The present application claims the priority of the Chinese patent application No. 201310376740.0 filed on Aug. 26, 2013, which application is incorporated herein by reference.
1. Field of Invention The present invention relates to an Electrostatic Discharge (ESD) protection technology, and particularly to a whole-chip ESD protection circuit and ESD protection method.
2. Description of Related Arts
With rapid development of intelligent power process and high-power semiconductor devices, electronic products is becoming increasingly miniaturized and portable, thus increasing the application of power electronic devices. ESD (Electrostatic Discharge) has become one of the most critical reliability issues in integrated circuits, which leads to failure or damage to power electronic device and the integrated circuit (IC) function thereof because static electricity is often generated during manufacturing, packaging, testing, and use procedures of devices. For example, ESD events may be caused by accidental contact between two electrically charged objects and the following buildup of discharge path, thus resulting in device failure or even permanent damage. Therefore, the ESD protection issue has always been one of the important issues in IC design field. However, the continuous increasing IC scale and the introduction of new device concepts have brought in many new ESD challenges.
At present, a current approach for ESD protection circuit design is to continuously increase the size of an ESD protection circuit, especially the size of a power clamp circuit between a power line (VDD) and the grounding wire, and meanwhile to add a great number of the power clamp units in the whole-chip layout, so as to improve the uniformity of the ESD current discharge.
According to the prior art shown in
For the above disadvantage in the prior art, the present invention provides a whole-chip ESD protection circuit and ESD protection method, so as to avoid size or cost increase caused by power clamps configured for each I/O unit in the prior art.
To solve the foregoing problem in the prior art, in one aspect, the present invention provides a whole-chip ESD protection circuit, comprising: I/O units located between a power line and a grounding wire; a power clamp circuit located between the power line and the grounding wire and connected to the I/O units, each power clamp circuit being shared by multiple I/O units; and an ESD trigger circuit located between the power line and the grounding wire, wherein the ESD trigger circuit generates an ESD trigger signal when an ESD events occurs and transmits the ESD trigger signal to the power clamp circuit and each I/O unit so that the power clamp circuit and each I/O unit respectively forms a current discharge path from power to ground.
Preferably, the ESD trigger circuit comprises: a resistor-capacitor circuit (RC circuit) connected in series between the power line and the grounding wire, wherein a first end of the capacitor C is connected to the power line, a second end of the capacitor C is connected to a first end of the resistor R, and a second end of the resistor R is connected to the grounding wire; a first NOT gate F1 and a second NOT gate F2 located between the power line and the grounding wire, wherein an input of the first NOT gate F1 is connected to the second end of the capacitor C and the first end of the resistor R, an output of the first NOT gate F1 is used for outputting a first trigger signal, an input of the second NOT gate F2 is connected to the output of the first NOT gate F1, and an output of the second NOT gate F2 is used for outputting a second trigger signal.
Preferably, the power clamp circuit comprises a PMOS transistor, wherein a gate of the PMOS transistor is connected to the output of the second NOT gate F2 in the ESD trigger circuit, a drain of the PMOS transistor is connected to the power line, and a source of the PMOS transistor is connected to the grounding wire.
Preferably, the I/O unit comprises: a first PMOS transistor MP1, a first NMOS transistor MN1, a positive current path protection circuit, a negative current path protection circuit, a first logic control cell, and a second logic control cell, wherein a gate of the first PMOS transistor MP1 is connected to the first logic control cell; a source of the first PMOS transistor MP1 is connected to the power line; a drain of the first PMOS transistor MP1 and a drain of the first NMOS transistor MN1 are jointly connected to an I/O pin; a gate of the first NMOS transistor MN1 is connected to the second logic control cell; a source of the first NMOS transistor MN1 is connected to the grounding wire; the first logic control cell is connected to the grounding wire as well as the output of the first NOT gate F1 and the output of the second NOT gate F2 in the ESD trigger circuit; and the second logic control cell is connected to the power line as well as the output of the first NOT gate F1 and the output of the second NOT gate F2 in the ESD trigger circuit.
Preferably, the first logic control cell comprises: a second NMOS transistor MN2, a third NMOS transistor MN3, and a third PMOS transistor MP3, wherein a gate of the second NMOS transistor MN2 is connected to a gate of the third PMOS transistor MP3; a source of the second NMOS transistor MN2 is connected to the grounding wire; a drain of the second NMOS transistor MN2 is connected to the gate of the first PMOS transistor MP1; a gate of the third NMOS transistor MN3 is connected to the output of the first NOT gate F1; a source of the third NMOS transistor MN3 is connected to a source of the third PMOS transistor MP3 as well as the gate of the first PMOS transistor MP1; a drain of the third NMOS transistor MN3 is connected to a drain of the third PMOS transistor MP3; and a gate of the third PMOS transistor MP3 is connected to the output of the second NOT gate F2. The second logic control cell comprises: a second PMOS transistor MP2, a fourth NMOS transistor MN4, and a fourth PMOS transistor MP4, wherein a gate of the second PMOS transistor MP2 is connected to a gate of the fourth NMOS transistor MN4; a source of the second PMOS transistor MP2 is connected to the power line; a drain of the second PMOS transistor MP2 is connected to the gate of the first NMOS transistor MN1; a gate of the fourth NMOS transistor MN4 is connected to the output of the first NOT gate F1; a source of the fourth NMOS transistor MN4 and the source of the fourth PMOS transistor MP4 are jointly connected to the gate of the first NMOS transistor MN1; a drain of the fourth NMOS transistor MN4 is connected to a drain of the fourth PMOS transistor MP4; and a gate of the fourth PMOS transistor MP4 is connected to the output of the second NOT gate F2.
Preferably, the positive current path protection circuit comprises a first diode D1, a cathode of the first diode D1 being connected to the power line, and an anode of the first diode D1 being connected to the I/O pin. The negative current path protection circuit comprises a second diode D2 cathode of the second diode D2 being connected to the I/O pin, and an anode of the second diode D2 being connected to the grounding wire.
Preferably, the ESD trigger circuit and the power clamp circuit are disposed in a power supply module or the ESD trigger circuit is disposed in a filler cell of the chip.
In another aspect, the present invention provides a whole-chip ESD protection method, comprising steps of: providing an ESD protection device between a power line and a grounding wire, wherein the ESD protection device comprises: I/O units located between a power line and a grounding wire; a power clamp circuit located between the power line and the grounding wire and connected to the I/O units, each power clamp circuit being shared by multiple I/O units; and an ESD trigger circuit located between the power line and the grounding wire; and
protecting the I/O unit from ESD damage, comprising steps of: the ESD trigger circuit generating an ESD trigger signal when an ESD events occurs and transmitting the ESD trigger signal to the power clamp circuit and each I/O unit so that the power clamp circuit and each I/O unit respectively forms a current discharge path from the power line to the grounding wire.
Preferably, the ESD trigger circuit comprises: a resistor-capacitor circuit (RC circuit) connected in series between the power line and the grounding wire, wherein a first end of the capacitor C is connected to the power line, a second end of the capacitor C is connected to a first end of the resistor R, and a second end of the resistor R is connected to the grounding wire; a first NOT gate F1 and a second NOT gate F2 located between the power line and the grounding wire, wherein an input of the first NOT gate F1 is connected to the second end of the capacitor C and the first end of the resistor R, an output of the first NOT gate F1 is used for outputting a first trigger signal, an input of the second NOT gate F2 is connected to the output of the first NOT gate F1, and an output of the second NOT gate F2 is used for outputting a second trigger signal. The ESD trigger circuit generating an ESD trigger signal when an ESD events occurs comprises steps of: generating a first trigger signal and a second trigger signal, transmitting the first and second trigger signals to each I/O unit, and transmitting the second trigger signal to the power clamp circuit.
Preferably, the power clamp circuit comprises a PMOS transistor, wherein a gate of the PMOS transistor is connected to the output of the second NOT gate F2 in the ESD trigger circuit, a drain of the PMOS transistor is connected to the power line, and a source of the PMOS transistor is connected to the grounding wire. The power clamp circuit forming a current discharge path from the power line to the ground line comprises steps of: a gate of the PMOS transistor in the power clamp circuit receiving the second trigger signal generated by the ESD trigger circuit and thus the PMOS transistor will be opened so as to form ESD discharge path from power to ground.
Preferably, the I/O unit comprises: a first PMOS transistor MP1, a first NMOS transistor MN1, a positive current path protection circuit, a negative current path protection circuit, a first logic control cell and a second logic control cell, wherein a gate of the first PMOS transistor MP1 is connected to the first logic control cell; a source of the first PMOS transistor MP1 is connected to the power line; a drain of the first PMOS transistor MP1 and a drain of the first NMOS transistor MN1 are jointly connected to an I/O pin; a gate of the first NMOS transistor MN1 is connected to the second logic control cell; a source of the first NMOS transistor MN1 is connected to the grounding wire; the first logic control cell is connected to the grounding wire as well as the output of the first NOT gate F1 and the output of the second NOT gate F2 in the ESD trigger circuit; and the second logic control cell is connected to the power line as well as the output of the first NOT gate F1 and the output of the second NOT gate F2 in the ESD trigger circuit. The I/O unit forming a current discharge path from the power line to the grounding wire comprises steps of: the first logic control cell opens the first PMOS transistor MP1; the second logic control cell opens the first NMOS transistor MN1 to form ESD discharge path from power to ground.
Preferably, the first logic control cell comprises: a second NMOS transistor MN2, a third NMOS transistor MN3, and a third PMOS transistor MP3, wherein a gate of the second NMOS transistor MN2 is connected to a gate of the third PMOS transistor MP3; a source of the second NMOS transistor MN2 is connected to the grounding wire; a drain of the second NMOS transistor MN2 is connected to the gate of the first PMOS transistor MP1; a gate of the third NMOS transistor MN3 is connected to the output of the first NOT gate F1; a source of the third NMOS transistor MN3 is connected to a source of the third PMOS transistor MP3 as well as the gate of the first PMOS transistor MP1; a drain of the third NMOS transistor MN3 is connected to a drain of the third PMOS transistor MP3; and a gate of the third PMOS transistor MP3 is connected to the output of the second NOT gate F2. The second logic control cell comprises: a second PMOS transistor MP2, a fourth NMOS transistor MN4, and a fourth PMOS transistor MP4;, wherein a gate of the second PMOS transistor MP2 is connected to a gate of the fourth NMOS transistor MN4; a source of the second PMOS transistor MP2 is connected to the power line; a drain of the second PMOS transistor MP2 is connected to the gate of the first NMOS transistor MN1; a gate of the fourth NMOS transistor MN4 is connected to the output of the first NOT gate F1; a source of the fourth NMOS transistor MN4 and the source of the fourth PMOS transistor MP4 are jointly connected to the gate of the first NMOS transistor MN1; a drain of the fourth NMOS transistor MN4 is connected to a drain of the fourth PMOS transistor MP4; and a gate of the fourth PMOS transistor MP4 is connected to the output of the second NOT gate F2. The first logic control cell opening the first PMOS transistor MP1 according to the first trigger signal and the second trigger signal in the ESD trigger circuit comprises steps of: closing the third NMOS transistor MN3 and the third PMOS transistor MP3, at the same time opening the second NMOS transistor MN2 and the first PMOS transistor MP1. The second logic control cell opens the first NMOS transistor MN1 through the mechanism of closing the fourth NMOS transistor MN4 and the fourth PMOS transistor MP4 at the same time opening the second PMOS transistor MP2 to open the first NMOS transistor MN1.
Preferably, the positive current path protection circuit comprises a first diode D1, a cathode of the first diode D1 being connected to the power line, and an anode of the first diode D1 being connected to the I/O pin. The negative, current path protection circuit comprises a second diode D2, a cathode of the second diode D2 being connected to the I/O pin, and an anode of the second diode D2 being connected to the grounding wire. When the ESD events occurs, an ESD current flows into the power line through the first diode D1 or second diode D2 in the positive current path protection circuit, and prompts the ESD trigger circuit to generate an ESD trigger signal.
The whole-chip ESD protection circuit of the present invention comprises ESD trigger circuits and power clamp circuits, which connect to multiple I/O units. When ESD occurs, the ESD trigger circuit generates an ESD trigger signal and transmits the ESD trigger signal to the power clamp circuit and each I/O unit so that the power clamp circuit and each I/O unit respectively forms a current discharge path from the power line to the grounding wire. Compared with the previous ESD protection approach in prior art, the whole-chip ESD protection circuit and method provided in the present invention employs an existing driving transistor in the I/O unit to realize efficient whole-chip ESD protection; that is, multiple evenly-distributed and effective ESD current discharge paths are formed in I/O units, thereby effectively improving the overall ESD protection capability. Hence, it is unnecessary to configure a power clamp circuit for each I/O unit in order to realize ESD protection, avoiding too many power clamp circuits configuration in the whole chip, hence reducing the overall size of the chip and lowering the cost.
In the prior art, distributed power clamp circuits are used in the chip, and each I/O unit requires to be configured with a power clamp circuit; consequently, the overall size and the cost of the chip are significantly increased. Therefore, the inventor of the present invention has made improvement and proposes a whole-chip ESD protection circuit and protection method. The whole-chip ESD protection circuit includes: an ESD trigger circuit located between a power line and a grounding wire and connected to multiple I/O units, and a power clamp circuit located between the power line and the grounding wire and connected to the ESD trigger circuit. The whole-chip ESD protection method includes: providing an ESD protection device which includes an ESD trigger circuit and a power clamp circuit that are located between a power line and a grounding wire, and are connected to multiple I/O units, to prevent the I/O units from an ESD damage; and the ESD trigger circuit generating an ESD trigger signal when an ESD events occurs and transmits the ESD trigger signal to the power clamp circuit and each I/O unit so that the power clamp circuit and each I/O unit respectively forms a current discharge path from the power line to the grounding wire. Compared with the prior art; the whole-chip ESD protection circuit and protection method provided in the present invention could reduce the total number of power clamp circuits, thereby reducing the overall size of a chip and lowering the cost.
The implementation manner of the present invention is described in detail below through specific embodiments. A person skilled in the art can easily learn other advantages and efficacies of the present invention according to the content disclosed in the specification. The present invention may also be implemented or applied in other different specific implementation manners. Details in the specification may be modified or changed in various ways based on different points of views and applications without departing from the spirit of the present invention.
It should be noted that, the drawings provided in the implementation manner merely illustrate the fundamental idea of the present invention in a schematic way. Therefore, the drawings only show components related to the present invention rather than being drawn in accordance with the number, shape, and size of the components during actual implementation. The pattern, number, and ratio of the components during actual implementation may be changed randomly, and the layout pattern of the components may be more complex.
Referring to
The following describes each of the foregoing units in detail.
The I/O units 11 are located between the power line VDD and the grounding wire GND, and the I/O units are connected in parallel. In this implementation manner, each I/O unit is configured with a driving transistor.
The power clamp circuit 15 is located between the power line and the grounding wire, and is connected to the multiple I/O units 11. Particularly, in this embodiment, each power clamp circuit 15 is shared by multiple I/O units 11.
The ESD trigger circuit 13 is located between the power line and the grounding wire, and is connected to the I/O units 11 and the power clamp circuit 15.
In actual application, when an ESD event occurs in any one of the I/O units 11, the ESD trigger circuit 13 generates an ESD trigger signal and transmits the trigger signal to the power clamp circuit 15 and each I/O unit 11, so that the power clamp circuit 15 and each I/O unit 11 respectively forms a current discharge path from the power line VDD to the grounding wire GND. In this implementation manner, the ESD trigger signal generated by the ESD trigger circuit 13 includes a first trigger signal ESD_ONp and a second trigger signal ESD_ONn.
In addition, it should be noted that, in the above description, as shown in
Referring to
Further referring to
The effect of the whole-chip ESD protection circuit in the actual application is described with the reference to
The first trigger signal ESD ONp and the second trigger signal ESD_ONn in
In sum, in the whole-chip ESD protection circuit and ESD protection method provided in the present invention, the whole-chip ESD protection circuit includes an ESD trigger circuit and a power clamp circuit connected to multiple I/O units; when ESD occurs, the ESD trigger circuit generates an ESD trigger signal and transmits the ESD trigger signal to the power clamp circuit and each I/O unit so that the power clamp circuit and each I/O unit form a current discharge path from the power line to the grounding wire respectively. Compared with the prior art, the whole-chip ESD protection circuit and the ESD protection method provided in the present invention utilize an existing driving transistor in the I/O unit to realize efficient whole-chip ESD protection; that is, an effective ESD current discharge path is formed in each I/O unit, and each path is evenly distributed, thereby effectively improving the overall ESD protection capability of a chip. Hence, it is unnecessary to configure a power clamp circuit for each I/O unit with regard to the ESD, avoiding adding too many power clamp circuits in the whole chip, hence reducing the overall size of the chip and lowering the cost.
The above description of the detailed embodiments is only to illustrate the principle and efficacy of the present invention, and is not intended to limit the present invention. A person skilled in the art could make modifications to the above embodiments without departing from the spirit and scope of the present invention. Therefore, the scope of the present invention is subject to the appended claims.
| Number | Date | Country | Kind |
|---|---|---|---|
| 201310376740.0 | Aug 2013 | CN | national |