not impede a deployment of the airbag. One example of such a closure is a hook-and-loop type of closure, but any other closure, such as snaps for example, that will perform the aforementioned functionalities may alternatively be employed. The closure may, or may not, run a majority of a length of the opening to the compartment. Also, the disclosed airbags may be made of any suitable material, examples of which include, nylon, nylon coated with plastic or rubber, plastic, rubber, composite materials, mylar, as well as any flexible reinforced materials, where such reinforcing may take the form of rip-stop or other fabrics, or any combination of the foregoing. In general, the airbag material may be sufficiently strong and flexible to withstand inflation forces, while also maintaining an inflated state when deployed. The airbag material may be water-resistant, or waterproof.


With reference next to FIG. 4, a left side view is provided of the backpack 102 containing the main airbag 106, airbag inflating system 104 and descending connecting tube 108 to lateral exit point to tube 108a at the bottom of the backpack 102. The quick-connect hose fittings 112 couple the exiting backpack tubes 108a and 108b to the lateral column tubes 116a (left side) and 116b (right side not shown) integrated in the sidewall of the avypants 118. The descending lateral tube 116a splits into a proximal tube 116a-1 which terminates at the left upper airbag (lateral to the thigh), while the distal tube 116a-2 traverses lateral to the knee and terminates in the lower airbag lateral of the gastrocnemius calf muscle, that is, between the lateral aspect of the fibular head and above the lateral malleolus of the ankle.


Turning next to FIG. 5, the proximal tube 116a-1 and distal tube 116a-2 are indicated. The inner descending proximal tube 116a-1 terminates in the proximal/upper avybag compartment 114a (lateral of the thigh) and the outer descending tube 116a-2 terminates in the distal/lower airbag 114c (lateral of the fibula).


With reference now to FIG. 6, aspects of an example of one embodiment of the present invention are indicated in which a main airbag 106 is deployed. As well, FIG. 6 shows the deployed upper left and lower left (avypant) airbags 114b and 114d, respectively, in one particular configuration of airbags of the whole-body airbag system 100.



FIG. 7 discloses the deployed main airbag 106 and lower body (avypants) airbags 114b and 114d with different configurations of airbags of the whole-body airbag system (upper and lower airbags in the avypants).



FIG. 8 is a rear view disclosing an alternative configuration of a deployed whole-body airbag system, with the main airbag 106 and avypants airbags 114a, 114b, 114c, and 114d deployed.


With reference next to FIG. 9, an example embodiment is indicated that discloses three alternative cross-sectional shapes 122a, 122b, and 122c, of the airbags as they deploy to afford protection to the anterior, lateral and posterior aspects of the lower extremities of a user. Various different airbag configurations may be combined in a single embodiment. Lateral pylons may be used to connect the airbags to the lateral aspect of the avypants in the deployed state. In general, it is noted that one or more airbags as disclosed herein may be located in any compartment of a backpack and/or avypants. As well, the example disclosed airbags may have any desired position and/or orientation with respect to any one or more portions of the anatomy of a user, and the placements and positioning shown herein are presented only by way of example and not limitation.


It is noted that while the discussion thus far has primarily been directed to lower-body garments, such as pants for example, such garments are presented only by way of example, and the scope of the invention embraces other garments as well. By way of illustration, some embodiments additionally, or alternatively, include an upper-body garment, such as a jacket for example, that includes one or more inflatable airbags connected, and/or connectible, to an airbag inflation system such as the airbag inflation system 104. In still other embodiments, the garment that includes one or more airbags is a single-piece suit that includes an upper-body garment and lower-body garment that are integrated together with each other. More generally, embodiments of the invention can include any garment or other wearable item within which one or more airbags can be included.


Turning next to FIGS. 10a-10c, details are provided concerning one example alternative embodiment. As indicated, a primary avalanche airbag 150 may be contained with an upper compartment of a backpack 150a. When the primary avalanche airbag 150 is deployed, it may afford a measure of flotation for a user who is entrained in avalanche debris, and may also provide some protection to the head, neck, upper torso and upper extremities of the user. A further secondary avalanche airbag 151 may be provided that is contained within a lower compartment of the backpack and coupled to the airbag deployment system via connecting tubes (see, e.g., FIG. 5). When deployed, the secondary avalanche airbag 151 may slide beneath the user 152 and may afford flotation of the user 152 and/or protection to the lower torso (lumbosacral and pelvic regions) and lower extremities of the user 152.


In one alternative, a secondary avalanche airbag 153 may be attachable to the exterior of the backpack and coupled to the airbag deployment system via connecting tubes (see, e.g., FIG. 5). When deployed, the secondary avalanche airbag 153 may slide beneath the user 152 and may afford flotation of the user 152 and/or protection to the lower torso (lumbosacral and pelvic regions) and lower extremities of the user 152. Reference 154 denotes a fully deployed state of the lower airbag, that is, the secondary avalanche airbag 153.


With continued reference to FIGS. 10a-10c, FIG. 10a discloses a user 152 in an upright position, and having a backpack containing primary avalanche airbag 150. The example configuration in FIG. 10a further includes either the secondary avalanche airbag 153 attached to the exterior of the backpack 150a, or the secondary avalanche airbag 151 disposed within the backpack 150a.


Turning next to FIG. 10b, a user 152 is indicated in a recumbent position, as may occur when the user 152 is caught in an avalanche. Reference 155 indicates a fully deployed state of a primary avalanche airbag 150, while reference 154 denotes a fully deployed state of the lower airbag, that is, the secondary avalanche airbag 151 or 153.


In FIG. 10c, the user 152 is shown in a recumbent position, similar to that shown in FIG. 10b, viewed from a perspective in which the boots of the user are facing toward the viewer, and the head of the user 152 and deployed primary avalanche airbag 150 appear in the background. As shown, the fully deployed state 154 of the secondary avalanche airbag 151 or 153 may cradle the user 152 so as to minimize lateral displacement of lower extremities of the user while also affording flotation to the lower torso and lower extremities. Note that lateral displacement of the lower extremities may also be minimized by the shouldering of the lower deployed airbag on cross section 156, as seen in FIG. 10c.


Turning finally to FIG. 11, details are provided concerning some example control systems operable to actuate inflation of the airbags of embodiments of the invention. In general, actuation can be manual or automatic, and can be based on a variety of different inputs from, for example, a user and/or from one or more sensors. Some examples of sensors, and the signals that they generate, which can be used to control operation of embodiments of the disclosed airbag inflating system, are disclosed in one or more of the Related Applications. For example, one or more of the Related Applications discloses a pressure sensor that can be positioned on the body of a user and is operable to detect pressure exerted on the user, such as by a snow load as would be experienced in an avalanche burial scenario. Following is a general discussion of some example modes of operation that can be implemented in connection with example control systems.


One mode of operation that can be employed to trigger airbag inflation is a manual mode. As used herein, a manual actuation is any actuation that requires some type of affirmative input by the user. One example of manual actuation system and operation is a handle attached to a cable or other device that is in turn connected to a gas cylinder for example. In operation, a user can pull the handle, which may be located on the front of the torso of the user, causing the release of compressed gas from the gas cylinder to one or more airbags. Another example of a manual actuation system and operation is a voice-actuated device which, upon detecting the voice of the user, can cause, in conjunction with a control circuit, the release of compressed gas from the gas cylinder to one or more airbags. Still another example of a manual actuation system is a pushbutton that a user can squeeze or depress to cause, either in conjunction with a control circuit or not, the release of compressed gas from the gas cylinder to one or more airbags.


Another mode of operation that can be employed to trigger airbag inflation is an automatic mode. As used herein, an automatic actuation of the airbag inflating system is any actuation that is performed without affirmative action or input by the user. The automatic inflation of one or more airbags can be performed based on input received by one or more sensors of a control system. The control system can be configured to initiate inflation in a variety of scenarios, such as a falling scenario, burial scenario, and sudden acceleration/deceleration scenarios.


In the falling scenario for example, one or more accelerometers and/or position-sensing devices can be provided that predict an impending high-impact crash by sensing speed and/or multi-axis movement of the person wearing the airbag inflating system. In an avalanche burial scenario, for example, one or more pressure sensors, examples of which are disclosed in one or more of the Related Applications, detect gradual and/or sudden increases in pressure on the body of a user. Such sensors (which may be zeroed at atmospheric pressure, or any other pressure or range of pressures) can thus detect situations in which snow and/or debris are being piled on top of and/or around a user. These pressure sensors, and any other sensors disclosed herein, can be integrated into clothing and/or equipment so as to be distributed at various locations on the body of the user. In one particular example, multiple pressure sensors are centripetally arranged on the body of the user.


As another example, an audio sensor can be used as a basis to trigger inflation of one or more airbags when ambient noise begins to quickly decrease, as could occur in a burial scenario when the user is buried under snow and debris. Further, these, or other audio sensors can also be configured to trigger inflation when ambient noise begins to rapidly increase, as can occur when an avalanche has started.


It will be appreciated that various other scenarios can be addressed, through the use of appropriate sensors and combinations of sensors in embodiments of the invention. As well, any given embodiment can be configured with a variety of different sensors that individually and/or collectively are configured to address one or more scenarios that may potentially be experienced by a user.


With particular reference now to FIG. 11, details are provided concerning a control system, one example of which is denoted at 200 and operates in conjunction with an airbag inflating system 300 which can include any, or all, of the elements of the other disclosed embodiments of an airbag inflating system, such as the airbag inflating system 104. The example control system 200 includes a sensor array 202 which can include any one or more of the disclosed sensors. The sensor array 202 may communicate with a processor 204 that can comprise, or consist of, one or more application-specific integrated circuits (ASIC) and/or field-programmable gate arrays (FPGA). In general, the processor 204 can execute instructions for receiving and processing sensor input, and for causing operation of the airbag inflating system 300. To this end, the control system 200 may include RAM 206 and memory 208 where executable instructions are stored. The example control system 200 may further include a power source 210, such as a battery for example, that powers the other components of the control system 200. In some embodiments, the control system 200 includes a GPS unit 212 that operates to collect, and transmit, information about the location of the user. This information can be associated with airbag deployment information so that, for example, rescue or other personnel can identify the location where the deployment occurred. Data concerning the operation of the control system 200, including any airbag deployments that have occurred, can be collected, stored and processed by the control system 200. In some embodiments, this data can be downloaded wirelessly, and/or transmitted, by way of a wireless communication unit 214, which can include an antenna. The wireless communication unit 214 may operate according to the Bluetooth protocol, and/or a near-field radio communication standard and/or long-range radio frequency protocols. As noted elsewhere herein, some embodiments may provide for wireless activation of the airbag inflating system 200 by way of a wearable, or other, device.


With continued reference to FIG. 11, and as noted, the control system 200 generally operates to, among other things, control operation of the airbag inflating system 300. In one example embodiment, the airbag inflating system 300 includes one or more inflatable airbags 302, as disclosed herein, each of which is connected to a source 304 of compressed gas, or a fan, for example. The source 304 may be connected to a solenoid valve 306 that is responsive to signals from the control system 200 and operable to trigger or release a flow of gas or air from the source 304 to the airbags 302. In some embodiments, one or more solenoid valves 306 are located inline between the source 304 and airbags 302. The solenoid valve 306 and fan, when provided, can be powered by a power source 308, such as a battery for example.


The airbag inflating system 300 may be configured to be operated in various modes. Thus, in some embodiments, the airbag inflating system 300 can be operated automatically, such as by the control system 200, as well as manually such as by a pullcord or pushbutton, as disclosed elsewhere herein. In other embodiments, only the manual control system, or only the automatic control system, is provided. The scope of the invention is not limited to any particular control scheme, control system, or airbag inflating system.


Finally, it is noted with respect to the example of FIG. 11 that any of the electronic components, and/or other components, of the control system 200 may be disposed in an external wearable device. The wearable device, which may include a waterproof housing, may be removably attachable to clothing such as a glove, a ski helmet, and/or other clothing or equipment. The wearable device may be permanently, or removably, attached. Alternatively, and as noted herein, any of the electronic components and/or other components of embodiments of the control system 200 may be included in a backpack, for example.


Regardless of where the control system 200, or portion thereof, is located, such as in a backpack, external to a backpack, or in a wearable device, for example, embodiments of the control system 200 may activate the airbag inflating system via a wireless connection between the control system 200 and the airbag inflating system 300, one example of which is a short range wireless connection conforming to the Bluetooth protocol. Further, embodiments of the airbag inflating system 300 may be triggered by input from one or more sensors that are not part of the control system, such as sensors disclosed in any of the Related Applications noted in priority application U.S. Provisional Application Ser. 62/836,458, entitled WHOLE-BODY INFLATABLE AIRBAG SYSTEM WITH PNEUMATIC LOWER BODY GARMENT, and filed Apr. 19, 2019.


C. Further Example Embodiments

Following are some further example embodiments of the invention. These are presented only by way of example and are not intended to limit the scope of the invention in any way.


Embodiment 1

A system, comprising: an airbag inflating system; a control system operably connected to the airbag inflating system; and a pair of pants and/or other lower-body garments comprising one or more airbags configured to be removably coupled to the airbag inflating system.


Embodiment 2

The system as recited in embodiment 1, further comprising a backpack to which the airbag inflating system is connected.


Embodiment 3

The system as recited in embodiment 2, wherein the backpack comprises an airbag removably coupled to the airbag inflating system.


Embodiment 4

The system as recited in any of embodiments 1-3, wherein the airbag inflating system comprises a fan which is operable to generate a flow of air to the one or more airbags.


Embodiment 5

The system as recited in any of embodiments 1-3, wherein the airbag inflating system comprises a compressed gas cylinder which, in operation, provides a flow of gas to the one or more airbags.


Embodiment 6

The system as recited in any of embodiments 1-5, wherein the control system is operable to trigger operation of the airbag inflating system so that the one or more airbags are filled with a gas by the airbag inflating system.


Embodiment 7

The system as recited in embodiment 6, wherein the control system is operable to initiate operation of the airbag inflating system in response to manual and/or wireless activation by a user.


Embodiment 8

The system as recited in embodiment 6, wherein the control system is operable to automatically initiate operation of the airbag inflating system in response to input provided by one or more sensors of the control system.


Embodiment 9

The system as recited in embodiment 8, wherein the one or more sensors comprise any one or more of: a motion sensor; spatial orientation sensor; directional velocity sensor; angular velocity sensor; rotational motion sensor; shock sensor; collision sensor; and, an accelerometer.


Embodiment 10

The system as recited in any of embodiments 1-9, wherein the pair of pants or other lower-body garments comprises a plurality of airbags, where one or more of the airbags are configured to be positioned above a knee area of the pants, and one or more of the airbags are positioned to be located below the knee area of the pants on a lateral aspect of a leg of a wearer, and one or more of the airbags are configured to be positioned above and below a knee of a wearer on a medial side of each leg.


Embodiment 11

The system as recited in embodiment 3, wherein the one or more airbags of the pants or other lower-body garments are configured to be inflated simultaneously with inflation of the airbag in the backpack.


Embodiment 12

The system as recited in any of embodiments 1-10, wherein the one or more airbags in the pants or other lower-body garments have an inflated configuration that extends partway around a limb of the user when the user is wearing the pants or other lower-body garments.


Embodiment 13

The system as recited in any of embodiments 1-12, further comprising an upper-body garment including one or more airbags configured to be removably coupled to the airbag inflating system.


Embodiment 14

The system as recited in any of embodiments 1-13, wherein the pants or other lower-body garment are integrated together with an upper-body garment in the form of a single-piece suit including one or more airbags configured to be removably coupled to the airbag inflating system.


Embodiment 15

The system as recited in any of embodiments 1-14, further comprising an upper-body garment within which the airbag inflating system is integrated.


Embodiment 16

A system, comprising: an airbag inflating system that is operable to supply a flow of gas; a control system operably connected to the airbag inflating system and operable to control the flow of gas supplied by the airbag inflating system; and a pair of lower-body garments comprising compartments within which respective airbags are disposed, and the airbags are configured to be removably coupled to the airbag inflating system, and the one or more airbags in the lower-body garments have an inflated configuration that extends partway around a lower limb of the user when the user is wearing the lower-body garments.


Embodiment 17

The system as recited in embodiment 16, wherein the control system is configured to trigger the airbag inflating system so that the airbag inflating system supplies the flow of gas to the airbags, and the control system is configured to be operated manually by a user and/or automatically activated in response to input provided by one or more sensors of the control system.


Embodiment 18

The system as recited in any of embodiments 16-17, further comprising an additional airbag that is contained within the backpack compartment, or removably attachable to an exterior of the backpack and arranged so that deployment of the additional airbag causes the additional airbag to cover a portion of a lower torso and/or lower extremities of a user.


Embodiment 19

The system as recited in any of embodiments 16-18, wherein the lower body garments comprise pants.


Embodiment 20

The system as recited in any of embodiments 16-19, further comprising a backpack that includes a compartment within which an airbag is disposed, and the airbag in the compartment of the backpack is removably coupled to the airbag inflating system.


Although this disclosure has been described in terms of certain example embodiments, other embodiments apparent to those of ordinary skill in the art are also within the scope of this disclosure.

Claims
  • 1. A system, comprising: an airbag inflating system;a control system operably connected to the airbag inflating system; anda pair of pants and/or other lower-body garments comprising one or more airbags configured to be removably coupled to the airbag inflating system.
  • 2. The system as recited in claim 1, further comprising a backpack to which the airbag inflating system is connected.
  • 3. The system as recited in claim 2, wherein the backpack comprises an airbag removably coupled to the airbag inflating system.
  • 4. The system as recited in claim 1, wherein the airbag inflating system comprises a fan which is operable to generate a flow of air to the one or more airbags.
  • 5. The system as recited in claim 1, wherein the airbag inflating system comprises a compressed gas cylinder which, in operation, provides a flow of gas to the one or more airbags.
  • 6. The system as recited in claim 1, wherein the control system is operable to trigger operation of the airbag inflating system so that the one or more airbags are filled with a gas and/or air by the airbag inflating system.
  • 7. The system as recited in claim 6, wherein the control system is operable to initiate operation of the airbag inflating system in response to direct manual and/or wireless activation by a user.
  • 8. The system as recited in claim 6, wherein the control system is operable to automatically initiate operation of the airbag inflating system in response to input provided by one or more sensors of the control system.
  • 9. The system as recited in claim 8, wherein the one or more sensors comprise any one or more of: a motion sensor; spatial orientation sensor; directional velocity sensor; angular velocity sensor; rotational motion sensor; shock sensor; collision sensor; and, an accelerometer.
  • 10. The system as recited in claim 1, wherein the pair of pants or other lower-body garments comprises a plurality of airbags, where one or more of the airbags are configured to be positioned above a knee area of the pants, and one or more of the airbags are positioned to be located below the knee area of the pants on a lateral aspect of a leg of a wearer, and/or one or more of the airbags are configured to be positioned above and/or below a knee of a wearer on a medial side of each leg.
  • 11. The system as recited in claim 3, wherein the one or more airbags of the pants or other lower-body garments are configured to be inflated simultaneously with inflation of the airbag in the backpack.
  • 12. The system as recited in claim 1, wherein the one or more airbags in the pants or other lower-body garments have an inflated configuration that extends partway around a lower extremities of the user and front and back lower torso when the user is wearing the pants or other lower-body garments.
  • 13. The system as recited in claim 1, further comprising an upper-body garment including one or more airbags configured to be removably coupled to the airbag inflating system.
  • 14. The system as recited in claim 1, wherein the pants or other lower-body garment are integrated together with an upper-body garment in the form of a single-piece suit including one or more airbags configured to be removably coupled to the airbag inflating system.
  • 15. The system as recited in claim 1, further comprising an upper-body garment within which the airbag inflating system is integrated.
  • 16. A system, comprising: an airbag inflating system that is operable to supply a flow of gas or air;a control system operably connected to the airbag inflating system and operable to control the flow of gas supplied by the airbag inflating system; anda pair of lower-body garments comprising compartments within which respective airbags are disposed, and the airbags are configured to be removably coupled to the airbag inflating system, and the one or more airbags in the lower-body garments have an inflated configuration that extends partway around a lower extremities and lower torso of the user when the user is wearing the lower-body garments.
  • 17. The system as recited in claim 16, wherein the control system is configured to trigger the airbag inflating system so that the airbag inflating system supplies the flow of gas to the airbags, and the control system is configured to be operated manually by a user and/or automatically activated in response to input provided by one or more sensors of the control system.
  • 18. The system as recited in claim 16, further comprising an additional airbag that is removably attachable to a backpack or contained within and arranged so that deployment of the additional airbag causes the additional airbag to cover a portion of a lower torso and lower extremities of a user.
  • 19. The system as recited in claim 16, wherein the lower body garments comprise pants.
  • 20. The system as recited in claim 16, further comprising a backpack that includes a compartment within which an airbag(s) is disposed, and the airbag(s) in the compartment of the backpack is removably coupled to the airbag inflating system.
RELATED APPLICATIONS

This application hereby claims priority to U.S. Patent Application Ser. 62/836,458, entitled WHOLE-BODY INFLATABLE AIRBAG SYSTEM WITH PNEUMATIC LOWER BODY GARMENT, and filed Apr. 19, 2019. This application is related to the following applications and patents: U.S. Pat. Nos. 9,311,801; 9,569,951; 9,922,536; 10,140,841; and, U.S. Continuation patent application Ser. No. 16/197,884. All of the aforementioned applications and patents are incorporated herein in their respective entireties by this reference.

Provisional Applications (1)
Number Date Country
62836458 Apr 2019 US