Wick-holder assembly

Information

  • Patent Grant
  • 7497685
  • Patent Number
    7,497,685
  • Date Filed
    Wednesday, July 20, 2005
    19 years ago
  • Date Issued
    Tuesday, March 3, 2009
    15 years ago
Abstract
A wick-holder assembly includes a wick-retention member for retaining a wick thereto and a heat-conductive element extending from a base portion. The heat-conductive element may include materials having different thermal expansion coefficients. The materials may be arranged to interact to cause a portion of the heat-conductive element to move in response to a flame disposed on the wick.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

Not applicable


REFERENCE REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable


SEQUENTIAL LISTING

Not applicable


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to wick-holder assemblies, and more particularly to wick-holder assemblies responsive to thermal changes.


2. Description of the Background of the Invention


Candleholders frequently include assemblies to hold a fuel charge that has a wick holder to retain a wick within the fuel charge. One such candleholder has a plurality of decorative radial arms extending upward from a candle support cup that holds a fuel charge. In such a candleholder, the radial arms are circumferentially spaced around the candle support cup. Each arm includes an inwardly turned tip portion that is directed toward a candle placed in the candle support cup.


Another candleholder is a candlestick in which a cylindrical candle is retained at a bottom end thereof by a metallic spring clasp secured on a saucer portion. A wick is retained in the cylindrical candle. The spring clasp is coined from a sheet of metal to have a pair of opposing resilient arms extending upward from a base section. Upper tip portions of the arms are curved outwardly. The arms are angled inwardly to resiliently clasp the bottom end of the candle therebetween. A lug on the saucer portion interlocks with a complementary lug on the base section to retain the spring clasp thereon.


A candle having a thermal response has a wick holder disposed on an upper end of a support column that extends downwardly through a wax fuel element. Each of a first and second bimetallic coil is secured in a horizontal position to the support column at a radial inner end thereof. The bimetallic coils are disposed in a wax melt pool. An arm extends upward from the radial outer end of each bimetallic coil, and a partial heart shaped medallion extends upward from each arm. The bimetallic coils move the heart shaped medallions together tangentially around the support column when the wax melt pool is heated by a flame on the wick due to differential thermal expansion of the bi-metallic coils.


Another candleholder includes a conically shaped metallic dish, a metallic wick clip, and a wick, all of which are placed on top of a wax fuel element. The wick is carried within the wick clip, and the wick clip is retained in a hole through the dish such that an upper portion of the wick extends above the dish and a lower portion of the wick extends below the dish. A plurality of upturned petals is disposed around the periphery of the dish and partially surrounds the wick and a flame on the wick. A metal wire extends through a central axis of the wick, and an exterior helical coil of wire extends along the exterior length of the wick. A metal decorative element is carried over the dish and extends proximate the flame. Heat from the flame is conducted by convection and by conduction through the wires, the decorative element, and the wick clip to form a pool of molten wax centrally disposed on the top of the wax fuel element under the dish and wick. The dish, wick clip, and wick move down with the top of the fuel element as the flame consumes the molten wax.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a wick-holder assembly includes a wick-retention member for retaining a wick in an operative position extending from a base portion and a heat-conductive element extending from the base portion. A portion of the heat-conductive element is arranged to cause the heat-conductive element to move substantially radially toward or away from the wick-retention member in response to a flame disposed on the wick.


According to another aspect of the invention, a wick-holder assembly includes a wick-retention member for retaining a wick in an operative position that extends upward from a base portion, a heat-conductive element extending upward from the base portion, and a leg that extends from the base portion. The heat-conductive element includes at least two materials having different thermal expansion coefficients. The base portion is substantially stationary relative to the wick-retention member.


According to another aspect of the invention, a wick-holder assembly includes a wick-retention member for retaining a wick thereto, a heat-conductive element that includes at least two materials having different thermal expansion coefficients, and a substantially stationary base portion extending from the wick-retention member to the heat conductive element.


Other aspects of the present invention will become apparent upon consideration of the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a wick-holder assembly according to an embodiment of the invention;



FIG. 2 is a plan view of the wick-holder assembly shown in FIG. 1;



FIG. 3 is a partial cross-sectional view generally along the lines 3-3 of FIG. 2 of the wick-holder assembly shown in FIG. 1;



FIG. 4 is a bottom plan view of the wick-holder assembly shown in FIG. 1;



FIG. 5 is an isometric view of the wick-holder assembly of FIG. 1 disposed on melting plate candle assembly in an operative position; and



FIG. 6 is an isometric view of a wick-holder assembly according to another embodiment of the invention.





DETAILED DESCRIPTION

Turning now to the figures, FIGS. 1-4 show a wick-holder assembly 10 that includes a wick-retention member 12 for retaining a consumable or non-consumable wick 14, heat-conductive elements 18 extending upward from a base portion 16, and legs 26 extending downward from the base portion. The wick-retention member 12 extends upward from the base portion 16 to retain the wick 14 in an operative position. In other embodiments not shown, the wick-retention member 12 is integral to and/or formed from one or more elements of the wick-holder assembly 10, such as, for example one or more heat-conductive elements 18. The heat-conductive elements 18 may include a number of portions, including, for example, a first portion 20 and a second portion 22 that assist in moving the heat-conductive elements in response to thermal changes. A capillary rib 24 is disposed underneath and extending from the base portion 16.


One or more portions of the heat-conductive elements 18, including the first portion 20 and the second portion 22, may be constructed of various materials having different thermal expansion coefficients that respond to thermal changes and facilitate movement of the heat-conductive element toward or away from a flame and as shown by an arrow A. Examples of a material useful in the present invention include a metal, such as aluminum, steel, nickel, magnesium, copper, iron, silver, zinc, tin, or titanium, a polyester, and a ceramic, and mixtures and combinations thereof, such as bronze, brass, copper and aluminum, and/or a copper-plated ceramic. Additionally, one or more heat-conductive elements 18 may be made of the same material or different materials. For example, one or more heat-conductive elements 18 may be constructed of a single material such as aluminum, steel, or copper, while one or more other heat-conductive elements may be constructed from two or more materials such as a bimetallic material such as copper and aluminum, or a composite or bi-material such as polyester and aluminum or a plated ceramic material such as a metal-plated ceramic including, for example, copper plated ceramic. The other components of the wick-holder assembly 10 such as the wick-retention member 12, the base portion 16, the capillary ribs 24, and/or the legs 26 may also be made of the same material as the one or more of the heat-conductive elements 18 and in one embodiment at least one of the heat-conductive elements, the base portion, the capillary ribs, or the legs is a bimetallic material such as copper and aluminum.


In one embodiment of the present invention, the wick-retention member 12 is configured to retain a consumable or non-consumable wick 14. In yet another embodiment, the wick-retention member 12 is a non-consumable or reusable wick that is configured to burn a fuel charge via capillary action. As shown in FIGS. 1-3, the wick 14 extends vertically from the wick-retention member 12 and through the base portion 16 into a capillary space (not shown) defined by a support surface (not shown) that holds the wick-holder assembly and the capillary ribs 24, the base portion 16, and the legs 26 of the wick-holder assembly 10.


In one embodiment of the present invention, the first portion 20 and the second portion 22 are constructed and arranged to move toward or away from a heat source such as a flame (60, FIG. 6) disposed on the wick 14. Movement of one or more portions 20, 22 of the heat-conductive element 18 can independently be in any direction including, for example, upward, downward, sideways, axially, spirally, and/or directly radially from, for example, the wick-retention member 12, and depends in one embodiment on the configuration and/or the amount of thermal expansion coefficient difference of the material used to construct the heat-conductive element. Moreover, movement of the heat-conductive element 18 may be influenced by the location and placement of the materials having different thermal expansion coefficients within the heat-conductive element. The shape, the location, and/or the distance of the heat-conductive element 18 from the heat source may also influence the movement of the heat-conductive element.


The wick-holder assembly 10 may be disposed on any appropriate apparatus that is adapted to hold a fuel charge in conjunction with the wick-holder assembly of the present invention, such as the melting plate assembly 50 shown in FIG. 6. The melting plate assembly 50 includes a fuel charge (not shown), such as meltable candle wax or liquid oil, and a melting plate 52 supported by a base member 56. The base member 56 may take any desired form suitable for supporting the melting plate 52. The melting plate 52 includes a capillary lobe 58 centrally disposed therein. In one embodiment of the present invention, when the wick-holder assembly 10 is operatively disposed on the melting plate assembly 50, the capillary rib 24 of the wick-holder assembly rests on the capillary lobe 58 to create a capillary space (not shown) between the wick-holder assembly and the capillary lobe 58. The capillary space extends between the melting plate 52 and the wick-holder assembly 10 and generally includes the area between the capillary lobe 58 and the capillary rib 24, the legs 26, and/or the base portion 16. The capillary space allows melted or liquid fuel to be drawn between the wick-holder assembly 10 and the melting plate 52 toward the wick 14 to feed the flame 60 disposed on the wick-retention member 12. Illustratively, heat from the flame 60 on the wick 14 melts the fuel charge by direct convection and/or conduction through the heat-conductive elements 18 and conduction to the melting plate 52 to form a pool of liquid fuel (not shown), such as melted candle wax, adjacent to the capillary lobe 58. The liquid fuel is drawn through the capillary space by capillary action to the wick 14 to feed the flame 60. The wick-holder assembly 10 may be used to maintain the wick 14 in an operative position after the fuel charge has been substantially melted. In one embodiment, a volatile active, such as a fragrance and/or an insect repellant, for example, is carried by the fuel element for dispersion to the surrounding environment when the fuel element is burned. The wick-holder assembly 10 may also be secured to the melting plate assembly 50 by any appropriate method know to those skilled in the art, including, for example, a magnet, an adhesive, a rivet, a tape, or a weld, and combinations thereof. Additional details and aspects of a melting plate candle assembly are described in U.S. patent application Ser. No. 11/123,372, which is incorporated herein by reference in the entirety thereof.


In other embodiments, the geometry of the heat-conductive element 18 is such that the heat-conductive element substantially surrounds or partly surrounds the wick-retention member 12 and, therefore, the flame 60 supported by the fuel charge. For example, the wick-holder assembly 10 shown in FIG. 5, has heat-conductive elements 18 that are generally S-shaped as opposed to a generally convex-shape of the heat-conductive elements shown in FIGS. 1-4.


In operation, the geometry and/or the composition of one or more components of the wick-holder assembly 10 may be configured to control and/or regulate the temperature of the wick-holder assembly, the capillary space between the wick-holder assembly and a support surface holding the wick-holder assembly such as the melting plate 53 of FIG. 5, and/or the movement of air surrounding a heat source such as the flame 60 disposed on the wick-holder assembly. The geometry of a component generally relates to, for example, the positioning of the component on the wick-holder assembly 10, the movement of the component on the wick-holder assembly in response to heat generated from a flame 60 disposed on the wick 14, the size and/or shape of the component, and/or the thickness of the component.


In one embodiment, the temperature of the wick-holder assembly 10 is controlled and/or regulated, by the shape and/or the positioning of the heat-conductive elements 18. For example, to increase the temperature of the wick-holder assembly 10 while the flame 60 is lit, the heat-conductive elements 18 are shaped and/or positioned to be closer to the flame and/or to expose more surface area to the flame. The closer to the flame 60 and/or the more surface area that is exposed to the flame, the more heat is transferred from the flame to the heat-conductive elements 18. From the heat-conductive elements 18, heat is then transferred to the other components of the wick-holder assembly 10. The heat of the wick-holder assembly 10 may then be transferred to the fuel charge, which facilitates melting and/or volatilization thereof. The composition of the various components may also be selected to control and/or regulate the temperature of the wick-holder assembly 10. For example, the heat-conductive elements 18 can be made of various materials having different thermal conductivity and/or thermal expansion coefficients such as a multi-metallic material, for example, a bi-metal, which when heated a surface is configured to move toward or away from the heat source. The materials may be positioned within and/or on the heat-conductive elements 18 at various locations, for example, within and/or on the first portion 20 or the second portion 22, to facilitate heat transfer and/or movement of the heat-conductive elements toward or away from the flame 60.


In other embodiments, the capillary space between the wick-holder assembly 10 and the melting plate assembly 50 is controlled and/or regulated by the geometry and/or the composition of one or more components of the wick-holder assembly. For example, in one embodiment when one or more legs 26 and/or capillary ribs 24 are heated, one or more dimensions, for example, a length, width, and/or height, of the legs and/or capillary ribs are configured to move in a direction that increases and/or decreases the capillary space of the wick-holder assembly 10. Illustratively, after the wick 14 or the wick-retention member 12 is lit and begins to generate heat, one or more dimensions of the legs 26 and/or the capillary rib 24 increases in response to the heat. The increased dimension in one embodiment reduces the capillary space and thereby restricts flow rate of the liquid fuel charge disposed in and/or traveling through the capillary space. Additionally, or alternatively, as the flame 60 begins to produce less heat and the legs 26 and/or the capillary ribs 24 begin to cool, the one or more dimensions of the legs 26 and/or the capillary ribs 24 begin to decrease, thereby allowing more fuel to pass through the capillary space. By regulating the flow rate of the fuel charge, the size and/or the burn rate of the flame 60 may be regulated by changing the amount of fuel supplied to the flame.


Furthermore, by reducing the impact of breezes and other movements of air surrounding the flame 60, the thermal output of the flame may be maintained or enhanced in comparison to a flame without the protection of the heat-conductive element 18. In one embodiment, by maintaining or enhancing flame performance, thermal generation can be increased and/or optimized to melt and/or volatilize a fuel charge.


Changing geometry of one or more components of the wick-holder assembly 10 via a thermal response may also be used to engage, interlock and/or secure the wick-holder assembly to an apparatus such as the melting plate assembly 50 shown in FIG. 6. For example, the legs 26 may be configured to move in a direction of arrow B by the use of differing expansion properties of a bi-metal, for example, as the wick-holder assembly warms and cools. Illustratively, after the wick 14 is lit, the heat-conductive elements 18 begin to warm and heat is transferred to the base portion 16 and to the legs 26. As the legs 26 begin to warm, different portions of the legs begin to expand at different rates correlated to the material in which the legs are composed. In one embodiment, the legs, 26 begin to move in a direction toward the capillary lobe 58 and engage or grip a groove (not shown) in the melting plate 52. When the flame is extinguished and the wick-holder 10 cools, the legs 26 contract and return to an original position. In this embodiment, the use of other attachment methods such as a magnet to secure the wick-holder assembly 10 to the melting plate 52 may not be necessary.


The wick-retention member 12 in one embodiment is made of a heat-transmissive material, such as a metal, which facilitates conductive heat transfer from the flame 60 to the melting plate 52. In the embodiment shown in FIG. 3, the wick-retention member 12 is attached to the base portion 16 that includes one or more capillary ribs 24 and/or capillary channels (not shown). The shape of the capillary rib 24 shown is a raised rib extending partly around the base portion 16 and is a length, width, and/or height that facilitates capillary action of the melted and/or liquid fuel charge while the flame 60 is lit. Additionally, or alternatively, the capillary lobe 58 may have capillary ribs and/or capillary channels (both not shown) of a shape and/or dimension to assist in the capillary movement of the melted or liquid fuel charge to the flame 60. Any other shape and/or dimension of the capillary ribs 24 and/or the capillary channels is also contemplated as long as a capillary space may be created to facilitate movement of the melted or liquid fuel charge.


In another embodiment, the base portion 16 does not include the capillary ribs 24 and/or the capillary channels, but may be located instead on a member of the support apparatus such as the capillary lobe 58 that holds the wick-holder assembly 10.


It is also contemplated that where the wick-holder assembly 10 has a plurality of components, members, and/or elements, for example, two of more wick-retention members 12, wicks 14, base portions 16, heat-conductive elements 18, capillary ribs 24, and/or legs 26, each component, member and/or element may be independently selected and configured in regard to positioning, geometry and/or composition to achieve a desired effect such as flame intensity, burn time of the fuel charge, and/or volatilization rate of a fragrance, insecticide, and the like. It is further contemplated that the wick-holder assembly 10 may have one or more components, members, and/or elements that are configured to perform one or more similar functions. In such a case, the wick-holder assembly 10 may in some embodiments be constructed to be without the component, member, and/or element whose function is being performed by another component, member, and/or element. Illustratively, the heat-conductive elements 18 may be configured to be connected directly to the wick-retention member 12, thus serving one or more functions of the base portion 16 as described herein. In such an embodiment, the wick-holding assembly 10 may be constructed without the base portion 16 inasmuch as the heat-conductive element 18 is serving the function of the base portion.


INDUSTRIAL APPLICABILITY

The present invention provides a user with a wick-holder assembly that is responsive to thermal changes of a flame disposed on a wick. The wick-holder assembly may also speed melting of a fuel charge by moving heat-conductive elements toward the flame and enhancing heat transfer from the flame to the fuel charge. The wick-holder assembly may also surround the flame, which reduces the impact of breezes on the flame, therefore reducing the chances of the breeze extinguishing the flame.


Numerous modifications to the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use the invention and to teach the best mode of carrying out same. The exclusive rights to all modifications within the scope of the impending claims are reserved.

Claims
  • 1. A wick-holder assembly, comprising: a wick-retention member for retaining a wick in an operative position extending from a base portion; anda heat-conductive element extending from the base portion, wherein the heat-conductive element comprises a first portion made substantially of a first material and a second portion made substantially of a second material, the first material and second material comprise materials of different thermal expansion coefficients, and a portion of the heat-conductive element is arranged to move in response to a flame disposed on the wick;wherein the base portion is adapted to be disposed on a support surface therefor such that a capillary space is formed therebetween that extends to the wick, and wherein the movement of the heat-conductive element in response to the heat generated by the flame affects a dimension of the capillary space and thereby regulates flow of a fuel through the capillary space to the wick.
  • 2. The wick-holder assembly of claim 1, wherein the first material and second material comprise at least one material selected from the group consisting of a metal, a ceramic, and a polyester.
  • 3. The wick-holder assembly of claim 2, wherein the metal comprises at least one metal selected from the group consisting of aluminum, steel, nickel, magnesium, copper, iron, silver, zinc, tin, and titanium.
  • 4. The wick-holder assembly of claim 1, wherein the heat-conductive element moves radially toward or away from the wick-retention member in response to heat generated by the flame.
  • 5. The wick-holder assembly of claim 1, wherein the base portion further comprises a capillary rib extending therefrom.
  • 6. The wick-holder assembly of claim 1, wherein the dimension of the capillary space comprises at least one of a length, a width, and a height.
US Referenced Citations (272)
Number Name Date Kind
213184 Frick Mar 1879 A
405786 Ludde Jun 1889 A
407051 Baumer Jul 1889 A
408973 Heller Aug 1889 A
484210 Ludde Oct 1892 A
779644 Ferrier Jan 1905 A
837240 Mulkerins Nov 1906 A
1044256 Satter Nov 1912 A
D43845 Hirschfeld Apr 1913 S
1195657 Chersky Aug 1916 A
D49902 Labaree et al. Nov 1916 S
1229140 Ritter Jun 1917 A
1316624 Lucas Sep 1919 A
1320109 Wooster Oct 1919 A
1336635 Knapp Apr 1920 A
1390389 Rosenfeld Sep 1921 A
1484964 Benneville Feb 1924 A
D67108 Steeple Apr 1925 S
1640734 Smith Aug 1927 A
D75463 Bach Jun 1928 S
D80971 Sakier Apr 1930 S
D83100 Gisolfi Jan 1931 S
D110902 Loesch Aug 1938 S
D119587 Fuerst Mar 1940 S
2234903 Muench Mar 1941 A
2237523 Damon Apr 1941 A
2246346 Wells Jun 1941 A
2254906 Petrulis Sep 1941 A
2324753 Alexiade Jul 1943 A
2354343 Webber et al. Jul 1944 A
2393767 Gould Jan 1946 A
2462440 Tierney Feb 1949 A
2494995 Gardner Jan 1950 A
2713256 Oesterle Jul 1955 A
2758460 Ciano Aug 1956 A
2775006 Kranc Dec 1956 A
2809512 Hartnett Oct 1957 A
RE24423 Oesterle et al. Feb 1958 E
3121316 Wilson Feb 1964 A
D206946 Knodt Feb 1967 S
D208064 Quistgaard et al. Jul 1967 S
D208097 Henn Jul 1967 S
3565281 Collie Feb 1971 A
D226240 Twedt Jan 1973 S
3730674 Gross May 1973 A
3741711 Bryant Jun 1973 A
3749904 Graff Jul 1973 A
3762857 Andeweg Oct 1973 A
D229852 Lindblad Jan 1974 S
D236064 Balbo Jul 1975 S
3898039 Lin Aug 1975 A
3910753 Lee Oct 1975 A
3932113 Thrush Jan 1976 A
3994502 Lombardi Nov 1976 A
4013397 Neugart Mar 1977 A
4019856 Lacroix Apr 1977 A
D247635 Maxwell Mar 1978 S
D248499 Ulrich et al. Jul 1978 S
D248500 Ulrich et al. Jul 1978 S
4102634 Crisp Jul 1978 A
D248787 Ulrich et al. Aug 1978 S
D248788 Ulrich et al. Aug 1978 S
D248789 Ulrich et al. Aug 1978 S
D253432 Van Koert Nov 1979 S
D253732 Van Koert Dec 1979 S
4185953 Schirneker Jan 1980 A
4206500 Neil Jun 1980 A
4206560 Sefried, II Jun 1980 A
4224017 Kayne Sep 1980 A
D264385 Meyer May 1982 S
4332548 Linton et al. Jun 1982 A
4381914 Ferguson May 1983 A
4427366 Moore Jan 1984 A
4477249 Ruzek et al. Oct 1984 A
4524408 Minera Jun 1985 A
4551794 Sandell Nov 1985 A
4557687 Schirneker Dec 1985 A
4568269 Lin Feb 1986 A
4568270 Marcus et al. Feb 1986 A
4588618 Wolfe May 1986 A
D292525 Van Deelen Oct 1987 S
4755135 Kwok Jul 1988 A
4781895 Spector Nov 1988 A
4804323 Kim Feb 1989 A
D312507 Thoreson Nov 1990 S
4983119 Lin Jan 1991 A
4999947 Whitaker Mar 1991 A
5015175 Lee May 1991 A
D320266 Kunze Sep 1991 S
5069617 Lin Dec 1991 A
5078591 Despres Jan 1992 A
5078945 Byron Jan 1992 A
5086380 Hedner, Jr. Feb 1992 A
D325077 Kearnes Mar 1992 S
5101328 Hai Mar 1992 A
5174645 Chung Dec 1992 A
5193995 Keller et al. Mar 1993 A
5338187 Elharar Aug 1994 A
5363590 Lee Nov 1994 A
D355266 Caplette et al. Feb 1995 S
D356472 Jaworski Mar 1995 S
5425633 Cole Jun 1995 A
D360461 Gillespie Jul 1995 S
D369871 Lui May 1996 S
D371212 Hardy et al. Jun 1996 S
D376002 Upson Nov 1996 S
D377402 Perkins Jan 1997 S
D383944 Lillelund et al. Sep 1997 S
5690484 Leonard et al. Nov 1997 A
D390676 Hollington Feb 1998 S
D391119 Rapaz Feb 1998 S
D393910 Chambers et al. Apr 1998 S
D394513 Davis May 1998 S
5807096 Shin et al. Sep 1998 A
D399298 Whitehead Oct 1998 S
5840246 Hammons et al. Nov 1998 A
5842850 Pappas Dec 1998 A
5843194 Spaulding Dec 1998 A
5871553 Spaulding Feb 1999 A
D410756 Kleinberg Jun 1999 S
5921767 Song Jul 1999 A
5927959 Johnson Jul 1999 A
5939005 Materna Aug 1999 A
5951278 Young et al. Sep 1999 A
5955034 Zaunbrecher et al. Sep 1999 A
5955958 Lu Sep 1999 A
5961967 Powell et al. Oct 1999 A
D416099 Hardy Nov 1999 S
D416341 Allen Nov 1999 S
5980241 Schirneker Nov 1999 A
6019804 Requejo et al. Feb 2000 A
6033209 Shin et al. Mar 2000 A
D422180 Sundberg Apr 2000 S
6050812 Chuang Apr 2000 A
D425220 Klett et al. May 2000 S
D425636 Freeman May 2000 S
6059564 Morris May 2000 A
6062847 Pappas May 2000 A
6068472 Freeman et al. May 2000 A
D426902 Hardy et al. Jun 2000 S
6074199 Song Jun 2000 A
6079975 Conover Jun 2000 A
6099877 Schuppan Aug 2000 A
D430943 Zutler Sep 2000 S
D433168 Cousins Oct 2000 S
6129771 Ficke et al. Oct 2000 A
6152728 Griffel Nov 2000 A
D435100 Pesu et al. Dec 2000 S
D436415 Hardy Jan 2001 S
6214063 DeStefano et al. Apr 2001 B1
D443080 Klett et al. May 2001 S
D443081 Klett et al. May 2001 S
D443082 Klett et al. May 2001 S
D443101 Williamson May 2001 S
6231336 Chen May 2001 B1
6241362 Morrison Jun 2001 B1
6241513 Jeneral Jun 2001 B1
D445030 Croft et al. Jul 2001 S
D445337 Croft et al. Jul 2001 S
6267584 Zou Jul 2001 B1
6270339 Zou Aug 2001 B1
6273710 Zou Aug 2001 B1
6276925 Varga Aug 2001 B1
D447418 Bezek et al. Sep 2001 S
6290489 Seidler Sep 2001 B1
D448867 Manocheo et al. Oct 2001 S
6296477 Lin Oct 2001 B1
6299435 Freeman et al. Oct 2001 B1
D450395 Bellenger Nov 2001 S
D450865 Bellenger et al. Nov 2001 S
6312251 Schmorleitz Nov 2001 B1
6328935 Buccellato Dec 2001 B1
6361311 Smith Mar 2002 B1
D455486 Makino Apr 2002 S
D455846 Araujo Apr 2002 S
D456539 Leeds Apr 2002 S
6371756 Toohey Apr 2002 B1
D459498 Araujo Jun 2002 S
6398544 Wright et al. Jun 2002 B2
D461916 Araujo Aug 2002 S
D462132 Papai Aug 2002 S
6428311 Bernardo Aug 2002 B1
6439471 Ehrlich et al. Aug 2002 B2
D462793 Freeman et al. Sep 2002 S
6450802 Steck Sep 2002 B1
6454561 Colthar et al. Sep 2002 B1
D464745 Mangini et al. Oct 2002 S
6468071 Zoy Oct 2002 B2
D465587 Papai Nov 2002 S
D466236 Papai Nov 2002 S
6488494 Lee Dec 2002 B2
6491516 Tal et al. Dec 2002 B1
D469550 Moeller Jan 2003 S
D469893 Shen Feb 2003 S
6520770 Zou Feb 2003 B2
D471299 Papai Mar 2003 S
6531063 Rose Mar 2003 B1
6537063 Pecoskie Mar 2003 B1
6543268 Wright et al. Apr 2003 B2
6544302 Berger et al. Apr 2003 B2
6551365 Berger et al. Apr 2003 B2
6554448 Carpenter et al. Apr 2003 B2
D474854 Lam May 2003 S
6568934 Butler May 2003 B1
6575613 Brown et al. Jun 2003 B2
6579089 Iu Jun 2003 B1
6592637 McGee et al. Jul 2003 B2
6595771 Chu Jul 2003 B2
6616308 Jensen et al. Sep 2003 B2
D481143 McMinn Oct 2003 S
D481473 Walsh Oct 2003 S
6630110 Urfig Oct 2003 B2
6648631 Wright et al. Nov 2003 B2
D485624 Kitamura Jan 2004 S
6688880 Pangle Feb 2004 B1
6695611 Lee Feb 2004 B2
D487687 Shields, Jr. Mar 2004 S
6709266 Jensen Mar 2004 B2
6730137 Pesu et al. May 2004 B2
6733279 Thigpen et al. May 2004 B2
D491288 Young Jun 2004 S
D493548 Goldman Jul 2004 S
D495437 Barbera Aug 2004 S
D495438 Barbera et al. Aug 2004 S
6769905 Gray et al. Aug 2004 B2
6780382 Furner Aug 2004 B2
D497680 McMinn Oct 2004 S
6802707 Furner et al. Oct 2004 B2
6808388 Lee Oct 2004 B2
6849240 Nakatsu et al. Feb 2005 B2
6863525 Byrd Mar 2005 B2
6923639 Pesu et al. Aug 2005 B2
20010031438 Hannington et al. Oct 2001 A1
20020066789 Yen Jun 2002 A1
20020068009 Laudamiel-Pellet Jun 2002 A1
20020068010 Laudamiel-Pellet Jun 2002 A1
20020093834 Yu Jul 2002 A1
20020102187 Bellenger et al. Aug 2002 A1
20020119413 Cheng Aug 2002 A1
20020127507 Long Sep 2002 A1
20030027091 Brandt Feb 2003 A1
20030064336 Welch Apr 2003 A1
20030134246 Gray et al. Jul 2003 A1
20030162142 Bennetts et al. Aug 2003 A1
20030175148 Kvietok Sep 2003 A1
20040007787 Kvietok Jan 2004 A1
20040009103 Westring Jan 2004 A1
20040009447 Decker Jan 2004 A1
20040016818 Murdell Jan 2004 A1
20040028551 Kvietok Feb 2004 A1
20040029061 Dibnah et al. Feb 2004 A1
20040033171 Kvietok Feb 2004 A1
20040033463 Pesu et al. Feb 2004 A1
20040128879 Lu Jul 2004 A1
20040160764 Lee Aug 2004 A1
20040223871 Woo Nov 2004 A1
20040223943 Woo Nov 2004 A1
20040229180 Furner Nov 2004 A1
20040241053 Thompson Dec 2004 A1
20040265164 Woo Dec 2004 A1
20050019238 Hart et al. Jan 2005 A1
20050037306 Nakatsu Feb 2005 A1
20050079463 Yu Apr 2005 A1
20050239010 Duska et al. Oct 2005 A1
20060057521 Kubicek et al. Mar 2006 A1
20060057522 Kubicek et al. Mar 2006 A1
20060057523 Kubicek et al. Mar 2006 A1
20060057526 Kubicek et al. Mar 2006 A1
20060057528 Kubicek et al. Mar 2006 A1
20060057529 Kubicek et al. Mar 2006 A1
20060084021 Kubicek Apr 2006 A1
20060183065 Konkle, Jr. Aug 2006 A1
Foreign Referenced Citations (31)
Number Date Country
2208145 Dec 1998 CA
3302591 Aug 1984 DE
3403604 Aug 1985 DE
4203644 Aug 1993 DE
4241292 May 1994 DE
4314122 Nov 1994 DE
195 48 958 May 1996 DE
195 08 962 Sep 1996 DE
102004011919 Jun 2005 DE
0146247 Jun 1985 EP
1054054 Nov 2000 EP
1 336 799 Aug 2003 EP
1564485 Aug 2005 EP
2628825 Mar 1988 FR
161342 Apr 1921 GB
1514338 Jun 1978 GB
2 239 942 Jul 1991 GB
362220594 Sep 1987 JP
406212189 Aug 1994 JP
408185710 Jul 1996 JP
2003-213292 Jul 2003 JP
WO 8906141 Jul 1989 WO
WO 9512783 May 1995 WO
WO 9602794 Feb 1996 WO
WO 9917055 Apr 1999 WO
WO 9945322 Sep 1999 WO
WO 0146618 Jun 2001 WO
WO 2004008026 Jan 2004 WO
WO 2004083349 Sep 2004 WO
WO 2004083718 Sep 2004 WO
WO 2004090417 Oct 2004 WO
Related Publications (1)
Number Date Country
20070020574 A1 Jan 2007 US