Wick assembly for dispensing a volatile liquid from a container and method of assembling same

Information

  • Patent Grant
  • 7309024
  • Patent Number
    7,309,024
  • Date Filed
    Monday, June 30, 2003
    21 years ago
  • Date Issued
    Tuesday, December 18, 2007
    16 years ago
Abstract
An interference fit assembly comprises a wick constructed of a porous polymer and a wall constructed of a polymer for interference engagement with the wick. The wick has a weight of 3.3 grams.
Description
FIELD OF THE INVENTION

The application relates to dispensing systems for volatile liquids and, more particularly, to a dispensing system incorporating a porous wick.


SUMMARY OF THE INVENTION

According to one aspect of the invention, an interference wick assembly for dispensing a volatile liquid from a container includes a porous high density polymer wick and a plug for securement within an opening into the container. The plug includes a tapered receiver tube defining a second opening through the plug and a ridge along an inner surface of the tube. A portion of the second opening has a first dimension less than a dimension of the wick. The wick is secured within the tube by an interference fit with the ridge, and the wick has a density sufficient to develop a removal force of at least 7.22 pounds two weeks after securement within the tube.


According to another aspect of the invention, an interference fit wick assembly for dispersing a volatile liquid from a container includes a porous wick composed of high density polymer and having a first density and a polymeric wall defining an opening having a dimension less than a dimension of the wick. The wick is retained within the opening by a separation force caused by the interference fit, and the first density is selected such that the separation force is at least as great as a first force. The wall includes a generally frustoconical receiving member defining the opening, an insertion end having a first diameter, and a retention end having a second diameter. The first diameter is greater than the wick dimension, and the second diameter is less than the wick dimension.


According to yet another aspect of the invention, a method of assembling a wick assembly for dispensing a volatile liquid from a container includes the step of providing a porous wick. The wick is composed of high density polymer and has a first density. The method further includes the step of providing a generally frustoconical wall defining an opening. The wall is of a high density polyethylene and has an inner annular ridge. The opening has a dimension less than a dimension of the wick. The method also includes the step of inserting the wick into the opening. The first density is selected such that a separation force is at least as great as a first force.


These and other aspects of the invention will become apparent upon consideration of the detailed description and the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross sectional view showing one embodiment of an interference fit assembly according to the present invention;



FIG. 2 is a cross sectional view of the interference fit assembly of FIG. 1 taken along line 2-2 in FIG. 1;



FIG. 3 is a cross sectional view of the interference fit assembly of FIG. 1 incorporated into a container for a volatile liquid;



FIG. 4 is a cross sectional view showing a second embodiment of an interference fit assembly according to the present invention;



FIG. 5 is an exploded perspective view of the interference fit assembly and container of FIG. 3;



FIG. 6 is a schematic drawing showing the dimensions and shape of an exemplary wick.



FIG. 7 is a group of drawings showing dimensions and shape of the plug member 306 of FIG. 3.



FIGS. 8A and 8B are a table and chart, respectively, showing the effect of increasing weight on separation force F3.



FIGS. 9A and 9B are a table and chart, respectively, showing the effect of increasing weight on insertion force.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, interference fit assembly 100, in one example, comprises wall 102 and wick 104. An interference fit couples wall 102 and wick 104 together. As shown in FIG. 1, wick 104 comprises a generally cylindrical first portion 106 having a first diameter d1 and a generally cylindrical second portion 108 having a second diameter d2. Second portion 108 extends through an opening (not shown) of wall 102. FIG. 1 depicts diameters d1 and d2 such that first diameter d1 is greater than second diameter d2. Alternatively, d1 is less than d2, or d1 and d2 are the same size.



FIG. 2 provides a top view of wall 102 taken along line 2-2 in FIG. 1. Wall 102 in one example forms an annular member 200. Annular member 200 includes an opening 202. Annular member has an interior diameter Dp which is defined as the diameter of opening 202. Dp is less than diameter d2 of the second portion 108 of wick 104. In one example, diameter d2 is 6.5% greater than Dp. In another example, diameter d2 does not exceed approximately 12% of Dp.


Referring to FIGS. 3 and 4, wick 104 is utilized to draw a liquid 302 from a container 304. Liquid 302, in one example, is a volatile liquid, which emits a fragrance, and container 304 is a fragrance bottle. Wick first portion 106 extends outside container 304 for immersion into either ambient air or a forced air stream. Wick second portion 108 is in communication with liquid 302. Accordingly, liquid 302 is drawn from container 304 by wick second portion 108 and deposited into the ambient air by wick first portion 106.



FIGS. 3 and 4 disclose two embodiments for utilizing interference fit 100 to connect wick 104 to container 304. In a first embodiment, shown in FIG. 3, wall 102 is incorporated into plug member 306. Plug member 306 is adapted to be received and secured to container 304. Plug member 306 is secured to container 304 through means, such as an interference fit, molding, adhesive, etc. In a second embodiment, shown in FIG. 4, wall 102 is incorporated directly into container 304. The disclosure of the two embodiments in FIGS. 3 and 4 is for illustrative purposes only and should not be used to limit the scope of the application to the two embodiments.


Referring now to FIGS. 1 and 2, it should be noted that in addition to securing wall 102 and wick 104 together, interference fit assembly 100 also forms a seal to prevent leakage of liquid from the container in which wick 104 is inserted. Thus, wick second portion 108 conforms to the shape of opening 202 and substantially abuts the entire interior surface 204 of annular member 200. In the example shown, wick second portion 108 has a generally cylindrical shape to conform to the circular shape of opening 202. In another example, opening 202 and wick could be shaped differently; for example, if achieving a seal between wick 104 and the container in which it is inserted is not of importance.


In another example, wick 104 and/or opening 202 have other geometric shapes, such as hexagonal, rectangular, triangular, elliptical, etc. Detailed descriptions of wick structures are provided in co-pending patent applications having U.S. Ser. Nos. 10/266,512; 10/266,798; and 10/266,546, which are hereby incorporated by reference.


Wall 102 is formed from a thermoplastic material having the processing characteristics and dimensional stability needed to enable predetermined interference fit dimensional tolerances to be achieved and maintained. In one example, wall 102 is formed from a high density polyethylene, such as for example Alathon® H 5520 from Equistar Chemicals, LP of Houston, Tex.


Wick 104 in one example is made from material that is appropriate for its function. For example, in FIGS. 3 and 4, wick 104 is utilized to deliver liquid 302 from container 304 into ambient air or a forced air stream. Accordingly, wick 104 is chosen to have a predetermined range of void volume and/or pore size appropriate for providing this function. Void volume and pore size can be determined by any standard test for determining void volume and pore size distribution. For example, mercury porosimetry provides information on void volume and pore size distribution for rigid wicks. The material of wick 104 also has the processing characteristics and dimensional stability needed to enable predetermined interference fit dimensional tolerances to be achieved and maintained. In one example, wick 104 is a polymeric wick made of sintered ultra high molecular weight polyethylene (UHMW-PE). In another example, wick 104 is comprised of a blend of UHMW-PE in particle form, which is developed to meet the target pore characteristics of the wick 104. An exemplary wick can be obtained from MicroPore Plastics Inc. of Stone Mountain, Ga.


The material for wick 104 is also chosen to effect a specific strength of the interference fit between wall 102 and wick 104. FIG. 5 shows an exploded view of the first embodiment of interference fit assembly 100. Wick 104 is inserted into opening 202 of plug member 306. Plug member 306 is inserted into opening 502 of container 304. Because Diameter d2 of wick second portion 108 is larger than diameter Dp of opening 202, an interference fit is created. To insert wick 104 through opening 202, however, an insertion force FI is applied to wick 104 in the direction shown. For wick 104 to be removed from opening 202, a separation force Fs or extraction force needs to be applied to wick 104 in the direction shown. For many applications, however, the manufacturer may not want wick 104 to be easily removed from opening 202. For example, if interference fit assembly 100 were used as part of an air freshener, the manufacturer may not want children to be able to remove wick 104 because to do so would result in the spilling of liquid in their vicinity. Therefore, the manufacture may want the separation force Fs to be strong enough to prevent this from happening. The Applicants have discovered that both FI and Fs are a function of the weight of wick 104. In particular, the density of wick 104 along and near the region of wick 104 that abuts wall 102 affects separation force Fs. The higher the density of wick 104, the greater force that is required to both insert wick 104 into opening 202 and remove wick 104 from opening 202.


Still referring to FIG. 5, after wick 104 is inserted into opening 202, a period of stress relaxation occurs. Stress relaxation occurs in the materials of both wall 102 and wick 104 along and proximate the region of contact between wall 102 and wick 104. The stress relaxation reduces the bearing force between wall 102 and wick 104 and thus Fs decreases as a result of stress relaxation. Therefore, when determining when manufacturing interference fit assembly 100 to have a particular separation force Fs, the manufacture must take into account the effects of stress relaxation. The Applicants have found that a period of about two weeks is sufficient to allow the effects of stress relaxation to occur. After two weeks, separation force Fs has generally stabilized.



FIGS. 8A and 8B, which include Table I and Chart I, respectively, show the effect that increasing the weight, for a given volume of wick 104, has on the separation force F, for a wall and wick after a period of about two weeks.1 In other words, Table I and Chart I show the effect that increasing the density of wick 104 has on separation force Fs. The wall 102 was made of approximately 0.9 ± 0.05 g of injection molded high density polyethylene. Wall 102 was incorporated into plug member 306 and plug member 306 was inserted into container 304 as shown in FIG. 3. The dimensions of wall 102, plug member 306, and wick 104 are provided in FIGS. 6 and 7. It should be noted that the dimensions provided for wall 102 and wick 104 are for illustrative purposes only. Wall 102 and wick 104 could be made larger or smaller. Provided that an interface fit is generated between wall 102 and wick 104, the separation force Fs will increase as the density of wick 104 increases for a constant density of wall 102. The density of wick 104 can be determined by calculating volume of wick 104 using the dimensions shown in FIG. 6. 1 For the weights 3.643, 3.755, 3.528, 3.629, 3.590, and 3.655 wick 104 was not separated from wall 102. Rather, plug member 306 separated from container 304. Accordingly, these entries list the force at which plug member was removed from container 304.



FIGS. 9A and 9B. which include Table II and Chart II, respectively, demonstrate the effect that increasing the weight (and thereby density) of wick 104 has on insertion force for the same wall and wick as in Table I and Chart I. The tables and charts demonstrate that the higher the weight of wick 102, the greater the insertion force FI and the greater the separation force Fs after stress relaxation.


INDUSTRIAL APPLICABILITY

The present invention provides an interference fit assembly incorporation into a container for a volatile liquid. The assembly is formed by a porous wick and a wall joined so as to generate an interference fit. The assembly forms a seal at an opening of the container to prevent leakage of the volatile liquid from the container. To help ensure that the seal remains secured in the opening of the container, the assembly is constructed such that at least a minimum threshold force is required to separate the wick from the wall. To this end, the materials and dimensions of the wick and wall are specified so as to provide a high initial engagement force between the wick and wall, and to provide maximum resistance to stress relaxation at the wick-wall interface.


It should be understood that the preceding is merely a detailed description of various embodiments of this invention and that numerous changes to the disclosed embodiment can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. The preceding description, therefore, is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents.

Claims
  • 1. An interference wick assembly for dispensing a volatile liquid from a container, comprising: a porous high density polymer wick;a plug for securement within an opening into the container, wherein the plug includes a tapered receiver tube defining a second opening through the plug and a ridge along an inner surface of the tube, and wherein a portion of the second opening has a first dimension less than a dimension of the wick;wherein the wick is secured within the tube by an interference fit with the ridge, and wherein the wick has a density sufficient to develop a removal force of at least 7.22 pounds two weeks after securement within the tube.
  • 2. The wick assembly of claim 1 wherein the wick is formed from ultra-high molecular weight polyethylene.
  • 3. The wick assembly of claim 1 wherein the tapered receiver tube is formed from high density polyethylene.
  • 4. The wick assembly of claim 1 wherein the ridge comprises an annular member and the wick has a generally cylindrical shape.
  • 5. The wick assembly of claim 4 wherein an interior diameter of the annular member is less than a diameter of the wick.
  • 6. The wick assembly of claim 5 wherein the diameter of the wick is at least 6.5% greater than the interior diameter of the annular member.
  • 7. The wick assembly of claim 5 wherein the diameter of the wick does not exceed by approximately 12% the interior diameter of the annular member.
  • 8. The wick assembly of claim 4 wherein the receiver tube engages the first opening into the container.
  • 9. The wick assembly of claim 8 wherein the diameter of the first opening into the container is smaller than an exterior diameter of the receiver tube.
  • 10. A method of assembling a wick assembly for dispensing a volatile liquid from a container, wherein the method comprises the steps of: providing a porous wick composed of high density polymer and having a first density;providing a generally frustoconical wall defining an opening, wherein the opening has a dimension less than a dimension of the wick, wherein the wall is of a high density polyethylene and has an inner annular ridge, and wherein the first density is selected such that a separation force is at least as great as a first force; andinserting the wick into the opening.
  • 11. The method of claim 10 wherein the step of providing a wick includes the step of providing the wick formed of an ultra high molecular weight polyethylene.
  • 12. An interference fit wick assembly for dispensing a volatile liquid from a container, wherein the wick assembly comprises: a porous wick composed of high density polymer and having a first density; anda polymeric wall defining an opening having a dimension less than a dimension of the wick;wherein the wick is retained within the opening by a separation force caused by the interference fit; andwherein the first density is selected such that the separation force is at least as great as a first force; andwherein the wall comprises a generally frustoconical receiving member defining the opening and including an insertion end having a first diameter and a retention end having a second diameter; andwherein the first diameter is greater than the wick dimension and the second diameter is less than the wick dimension.
  • 13. The wick assembly of claim 12, wherein the generally frustoconical receiving member further comprises an inner annular ridge adjacent to the retention end.
  • 14. The wick assembly of claim 13, wherein the wall further comprises an annular skirt spaced radially outwardly from the receiving member and sized to have an interference fit with an inner surface of an opening in the container.
US Referenced Citations (101)
Number Name Date Kind
1911871 Anderson May 1933 A
2435811 Waters Feb 1948 A
2557501 Fusay et al. Jun 1951 A
2754554 Mills Jul 1956 A
2764789 Zelenka Oct 1956 A
2828953 Hartmann Apr 1958 A
2867866 Steele Jan 1959 A
3080624 Weber, III Mar 1963 A
3587968 Balland et al. Jun 1971 A
3633881 Yurdin Jan 1972 A
3748464 Andeweg Jul 1973 A
3749904 Graff Jul 1973 A
3761702 Andeweg Sep 1973 A
3790081 Thornton et al. Feb 1974 A
3890085 Andeweg Jun 1975 A
3923458 Moran Dec 1975 A
3948445 Andeweg Apr 1976 A
3990848 Corris Nov 1976 A
3993444 Brown Nov 1976 A
4035451 Tringali Jul 1977 A
4166087 Cline et al. Aug 1979 A
4276236 Sullivan et al. Jun 1981 A
4294778 DeLuca Oct 1981 A
4323193 Compton et al. Apr 1982 A
4346059 Spector Aug 1982 A
4383951 Palson May 1983 A
4432938 Meetze, Jr. Feb 1984 A
4493011 Spector Jan 1985 A
4621768 Lhoste et al. Nov 1986 A
4660764 Joyaux et al. Apr 1987 A
4666638 Baker et al. May 1987 A
4695435 Spector Sep 1987 A
4707338 Spector Nov 1987 A
4739928 O'Neil Apr 1988 A
4743406 Steiner et al. May 1988 A
4857240 Kearnes et al. Aug 1989 A
4866580 Blackerby Sep 1989 A
4913350 Purzycki Apr 1990 A
4931224 Holzner, Sr. Jun 1990 A
4968487 Yamamoto et al. Nov 1990 A
RE33864 Steiner et al. Mar 1992 E
5095647 Zobele et al. Mar 1992 A
5114625 Gibson May 1992 A
5126078 Steiner et al. Jun 1992 A
5133042 Pelonis Jul 1992 A
5217696 Wolverton et al. Jun 1993 A
5222186 Schimanski et al. Jun 1993 A
5223182 Steiner et al. Jun 1993 A
5342584 Fritz et al. Aug 1994 A
5370829 Kunze Dec 1994 A
5376338 Zlotnik Dec 1994 A
5547616 Dancs et al. Aug 1996 A
5647053 Schroeder et al. Jul 1997 A
5651942 Christensen Jul 1997 A
5662835 Collingwood Sep 1997 A
D386974 Wefler Dec 1997 S
D393063 Wefler Mar 1998 S
5891400 Ansari et al. Apr 1999 A
5909845 Greatbatch et al. Jun 1999 A
5919423 Requejo et al. Jul 1999 A
5970643 Gawel, Jr. Oct 1999 A
5980064 Metroyanis Nov 1999 A
6017139 Lederer Jan 2000 A
6104867 Stathakis et al. Aug 2000 A
6106786 Akahoshi Aug 2000 A
6196706 Cutts Mar 2001 B1
6241161 Corbett Jun 2001 B1
6354513 Millan Mar 2002 B1
6354710 Nacouzi Mar 2002 B1
6361752 Demarest et al. Mar 2002 B1
6371450 Davis et al. Apr 2002 B1
6416242 Kaufmann Jul 2002 B1
6454425 Lin Sep 2002 B1
6484438 Matsunaga et al. Nov 2002 B2
6555068 Smith Apr 2003 B2
6567613 Rymer May 2003 B2
6616308 Jensen et al. Sep 2003 B2
6619560 Chun Sep 2003 B1
6862403 Pedrotti et al. Mar 2005 B2
6899280 Kotary et al. May 2005 B2
6938883 Adams et al. Sep 2005 B2
6966665 Limburg et al. Nov 2005 B2
20020080601 Meltzer Jun 2002 A1
20020093834 Yu et al. Jul 2002 A1
20020136542 He et al. Sep 2002 A1
20020136886 He et al. Sep 2002 A1
20030007887 Roumpos et al. Jan 2003 A1
20030053305 Lin Mar 2003 A1
20030146292 Schramm et al. Aug 2003 A1
20040065749 Kotary et al. Apr 2004 A1
20040074982 Kotary et al. Apr 2004 A1
20040141315 Sherburne Jul 2004 A1
20040182949 Duston et al. Sep 2004 A1
20040184969 Kotary et al. Sep 2004 A1
20040246711 Brenchley et al. Dec 2004 A1
20040257798 Hart Dec 2004 A1
20040262419 Kotary et al. Dec 2004 A1
20040262420 Hansen et al. Dec 2004 A1
20040265189 Schwarz Dec 2004 A1
20040265196 Varanasi et al. Dec 2004 A1
20050053528 Rymer Mar 2005 A1
Foreign Referenced Citations (17)
Number Date Country
664685 Nov 1995 AU
054926 Sep 2000 DM
0 882 459 Dec 1998 EP
1 031 446 Aug 2000 EP
1 270 021 Jan 2003 EP
1 283 062 Feb 2003 EP
1 283 062 Dec 2003 EP
2285579 Jul 1995 GB
WO9510352 Apr 1995 WO
WO 0102025 Jan 2001 WO
WO 0123008 Apr 2001 WO
WO 0230220 Apr 2002 WO
WO 0231413 Apr 2002 WO
WO 03013618 Feb 2003 WO
1 392 368 Oct 2003 WO
WO03086487 Oct 2003 WO
WO 2004030708 Apr 2004 WO
Related Publications (1)
Number Date Country
20040262420 A1 Dec 2004 US