Not applicable
Not applicable
Not applicable
1. Field of the Invention
The present invention relates generally to wick-holder assemblies, and more particularly to wick-holder assemblies responsive to thermal changes.
2. Description of the Background of the Invention
Candleholders frequently include assemblies to hold a fuel charge that has a wick holder to retain a wick within the fuel charge. One such candleholder has a plurality of decorative radial arms extending upward from a candle support cup that holds a fuel charge. In such a candleholder, the radial arms are circumferentially spaced around the candle support cup. Each arm includes an inwardly turned tip portion that is directed toward a candle placed in the candle support cup.
Another candleholder is a candlestick in which a cylindrical candle is retained at a bottom end thereof by a metallic spring clasp secured on a saucer portion. A wick is retained in the cylindrical candle. The spring clasp is coined from a sheet of metal to have a pair of opposing resilient arms extending upward from a base section. Upper tip portions of the arms are curved outwardly. The arms are angled inwardly to resiliently clasp the bottom end of the candle therebetween. A lug on the saucer portion interlocks with a complementary lug on the base section to retain the spring clasp thereon.
A candle having a thermal response has a wick holder disposed on an upper end of a support column that extends downwardly through a wax fuel element. Each of a first and second bimetallic coil is secured in a horizontal position to the support column at a radial inner end thereof. The bimetallic coils are disposed in a wax melt pool. An arm extends upward from the radial outer end of each bimetallic coil, and a partial heart shaped medallion extends upward from each arm. The bimetallic coils move the heart shaped medallions together tangentially around the support column when the wax melt pool is heated by a flame on the wick due to differential thermal expansion of the bi-metallic coils.
Another candleholder includes a conically shaped metallic dish, a metallic wick clip, and a wick, all of which are placed on top of a wax fuel element. The wick is carried within the wick clip, and the wick clip is retained in a hole through the dish such that an upper portion of the wick extends above the dish and a lower portion of the wick extends below the dish. A plurality of upturned petals is disposed around the periphery of the dish and partially surrounds the wick and a flame on the wick. A metal wire extends through a central axis of the wick, and an exterior helical coil of wire extends along the exterior length of the wick. A metal decorative element is carried over the dish and extends proximate the flame. Heat from the flame is conducted by convection and by conduction through the wires, the decorative element, and the wick clip to form a pool of molten wax centrally disposed on the top of the wax fuel element under the dish and wick. The dish, wick clip, and wick move down with the top of the fuel element as the flame consumes the molten wax.
According to one aspect of the invention, a wick-holder assembly includes a wick-retention member for retaining a wick in an operative position extending from a base portion and a heat-conductive element extending from the base portion. A portion of the heat-conductive element is arranged to cause the heat-conductive element to move substantially radially toward or away from the wick-retention member in response to a flame disposed on the wick.
According to another aspect of the invention, a wick-holder assembly includes a wick-retention member for retaining a wick in an operative position that extends upward from a base portion, a heat-conductive element extending upward from the base portion, and a leg that extends from the base portion. The heat-conductive element includes at least two materials having different thermal expansion coefficients. The base portion is substantially stationary relative to the wick-retention member.
According to another aspect of the invention, a wick-holder assembly includes a wick-retention member for retaining a wick thereto, a heat-conductive element that includes at least two materials having different thermal expansion coefficients, and a substantially stationary base portion extending from the wick-retention member to the heat conductive element.
Other aspects of the present invention will become apparent upon consideration of the following detailed description.
Turning now to the figures,
One or more portions of the heat-conductive elements 18, including the first portion 20 and the second portion 22, may be constructed of various materials having different thermal expansion coefficients that respond to thermal changes and facilitate movement of the heat-conductive element toward or away from a flame and as shown by an arrow A. Examples of a material useful in the present invention include a metal, such as aluminum, steel, nickel, magnesium, copper, iron, silver, zinc, tin, or titanium, a polyester, and a ceramic, and mixtures and combinations thereof, such as bronze, brass, copper and aluminum, and/or a copper-plated ceramic. Additionally, one or more heat-conductive elements 18 may be made of the same material or different materials. For example, one or more heat-conductive elements 18 may be constructed of a single material such as aluminum, steel, or copper, while one or more other heat-conductive elements may be constructed from two or more materials such as a bimetallic material such as copper and aluminum, or a composite or bi-material such as polyester and aluminum or a plated ceramic material such as a metal-plated ceramic including, for example, copper plated ceramic. The other components of the wick-holder assembly 10 such as the wick-retention member 12, the base portion 16, the capillary ribs 24, and/or the legs 26 may also be made of the same material as the one or more of the heat-conductive elements 18 and in one embodiment at least one of the heat-conductive elements, the base portion, the capillary ribs, or the legs is a bimetallic material such as copper and aluminum.
In one embodiment of the present invention, the wick-retention member 12 is configured to retain a consumable or non-consumable wick 14. In yet another embodiment, the wick-retention member 12 is a non-consumable or reusable wick that is configured to burn a fuel charge via capillary action. As shown in
In one embodiment of the present invention, the first portion 20 and the second portion 22 are constructed and arranged to move toward or away from a heat source such as a flame (60,
The wick-holder assembly 10 may be disposed on any appropriate apparatus that is adapted to hold a fuel charge in conjunction with the wick-holder assembly of the present invention, such as the melting plate assembly 50 shown in
In other embodiments, the geometry of the heat-conductive element 18 is such that the heat-conductive element substantially surrounds or partly surrounds the wick-retention member 12 and, therefore, the flame 60 supported by the fuel charge. For example, the wick-holder assembly 10 shown in
In operation, the geometry and/or the composition of one or more components of the wick-holder assembly 10 may be configured to control and/or regulate the temperature of the wick-holder assembly, the capillary space between the wick-holder assembly and a support surface holding the wick-holder assembly such as the melting plate 53 of
In one embodiment, the temperature of the wick-holder assembly 10 is controlled and/or regulated, by the shape and/or the positioning of the heat-conductive elements 18. For example, to increase the temperature of the wick-holder assembly 10 while the flame 60 is lit, the heat-conductive elements 18 are shaped and/or positioned to be closer to the flame and/or to expose more surface area to the flame. The closer to the flame 60 and/or the more surface area that is exposed to the flame, the more heat is transferred from the flame to the heat-conductive elements 18. From the heat-conductive elements 18, heat is then transferred to the other components of the wick-holder assembly 10. The heat of the wick-holder assembly 10 may then be transferred to the fuel charge, which facilitates melting and/or volatilization thereof. The composition of the various components may also be selected to control and/or regulate the temperature of the wick-holder assembly 10. For example, the heat-conductive elements 18 can be made of various materials having different thermal conductivity and/or thermal expansion coefficients such as a multi-metallic material, for example, a bi-metal, which when heated a surface is configured to move toward or away from the heat source. The materials may be positioned within and/or on the heat-conductive elements 18 at various locations, for example, within and/or on the first portion 20 or the second portion 22, to facilitate heat transfer and/or movement of the heat-conductive elements toward or away from the flame 60.
In other embodiments, the capillary space between the wick-holder assembly 10 and the melting plate assembly 50 is controlled and/or regulated by the geometry and/or the composition of one or more components of the wick-holder assembly. For example, in one embodiment when one or more legs 26 and/or capillary ribs 24 are heated, one or more dimensions, for example, a length, width, and/or height, of the legs and/or capillary ribs are configured to move in a direction that increases and/or decreases the capillary space of the wick-holder assembly 10. Illustratively, after the wick 14 or the wick-retention member 12 is lit and begins to generate heat, one or more dimensions of the legs 26 and/or the capillary rib 24 increases in response to the heat. The increased dimension in one embodiment reduces the capillary space and thereby restricts flow rate of the liquid fuel charge disposed in and/or traveling through the capillary space. Additionally, or alternatively, as the flame 60 begins to produce less heat and the legs 26 and/or the capillary ribs 24 begin to cool, the one or more dimensions of the legs 26 and/or the capillary ribs 24 begin to decrease, thereby allowing more fuel to pass through the capillary space. By regulating the flow rate of the fuel charge, the size and/or the burn rate of the flame 60 may be regulated by changing the amount of fuel supplied to the flame.
Furthermore, by reducing the impact of breezes and other movements of air surrounding the flame 60, the thermal output of the flame may be maintained or enhanced in comparison to a flame without the protection of the heat-conductive element 18. In one embodiment, by maintaining or enhancing flame performance, thermal generation can be increased and/or optimized to melt and/or volatilize a fuel charge.
Changing geometry of one or more components of the wick-holder assembly 10 via a thermal response may also be used to engage, interlock and/or secure the wick-holder assembly to an apparatus such as the melting plate assembly 50 shown in
The wick-retention member 12 in one embodiment is made of a heat-transmissive material, such as a metal, which facilitates conductive heat transfer from the flame 60 to the melting plate 52. In the embodiment shown in
In another embodiment, the base portion 16 does not include the capillary ribs 24 and/or the capillary channels, but may be located instead on a member of the support apparatus such as the capillary lobe 58 that holds the wick-holder assembly 10.
It is also contemplated that where the wick-holder assembly 10 has a plurality of components, members, and/or elements, for example, two of more wick-retention members 12, wicks 14, base portions 16, heat-conductive elements 18, capillary ribs 24, and/or legs 26, each component, member and/or element may be independently selected and configured in regard to positioning, geometry and/or composition to achieve a desired effect such as flame intensity, burn time of the fuel charge, and/or volatilization rate of a fragrance, insecticide, and the like. It is further contemplated that the wick-holder assembly 10 may have one or more components, members, and/or elements that are configured to perform one or more similar functions. In such a case, the wick-holder assembly 10 may in some embodiments be constructed to be without the component, member, and/or element whose function is being performed by another component, member, and/or element. Illustratively, the heat-conductive elements 18 may be configured to be connected directly to the wick-retention member 12, thus serving one or more functions of the base portion 16 as described herein. In such an embodiment, the wick-holding assembly 10 may be constructed without the base portion 16 inasmuch as the heat-conductive element 18 is serving the function of the base portion.
The present invention provides a user with a wick-holder assembly that is responsive to thermal changes of a flame disposed on a wick. The wick-holder assembly may also speed melting of a fuel charge by moving heat-conductive elements toward the flame and enhancing heat transfer from the flame to the fuel charge. The wick-holder assembly may also surround the flame, which reduces the impact of breezes on the flame, therefore reducing the chances of the breeze extinguishing the flame.
Numerous modifications to the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use the invention and to teach the best mode of carrying out same. The exclusive rights to all modifications within the scope of the impending claims are reserved.
Number | Name | Date | Kind |
---|---|---|---|
213184 | Frick | Mar 1879 | A |
405786 | Ludde | Jun 1889 | A |
407051 | Baumer | Jul 1889 | A |
408973 | Heller | Aug 1889 | A |
484210 | Ludde | Oct 1892 | A |
779644 | Ferrier | Jan 1905 | A |
837240 | Mulkerins | Nov 1906 | A |
1044256 | Satter | Nov 1912 | A |
D43845 | Hirschfeld | Apr 1913 | S |
1195657 | Chersky | Aug 1916 | A |
D49902 | Labaree et al. | Nov 1916 | S |
1229140 | Ritter | Jun 1917 | A |
1316624 | Lucas | Sep 1919 | A |
1320109 | Wooster | Oct 1919 | A |
1336635 | Knapp | Apr 1920 | A |
1390389 | Rosenfeld | Sep 1921 | A |
1484964 | Benneville | Feb 1924 | A |
D67108 | Steeple | Apr 1925 | S |
1640734 | Smith | Aug 1927 | A |
D75463 | Bach | Jun 1928 | S |
D80971 | Sakier | Apr 1930 | S |
D83100 | Gisolfi | Jan 1931 | S |
D110902 | Loesch | Aug 1938 | S |
D119587 | Fuerst | Mar 1940 | S |
2234903 | Muench | Mar 1941 | A |
2237523 | Damon | Apr 1941 | A |
2246346 | Wells | Jun 1941 | A |
2254906 | Petrulis | Sep 1941 | A |
2324753 | Alexiade | Jul 1943 | A |
2354343 | Webber et al. | Jul 1944 | A |
2393767 | Gould | Jan 1946 | A |
2462440 | Tierney | Feb 1949 | A |
2494995 | Gardner | Jan 1950 | A |
2713256 | Oesterle | Jul 1955 | A |
2758460 | Ciano | Aug 1956 | A |
2775006 | Kranc | Dec 1956 | A |
2809512 | Hartnett | Oct 1957 | A |
RE24423 | Oesterle et al. | Feb 1958 | E |
3121316 | Wilson | Feb 1964 | A |
D206946 | Knodt | Feb 1967 | S |
D208064 | Quistgaard et al. | Jul 1967 | S |
D208097 | Henn | Jul 1967 | S |
3565281 | Collie | Feb 1971 | A |
D226240 | Twedt | Jan 1973 | S |
3730674 | Gross | May 1973 | A |
3741711 | Bryant | Jun 1973 | A |
3749904 | Graff | Jul 1973 | A |
3762857 | Andeweg | Oct 1973 | A |
D229852 | Lindblad | Jan 1974 | S |
D236064 | Balbo | Jul 1975 | S |
3898039 | Lin | Aug 1975 | A |
3910753 | Lee | Oct 1975 | A |
3932113 | Thrush | Jan 1976 | A |
3994502 | Lombardi | Nov 1976 | A |
4013397 | Neugart | Mar 1977 | A |
4019856 | Lacroix | Apr 1977 | A |
D247635 | Maxwell | Mar 1978 | S |
D248499 | Ulrich et al. | Jul 1978 | S |
D248500 | Ulrich et al. | Jul 1978 | S |
4102634 | Crisp | Jul 1978 | A |
D248787 | Ulrich et al. | Aug 1978 | S |
D248788 | Ulrich et al. | Aug 1978 | S |
D248789 | Ulrich et al. | Aug 1978 | S |
D253432 | Van Koert | Nov 1979 | S |
D253732 | Van Koert | Dec 1979 | S |
4185953 | Schirneker | Jan 1980 | A |
4206500 | Neil | Jun 1980 | A |
4206560 | Sefried, II | Jun 1980 | A |
4224017 | Kayne | Sep 1980 | A |
D264385 | Meyer | May 1982 | S |
4332548 | Linton et al. | Jun 1982 | A |
4381914 | Ferguson | May 1983 | A |
4427366 | Moore | Jan 1984 | A |
4477249 | Ruzek et al. | Oct 1984 | A |
4524408 | Minera | Jun 1985 | A |
4551794 | Sandell | Nov 1985 | A |
4557687 | Schirneker | Dec 1985 | A |
4568269 | Lin | Feb 1986 | A |
4568270 | Marcus et al. | Feb 1986 | A |
4588618 | Wolfe | May 1986 | A |
D292525 | Van Deelen | Oct 1987 | S |
4755135 | Kwok | Jul 1988 | A |
4781895 | Spector | Nov 1988 | A |
4804323 | Kim | Feb 1989 | A |
D312507 | Thoreson | Nov 1990 | S |
4983119 | Lin | Jan 1991 | A |
4999947 | Whitaker | Mar 1991 | A |
5015175 | Lee | May 1991 | A |
D320266 | Kunze | Sep 1991 | S |
5069617 | Lin | Dec 1991 | A |
5078591 | Despres | Jan 1992 | A |
5078945 | Byron | Jan 1992 | A |
5086380 | Hedner, Jr. | Feb 1992 | A |
D325077 | Kearnes | Mar 1992 | S |
5101328 | Hai | Mar 1992 | A |
5174645 | Chung | Dec 1992 | A |
5193995 | Keller et al. | Mar 1993 | A |
5338187 | Elharar | Aug 1994 | A |
5363590 | Lee | Nov 1994 | A |
D355266 | Caplette et al. | Feb 1995 | S |
D356472 | Jaworski | Mar 1995 | S |
5425633 | Cole | Jun 1995 | A |
D360461 | Gillespie | Jul 1995 | S |
D369871 | Lui | May 1996 | S |
D371212 | Hardy et al. | Jun 1996 | S |
D376002 | Upson | Nov 1996 | S |
D377402 | Perkins | Jan 1997 | S |
D383944 | Lillelund et al. | Sep 1997 | S |
5690484 | Leonard et al. | Nov 1997 | A |
D390676 | Hollington | Feb 1998 | S |
D391119 | Rapaz | Feb 1998 | S |
D393910 | Chambers et al. | Apr 1998 | S |
D394513 | Davis | May 1998 | S |
5807096 | Shin et al. | Sep 1998 | A |
D399298 | Whitehead | Oct 1998 | S |
5840246 | Hammons et al. | Nov 1998 | A |
5842850 | Pappas | Dec 1998 | A |
5843194 | Spaulding | Dec 1998 | A |
5871553 | Spaulding | Feb 1999 | A |
D410756 | Kleinberg | Jun 1999 | S |
5921767 | Song | Jul 1999 | A |
5927959 | Johnson | Jul 1999 | A |
5939005 | Materna | Aug 1999 | A |
5951278 | Young et al. | Sep 1999 | A |
5955034 | Zaunbrecher et al. | Sep 1999 | A |
5955958 | Lu | Sep 1999 | A |
5961967 | Powell et al. | Oct 1999 | A |
D416099 | Hardy | Nov 1999 | S |
D416341 | Allen | Nov 1999 | S |
5980241 | Schirneker | Nov 1999 | A |
6019804 | Requejo et al. | Feb 2000 | A |
6033209 | Shin et al. | Mar 2000 | A |
D422180 | Sundberg | Apr 2000 | S |
6050812 | Chuang | Apr 2000 | A |
D425220 | Klett et al. | May 2000 | S |
D425636 | Freeman | May 2000 | S |
6059564 | Morris | May 2000 | A |
6062847 | Pappas | May 2000 | A |
6068472 | Freeman et al. | May 2000 | A |
D426902 | Hardy et al. | Jun 2000 | S |
6074199 | Song | Jun 2000 | A |
6079975 | Conover | Jun 2000 | A |
6099877 | Schuppan | Aug 2000 | A |
D430943 | Zutler | Sep 2000 | S |
D433168 | Cousins | Oct 2000 | S |
6129771 | Ficke et al. | Oct 2000 | A |
6152728 | Griffel | Nov 2000 | A |
D435100 | Pesu et al. | Dec 2000 | S |
D436415 | Hardy | Jan 2001 | S |
6214063 | DeStefano et al. | Apr 2001 | B1 |
D443080 | Klett et al. | May 2001 | S |
D443081 | Klett et al. | May 2001 | S |
D443082 | Klett et al. | May 2001 | S |
D443101 | Williamson | May 2001 | S |
6231336 | Chen | May 2001 | B1 |
6241362 | Morrison | Jun 2001 | B1 |
6241513 | Jeneral | Jun 2001 | B1 |
D445030 | Croft et al. | Jul 2001 | S |
D445337 | Croft et al. | Jul 2001 | S |
6267584 | Zou | Jul 2001 | B1 |
6270339 | Zou | Aug 2001 | B1 |
6273710 | Zou | Aug 2001 | B1 |
6276925 | Varga | Aug 2001 | B1 |
D447418 | Bezek et al. | Sep 2001 | S |
6290489 | Seidler | Sep 2001 | B1 |
D448867 | Manocheo et al. | Oct 2001 | S |
6296477 | Lin | Oct 2001 | B1 |
6299435 | Freeman et al. | Oct 2001 | B1 |
D450395 | Bellenger | Nov 2001 | S |
D450865 | Bellenger et al. | Nov 2001 | S |
6312251 | Schmorleitz | Nov 2001 | B1 |
6328935 | Buccellato | Dec 2001 | B1 |
6361311 | Smith | Mar 2002 | B1 |
D455486 | Makino | Apr 2002 | S |
D455846 | Araujo | Apr 2002 | S |
D456539 | Leeds | Apr 2002 | S |
6371756 | Toohey | Apr 2002 | B1 |
D459498 | Araujo | Jun 2002 | S |
6398544 | Wright et al. | Jun 2002 | B2 |
D461916 | Araujo | Aug 2002 | S |
D462132 | Papai | Aug 2002 | S |
6428311 | Bernardo | Aug 2002 | B1 |
6439471 | Ehrlich et al. | Aug 2002 | B2 |
D462793 | Freeman et al. | Sep 2002 | S |
6450802 | Steck | Sep 2002 | B1 |
6454561 | Colthar et al. | Sep 2002 | B1 |
D464745 | Mangini et al. | Oct 2002 | S |
6468071 | Zoy | Oct 2002 | B2 |
D465587 | Papai | Nov 2002 | S |
D466236 | Papai | Nov 2002 | S |
6488494 | Lee | Dec 2002 | B2 |
6491516 | Tal et al. | Dec 2002 | B1 |
D469550 | Moeller | Jan 2003 | S |
D469893 | Shen | Feb 2003 | S |
6520770 | Zou | Feb 2003 | B2 |
D471299 | Papai | Mar 2003 | S |
6531063 | Rose | Mar 2003 | B1 |
6537063 | Pecoskie | Mar 2003 | B1 |
6543268 | Wright et al. | Apr 2003 | B2 |
6544302 | Berger et al. | Apr 2003 | B2 |
6551365 | Berger et al. | Apr 2003 | B2 |
6554448 | Carpenter et al. | Apr 2003 | B2 |
D474854 | Lam | May 2003 | S |
6568934 | Butler | May 2003 | B1 |
6575613 | Brown et al. | Jun 2003 | B2 |
6579089 | Iu | Jun 2003 | B1 |
6592637 | McGee et al. | Jul 2003 | B2 |
6595771 | Chu | Jul 2003 | B2 |
6616308 | Jensen et al. | Sep 2003 | B2 |
D481143 | McMinn | Oct 2003 | S |
D481473 | Walsh | Oct 2003 | S |
6630110 | Urfig | Oct 2003 | B2 |
6648631 | Wright et al. | Nov 2003 | B2 |
D485624 | Kitamura | Jan 2004 | S |
6688880 | Pangle | Feb 2004 | B1 |
6695611 | Lee | Feb 2004 | B2 |
D487687 | Shields, Jr. | Mar 2004 | S |
6709266 | Jensen | Mar 2004 | B2 |
6730137 | Pesu et al. | May 2004 | B2 |
6733279 | Thigpen et al. | May 2004 | B2 |
D491288 | Young | Jun 2004 | S |
D493548 | Goldman | Jul 2004 | S |
D495437 | Barbera | Aug 2004 | S |
D495438 | Barbera et al. | Aug 2004 | S |
6769905 | Gray et al. | Aug 2004 | B2 |
6780382 | Furner | Aug 2004 | B2 |
D497680 | McMinn | Oct 2004 | S |
6802707 | Furner et al. | Oct 2004 | B2 |
6808388 | Lee | Oct 2004 | B2 |
6849240 | Nakatsu et al. | Feb 2005 | B2 |
6863525 | Byrd | Mar 2005 | B2 |
6923639 | Pesu et al. | Aug 2005 | B2 |
20010031438 | Hannington et al. | Oct 2001 | A1 |
20020066789 | Yen | Jun 2002 | A1 |
20020068009 | Laudamiel-Pellet | Jun 2002 | A1 |
20020068010 | Laudamiel-Pellet | Jun 2002 | A1 |
20020093834 | Yu | Jul 2002 | A1 |
20020102187 | Bellenger et al. | Aug 2002 | A1 |
20020119413 | Cheng | Aug 2002 | A1 |
20020127507 | Long | Sep 2002 | A1 |
20030027091 | Brandt | Feb 2003 | A1 |
20030064336 | Welch | Apr 2003 | A1 |
20030134246 | Gray et al. | Jul 2003 | A1 |
20030162142 | Bennetts et al. | Aug 2003 | A1 |
20030175148 | Kvietok | Sep 2003 | A1 |
20040007787 | Kvietok | Jan 2004 | A1 |
20040009103 | Westring | Jan 2004 | A1 |
20040009447 | Decker | Jan 2004 | A1 |
20040016818 | Murdell | Jan 2004 | A1 |
20040028551 | Kvietok | Feb 2004 | A1 |
20040029061 | Dibnah et al. | Feb 2004 | A1 |
20040033171 | Kvietok | Feb 2004 | A1 |
20040033463 | Pesu et al. | Feb 2004 | A1 |
20040128879 | Lu | Jul 2004 | A1 |
20040160764 | Lee | Aug 2004 | A1 |
20040223871 | Woo | Nov 2004 | A1 |
20040223943 | Woo | Nov 2004 | A1 |
20040229180 | Furner | Nov 2004 | A1 |
20040241053 | Thompson | Dec 2004 | A1 |
20040265164 | Woo | Dec 2004 | A1 |
20050019238 | Hart et al. | Jan 2005 | A1 |
20050037306 | Nakatsu | Feb 2005 | A1 |
20050079463 | Yu | Apr 2005 | A1 |
20050239010 | Duska et al. | Oct 2005 | A1 |
20060057521 | Kubicek et al. | Mar 2006 | A1 |
20060057522 | Kubicek et al. | Mar 2006 | A1 |
20060057523 | Kubicek et al. | Mar 2006 | A1 |
20060057526 | Kubicek et al. | Mar 2006 | A1 |
20060057528 | Kubicek et al. | Mar 2006 | A1 |
20060057529 | Kubicek et al. | Mar 2006 | A1 |
20060084021 | Kubicek | Apr 2006 | A1 |
20060183065 | Konkle, Jr. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2208145 | Dec 1998 | CA |
3302591 | Aug 1984 | DE |
3403604 | Aug 1985 | DE |
4203644 | Aug 1993 | DE |
4241292 | May 1994 | DE |
4314122 | Nov 1994 | DE |
195 48 958 | May 1996 | DE |
195 08 962 | Sep 1996 | DE |
102004011919 | Jun 2005 | DE |
0146247 | Jun 1985 | EP |
1054054 | Nov 2000 | EP |
1 336 799 | Aug 2003 | EP |
1564485 | Aug 2005 | EP |
2628825 | Mar 1988 | FR |
161342 | Apr 1921 | GB |
1514338 | Jun 1978 | GB |
2 239 942 | Jul 1991 | GB |
362220594 | Sep 1987 | JP |
406212189 | Aug 1994 | JP |
408185710 | Jul 1996 | JP |
2003-213292 | Jul 2003 | JP |
WO 8906141 | Jul 1989 | WO |
WO 9512783 | May 1995 | WO |
WO 9602794 | Feb 1996 | WO |
WO 9917055 | Apr 1999 | WO |
WO 9945322 | Sep 1999 | WO |
WO 0146618 | Jun 2001 | WO |
WO 2004008026 | Jan 2004 | WO |
WO 2004083349 | Sep 2004 | WO |
WO 2004083718 | Sep 2004 | WO |
WO 2004090417 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070020574 A1 | Jan 2007 | US |