This application claims priority to U.S. Provisional Patent Application No. 61/791,472 filed Mar. 15, 2013 and to U.S. patent application Ser. No. 12/963,359 filed Dec. 8, 2010, which claims priority to U.S. Provisional Patent Application No. 61/267,574 filed Dec. 8, 2009, the disclosures of all of which are incorporated by reference herein in their entirety.
This disclosure relates to pinch sensors, particularly for vehicular closure panels where it is desirable to prevent a closure panel such as a lift gate or side door from closing if a foreign obstacle or object is detected just as the panel closes.
It is known to apply pinch sensors to prevent a power-activated closure panel such as a lift gate or side door from closing if a foreign obstacle or object is detected just as the panel closes. The pinch sensors come in different forms, including non-contact sensors such as those based on capacitance changes, and contact sensors which rely on a physical deformation caused by contact with a foreign object.
The contact pinch sensors are typically applied in the form of a rubber strip which is routed along and adjacent to the periphery of a vehicle door. The rubber strip embeds two wires which are separated by an air gap. When the two wires contact one another, the electrical resistance therebetween drops, and a controller connected to the two wires monitors the drop in resistance or voltage, detecting an object when the drop exceeds a predetermined threshold. The fundamental problem with such conventional pinch sensors, however, is that they have a limited activation angle typically on the order of about thirty-five degrees per side. Thus, in the event the pinch force is applied obliquely rather than head on, the wires may not contact one another.
According to one aspect a multi-lobed pinch sensor is provided. The pinch sensor includes a resiliently deformable non-conductive tubular casing having an outer wall and an inner wall that defines an internal hollow region. At least three electrically conductive conduits are disposed along the inner wall of the casing. In section, the three electrically conductive conduits are substantially equidistantly spaced circumferentially along the inner wall of the casing, and each electrically conductive conduit has a periphery that extends into the hollow region. When the casing is suitably deformed, at least one of the electrically conductive conduits comes into contact with an electrically conductive reference element to thereby lower the resistance therebetween and enable a controller to signal the detection of an obstacle.
In the pinch sensor each electrically conductive conduit may comprise an elastomeric electrically conductive skirt that envelops a low resistance electrical conductor connectable to a controller input.
In one embodiment, the casing has a cross-sectional shape of a semi-circular arch, including a base portion and a semi-circular portion. One of the electrically conductive conduits is disposed along the base portion and functions as the reference element. The other two electrically conductive conduits are disposed along the semi-circular portion. The internal hollow region includes two rebates that straddle the electrically conductive reference conduit, where each rebate presents a pivot point enabling the casing to flex such that the corresponding electrically conductive conduit disposed along the semi-circular portion is directed towards the electrically conductive reference conduit.
In another embodiment, the conductive reference element is provided by an additional electrically conductive core disposed within the casing inward of the three electrically conductive conduits. The electrically conductive core is connected to the casing by one or more non-conductive webs branching from the casing inner wall. The electrically conductive core may have a tri-petal cross-sectional shape so as to trisect the internal hollow region into three air gaps. Each of the electrically conductive conduits projects partially into one of the three individual air gaps, respectively. Each electrically conductive conduit may be formed from an elastomeric electrically conductive skirt that envelops a low resistance electrical conductor connectable to one of the controller inputs. These conductive skirts may have substantially similar circular cross-sectional profiles and the air gaps have substantially similar sector-shaped cross-sectional profiles of substantially uniform depth, thereby providing a substantially uniform travel for activating the sensor across an activation angle of at least 270 degrees.
According to another aspect, a coaxial pinch sensor is provided. The coaxial pinch sensor includes a resiliently deformable non-conductive tubular casing. An electrically conductive tubular conduit is disposed within the tubular casing, the tubular conduit having an inner wall defining an internal hollow region. An electrically conductive core is disposed within the electrically conductive tubular conduit and is normally spaced apart therefrom. When the casing is suitably deformed, the electrically conductive tubular conduit comes into contact with the electrically conductive core to thereby lower the resistance therebetween and enable a controller to signal the detection of an obstacle.
The coaxial pinch sensor may include at least one non-conductive spacing element disposed between the electrically conductive core and the electrically conductive tubular conduit.
And the electrically conductive core may be substantively coaxial with the electrically conductive tubular conduit.
According to one embodiment of the coaxial pinch sensor, multiple non-conductive spacing elements are disposed between the electrically conductive core and the electrically conductive tubular conduit, these spacing elements being resiliently compressible. In addition, the electrically conductive core may be segmented by a nonconductive divider having an end portion contacting the electrically conductive tubular conduit. And the electrically conductive core may be formed from an elastomeric electrically conductive skirt that envelops a low resistance electrical conductor.
According to another embodiment of the coaxial pinch sensor the electrically conductive tubular conduit has a cross-sectional shape of a three-quarter cylinder having a base portion and a semi-circular portion. The spacer is connected to the base portion of the electrically conductive tubular conduit. The electrically conductive core has a semi-circular cross-sectional shape, and the hollow region includes an air gap that has a substantially sector-shaped cross-sectional profile of substantially uniform depth, thereby providing a substantially uniform travel for activating the sensor across an activation angle of at least 270 degrees.
In another aspect, a pinch sensor is provided, comprising an elongate non-conductive casing having a base, a first wire and a first conductive material around the first wire, positioned inside the casing proximate the base, and a second wire and a second conductive material around the second wire, positioned inside the casing away from the base. The casing has side walls between the first and second conductive materials. The first conductive material has a central region that is a plateau, and left and right regions that slope downward towards the base from the central region towards the side walls.
In another aspect, there is provided an obstacle sensor, comprising: an elongate non-conductive casing enclosing first, second, and third elongate conductive electrodes; the first and second electrodes being separated by a portion of the casing, a capacitance between the first and second electrodes changing when an obstacle approaches the first electrode to provide a proximity indication of the obstacle to the pinch sensor; and, the second and third electrodes being separated by an air gap formed in the casing, a resistance between the second and third electrodes changing when the second and third electrodes come into contact upon compression of the casing by the obstacle to provide a contact indication of the obstacle with the pinch sensor.
In another aspect, a pinch sensor is provided, comprising an elongate non-conductive casing having a base, a first electrode formed from a first wire and a first conductive portion around the first wire, and a second electrode formed from a second wire and a second conductive material around the second wire. The first electrode is positioned inside the casing proximate the base. The second electrode is positioned inside the casing away from the base. The casing has side walls between the first and second electrodes. The second electrode has an engagement region, which has a central region, and left and right regions that extend downward towards the first electrode relative to the central region. An activation force exerted by an obstacle on the casing and directed downwards towards the base causes engagement between the first and second electrodes so as to reduce the resistance therebetween.
In another aspect, a pinch sensor is provided, comprising a non-conductive tubular casing, an electrically-conductive tubular conduit disposed within the tubular casing, the tubular conduit having an inner wall defining an internal hollow region and a core disposed within the electrically-conductive tubular conduit. The core includes a first electrode and a second electrode and a barrier that spaces the first and second electrodes from one another. A plurality of non-conductive, resilient spacers space the first and second electrodes from the electrically-conductive tubular conduit. Application of an activation force on the casing brings the first and second electrodes into contact with the tubular conduit so as to permit conduction between the first and second electrodes, so as to signal the presence of an obstacle.
Other aspects will be apparent to one skilled in the art based on the disclosure provided herein.
The foregoing and other aspects will be more readily appreciated having reference to the drawings, wherein:
a and 12b are cross-sectional views illustrating an embodiment of a capacitive-resistive hybrid pinch sensor for use in the obstacle detection system of
The particular pinch sensor 100 shown in
More particularly, each planetary lobe 102 includes a conductive skirt 104 that may be formed from an elastomeric conductive material, e.g., conductive rubber as known in the art per se. The conductive skirt 104 surrounds a low resistance ‘outboard’ electrical conductor 106, discussed in greater detail below, that is connected to one of the controller inputs (all three electrical conductors being connectable to the same controller input). Each skirt 104 may be formed in a closed loop shape such as the illustrated circular shape so as to envelop the corresponding outboard electrical conductor 106, although it will be understood that a complete encirclement is not essential.
The central conductive core 112 includes a conductive tri-petal or trilateral body 113 that may be formed from the same material as the conductive skirt 104. The trilateral body 113 may surround a low resistance central electrical conductor 114 that is disposed along the longitudinal axis of the pinch sensor 100 and is connected to another input of the controller.
The three planetary lobes 102 are partially embedded in a resiliently deformable, non-conductive tubular casing 110, as may be provided by rubber, that forms the outer periphery of the sensor 100. The casing 110 encapsulates the conductive portions of the sensor, protecting it from ambient influences. The casing 110 also defines the stiffness of the section and its appearance. The casing 110 has a generally annular shaped peripheral cross-sectional profile (e.g., a three-quarter cylinder as illustrated) with three integrally formed, inwardly leading web portions 111. The central trilateral body 113 has three corners that are each integrally connected to one of three web portions 111 to thus trisect the casing 110 and define three distinct air gaps labeled individually as 108a, 108b, 108c.
In the illustrated embodiment about one half 104j of the outer periphery of each conductive skirt 104 abuts the casing 110, and about one half 104k of the outer periphery of each conductive skirt 104 projects into one of the air gaps 108a, 108b, 108c. Each air gap may be crescent or sector shaped in section with uniform depth and sized to permit about one hundred and eighty degrees of the outer periphery of the respective conductive skirt 104 to project into the air gap. The crescent or sector shape of the air gap 108, coupled with the circular shape of the planetary conductive skirt 104, also provides a relatively uniform depth d across the air gap 108 between the projecting portion 104k of the planetary conductive skirt 104 and the corresponding sidewall 113a, 113b, 113c of the central trilateral body 113. The distance d is selected to achieve a selected deformation of the casing 110 before one of the planetary lobes 102 contacts the central core 112. The sensor 100 may have a relatively constant activation travel or distance over a wide range of pinch directions.
Each sidewall 112a, 112b, 112c of the central trilateral body 112 faces one of the projecting portions 104k of the planetary conductive skirt 104 and subtends it by an angle alpha of about one hundred twenty degrees. As the three planetary lobes 102 are angularly spaced apart from one another by about one hundred and twenty degrees, it will be seen that the pinch sensor 100 has a very wide activation angle. This can be appreciated more fully with additional reference to
As shown in
In some embodiments the electrical conductors 106 and 114 are formed from multiple strands of wire such as copper combined with plastic reinforcing fiber. Such conductors can provide high elasticity in both axial (stretching) and transverse (bending) directions.
The pinch sensor 200 achieves a relatively wide activation range or angle by incorporating three electrically conductive conduits 202a, 202b, and 203 within a non-conductive tubular casing 210. In section, the electrically conductive conduits 102, which are alternatively referred to as conductive lobes, are substantially equidistantly spaced circumferentially along the inner wall of the tubular casing 210 and/or about a central cylindrical axis 214. The upper lobes 202a, 202b are insulated from one another by a central, common, air gap 208, but upon application of a suitable pinch force to deform the tubular casing 210 one of the conductive upper lobes 202, which are connected to one input of a controller (not shown), will come into contact with the conductive lower or base lobe 203, which is connected to another input of the controller, lowering the resistance therebetween, and thus enabling the controller (not shown) to signal the presence of an obstacle.
More particularly, each conductive lobe 202, 203 includes a conductive skirt 204 that may be formed from an elastomeric conductive material, e.g., conductive rubber as known in the art per se. The conductive skirt 204 surrounds a low resistance electrical conductor 206, such as discussed above, that is connected to a controller input. Each skirt 204 may be formed in a closed loop shape such as the illustrated circular shape so as to envelop the corresponding electrical conductor 206, although it will be understood that a complete encirclement is not essential. The conductive skirts 204 of the upper lobes 202 also include teardrop shaped tail sections 212 that provides a wider face (in comparison with a strict circular profile) relative to the base lobe 203.
Each of the conductive lobes 202 is partially embedded in the resiliently deformable, non-conductive tubular casing 210, as may be provided by rubber, that forms the outer periphery of the sensor 200. The casing 210 encapsulates the conductive portions of the sensor, protecting it from ambient influences. The casing 210 also defines the stiffness of the section and its appearance. The particular casing 210 illustrated in
In the illustrated embodiment about one half of the outer periphery of each conductive skirt 204 abuts the tubular casing 210, and about one half of the outer periphery of each conductive skirt 204 projects into the air gap 208. The air gap 208 includes two lower recesses or rebates 208a, 208b that present pivot points to allow the casing 210 to flex such that the conductive upper lobes 202 are directed towards the conductive base lobe 203 that is situated adjacent the base of inverted U-shaped casing 210. The tri-lobed pinch sensor 200 also has a wide activation angle as will be appreciated more fully with additional reference to
As shown in
The coaxial pinch sensor 300 achieves a wide activation range or angle by incorporating a core 301 with two wires shown at 318a and 318b, which are embedded in conductive portions 302A and 302B respectively (thereby forming first and second electrodes 319a and 319b, and a coaxial electrically conductive tubular outer sheath 304 within a tubular casing 310. The electrodes 319a and 319b are separated by a barrier 314 which prevents conduction thereacross from one electrode to the other. The conductive core 301 and conductive sheath 304 are normally spaced apart by a plurality of non-conductive spacers/springs 306. Upon application of a suitable pinch force to deform the tubular casing 310, the conductive sheath 304 will come into contact with both electrodes 319a and 319b (as shown in
More particularly, the coaxial sensor 300 includes a resiliently deformable, non-conductive tubular casing 310, as may be provided by rubber, that forms the outer periphery of the sensor 300. The particular casing 310 illustrated in
The casing 310 has an evacuated central region. The conductive outer sheath 304 is disposed immediately adjacent the inner wall of the casing 310 and may also be cylindrical to ensure a mating fit therewith. The central core 301 is disposed within the outer sheath 304, being substantially coaxial therewith. The core 301 also has a smaller diameter than the outer sheath 304 so as to leave an air gap 308 therebetween.
The conductive cylindrical outer sheath 304 may be formed from an elastomeric material, such as conductive rubber.
The central core 301 is provided as two semi-cylinders 302A, 302B separated by the barrier 314, which may also be referred to as a divider 314. Each semi-cylinder 302A and 302B may be formed from an elastomeric conductive material, e.g., conductive rubber, and envelops one of the low resistance electrical conductors 318a or 318b, as discussed above, that is connected to a controller input.
The divider 314 is formed from a nonconductive material, such as rubber, and has a bulbous end portion 320 that contacts the cylindrical outer sheath 304.
The spacers/springs 306 are non-conductive, resiliently deformable beads that are partially embedded in the semi-cylinders 302A, 302B. About half of the periphery of the spacers/springs 306 project into the air gap 308 so as to contact the conductive outer sheath 304 and prevent self activation of the sensor 300 due to sharp routing bends. The shape, quantity, position and stiffness of the spacers/springs 306 are selected to achieve a desired sensor activation force and travel.
The coaxial nature of sensor 300 enables a wide activation angle as will be appreciated more fully with additional reference to
The coaxial pinch sensor 400 achieves a wide activation range or angle by incorporating a substantially electrically conductive central core 402 and a substantially coaxial electrically conductive tubular outer sheath 404 encapsulated by a nonconductive tubular casing 410. The conductive core 402 and conductive sheath 404 are normally spaced apart by an uvula-like base structure 406 projecting from the outer sheath 404, but upon application of a suitable pinch force to deform the casing 410 the conductive outer sheath 404, which is connected to one input of a controller (not shown), will come into contact with the conductive core 402, which is connected to another input of the controller, lowering the resistance therebetween and enabling the controller (not shown) to signal the presence of an obstacle.
More particularly, the coaxial pinch sensor 400 includes a resiliently deformable, non-conductive tubular casing 410, as may be provided by rubber, that forms the outer periphery of the sensor 400. The casing 410 encapsulates the conductive portions of the sensor, protecting it from ambient influences. The casing 410 also defines the stiffness of the section and its appearance. The particular casing 410 illustrated in
The outer sheath 404 is disposed immediately adjacent an inner wall of the casing 410 and may also be shaped in the form of a three-quarter cylinder to matingly fit with the casing 410. The conductive core 402 is disposed within the outer sheath 404, being substantially coaxial therewith. The conductive core 402 also has a smaller diameter than the outer sheath 404 so as to leave an air gap 408 therebetween.
The conductive outer sheath 404 may be formed from an elastomeric material, such as conductive rubber. The outer sheath 404 includes a base portion 404b that envelops and surrounds a low resistance electrical conductor 418, such as discussed above, that is connected to a controller input.
The uvulate base structure 406 is a nonconductive platform disposed atop the base portion 404b. The conductive core 402, which may be formed from an elastomeric conductive material such as conductive rubber is disposed atop the base structure 406 and envelops a low resistance electrical conductor 418, such as discussed above, that is connected to a controller input. The base structure 406 maintains a minimum spacing between the electrical conductors 418 embedded in the core 402 and sheath 404 and prevents the collapse of the section under sharp bends in the coaxial strip sensor 400. As such, the base structure 406 may also be referred to as an insulative layer, or as a non-conductive spacer layer.
In the illustrated embodiment the conductive core 402 has a substantially three-quarter circle cross-sectional profile. The air gap 408 may be crescent or sector shaped in section over an angular range of about 270 degrees. The crescent or sector shape of the air gap 408, coupled with the three-quarter circular shape of the conductive core, provides a relatively uniform depth d across the air gap 408 and thus a relatively constant activation travel over a wide range of pinch directions. This will be appreciated more fully with additional reference to
A sensor 500 using a more flexible conductor (items 502, identified individually as 502a and 502b) and a new shape for the lower conductive material (also referred to as a conductive portion or body or sheath and shown at 506) and side walls is shown below.
Item 506 is the conductive material around lower wire 502a. It enables transfer of electrical contact to the lower wire 502a.
Item 510 is the conductive material (also referred to as a conductive portion or body or sheath 510) around upper wire 502b, which enables electrical contact to the upper wire 502b.
Item 512 is the casing (non-conductive material), which encapsulates conductive portion of sensor 500. It protects the sensor 500 from ambient influence and defines overall section stiffness and appearance. Its stiffness and shape defines sensor activation force.
Item 514 is an air gap, which provides insulation between conductive portions 506 and 510 of sensor section when sensor 500 is not in an activated state. Its size ensures that sensor 500 doesn't self-activate in the case of tight routing and/or manufacturing variation.
Each wire 502 is a special electrical conductor, which transfers electrical contact information from sensor functional area to the attached wire harness. Its design (multiple strands combined with plastic reinforcing fiber) enables high elasticity in both axial (stretching) and transverse (bending) direction.
Item 516 is foam tape which attaches sensor to its carrier.
The above sensor design gets activated if pressed perpendicularly to the base (shown at 517) or in some embodiments up to a range of 37.5 degrees off that direction (each side).
The sensor 500 is further described below.
The first wire 502a and the first conductive portion 506 are positioned inside the casing 512 proximate the base 517. The second wire 502b and the second conductive portion 510 are positioned inside the casing 512 away from the base 517.
The casing 512 has a first casing portion 518 and a second casing portion 520 which are unattached to the conductive portions 506 and 510 and which constitute the aforementioned side walls between the first and second conductive portions 506 and 510. The height and thickness of the side walls 518 and 520 may be selected to provide sufficient flexibility to permit activation of the sensor 500 (i.e. engagement of the upper conductive portion 510 with the lower conductive portion 506) using not more than a selected activation force, but to also provide sufficient strength to prevent the casing 512 from collapsing causing engagement of the upper conductive portion 510 with the lower conductive portion 506 in regions where the sensor 500 is routed along a path that curves upwards or downwards with a short bend radius.
The shape of the casing 512 may be formed from a first (lower) arcuate portion 512a having a first radius of curvature, and a second (upper) arcuate portion 512b having a second radius of curvature. The first and second radii are non-concentric. At points 522 and 524 the upper and lower portions 512a and 512b intersect, the thickness of the side walls is at a relative minimum, thereby forming natural bend points in the casing 512, such that the points 522 and 524 are the points at which the side walls 518 and 520 bend when the sensor 500 incurs a downwardly directed activation force. Additionally, it will be noted that the bend points 522 and 524 occur in regions of the side walls 518 and 520 that slope inwardly towards the base 517. In other words, the bend points 522 and 524 are located below the lateral maxima of the casing 512, shown at 526 and 528. By forming the casing 512 as described above, the side walls 518 and 520 bend outwards in a controlled way when the sensor 500 is exposed to a downwardly directed activation force (shown at F1 in
The lower conductive portion 506 is shaped to have an engagement region 530, a first transition region 532 and a second transition region 534. The engagement region 530 is the portion of the conductive portion 506 that engages an engagement surface 531 on the upper conductive portion 508 so as to activate the sensor 500. The engagement region 530 is a plateau in the embodiment shown in
The plane PN is shown as an edge line in the cross-sectional views in the figures.
The base 517 of the sensor 517 may be made sufficiently stiff to avoid the likelihood of the entire sensor deforming under a force F2 in such a way that the first conductive portion 506 is urged laterally and avoids being contacted by the second conductive portion 510. In general, the first and second conductively portions 506 and 510 may be more stiff than the casing 512, due, in at least some embodiments to a relatively high carbon content in the portions 506 and 510 so as to enhance conductivity.
In general, in any of the embodiments shown herein, the combination of a conductor (e.g. wire 502a) and a conductive portion (e.g. 506) may together be referred to as an electrode.
Activation of the sensor 500 is carried out as follows. An activation force exerted downwards on the casing 512 by an obstacle causes engagement between the first and second electrodes so as to reduce the resistance therebetween, thereby activating the sensor.
In general, a purchaser of a sensor may specify that the sensor is to be activated by a force that is not more than a selected maximum acceptable magnitude. When a sensor is said to have a certain range of activation angles, it may be meant that the sensor will be activated by a force at an angle within that range, wherein the force is not more than the maximum acceptable magnitude. Providing the transition regions 532 and 534 at 45 degrees from the normal plane PN in general determines that the range of activation angles in which a force of not more than the selected maximum acceptable magnitude will cause sensor activation will be about 45 degrees from the normal plane PN if the side walls 518 and 520 are made sufficiently bendable. In some embodiments, the transition region angles may be larger than 45 degrees, depending on the width of the engagement region 530 and the spacing between the engagement region 530 and the upper conductive portion 510. The spacing, in some embodiments, may be about 1.1 mm.
Reference is made to
Referring to
According to one embodiment, the obstacle sensing system 610 includes two obstacle sensors 622, a mounting channel or track 624 for each of the sensors 622, and a controller 626. The pair of sensors 622 are positioned proximate to laterally opposing sides 628 and 630 of the liftgate 612. Both of the sensors 622 include an upper end in close proximity to an upper lateral edge 632 of the liftgate 612. The sensors 622 extend downwardly from their upper ends along a substantial portion of the liftgate 612. The sensors 622 are both electrically attached to a wire harness 830 adapted to plug into the controller 626. The controller 626 controls the drive mechanism 620 to open the liftgate 612 in the event it receives an electrical signal from one or more of the sensors 622.
According to one embodiment, each of the sensors 622 is mounted to the liftgate 612 through a mounting track 624. The mounting tracks 624 may be substantially mirror images of one another. For this reason, only one of the mounting tracks 624 needs to be described herein. The mounting track 624 provides a mounting surface for the sensor 622 which can deflect after the sensor 622 compresses and sends a control signal to the controller 626. This deflection allows the controller 626 sufficient time to reverse the drive mechanism 620 without damaging the obstacle, the liftgate 612 or the drive mechanism 620. The mounting track 624 also provides a gradually changing surface to which the sensor 622 may be mounted. According to one embodiment, the sensors 622 are mounted to the mounting tracks 624, which are, in turn, attached to the liftgate 612. Alternatively, it will be understood that in certain applications it may be desirable to mount the sensors 622 and their associated tracks 624 on the body 616 of the vehicle 614 adjacent to the liftgate 612.
In operation, when the liftgate 612 contacts or approaches an obstacle proximate to the sensor 622 as is articulated towards the closed position such that a sufficient force is exerted by the obstacle on the sensor 622, the sensor 622 is activated. The activation of the sensor 622 is detected by the controller 626. In response, the controller 626 reverses the drive mechanism 620 to articulate the liftgate 612 to the open position.
The drive mechanism 620 is controlled in part by the obstacle sensing system 610. The obstacle sensing system 610 includes elongate sensors 622 that help prevent the liftgate 612 from pinching or crushing an obstacle such a person's finger (not shown) that may be extending through the opening 601 when the liftgate 612 lowers towards or nears the closed position. As noted above, it will be appreciated by those skilled in the art that the obstacle sensing system 610 may be applied to any motorized or automated closure panel structure that moves between an open position and a closed position. For example, a non-exhaustive list of closure panels includes window panes, sliding doors, tailgates, sunroofs and the like. For applications such as window panes or sun roofs, the elongate sensors 622 may be mounted on the body 616 of the vehicle 614, and for applications such as powered liftgates and sliding doors the elongate sensor 622 may be mounted on the closure panel itself, e.g. at the leading edge of a sliding door or the side edges of a liftgate 612.
a and 12b are cross-sectional views illustrating an embodiment of the obstacle sensor 622.
The obstacle sensor 622 is a hybrid three electrode sensor that allows for both a resistive mode and a capacitive mode of obstacle detection. The capacitive mode operates through the upper (first) and middle (second) electrodes 1, 2 or with all three electrodes 1, 2, 3. The resistive mode operates through the middle (second) and lower (third) electrodes 2, 3. In capacitive mode, the upper and middle electrodes 1, 2 function in a driven shield configuration (i.e., with the middle electrode 2 being the driven shield) with the lower electrode 3 being an optional ground. The casing 700 positions the three electrodes 1, 2, 3 in an arrangement that facilitates operation of the sensor 622 in both a capacitive mode and a resistive mode.
In capacitive mode, the upper electrode 1 (optionally comprising a conductor 1a embedded in conductive resin 1b) acts as a capacitive sensor electrode, and the middle electrode 2 (optionally comprising a conductor 2a embedded in conductive resin 2b) acts as a capacitive shield electrode. A dielectric 720 (e.g., a portion 720 of the casing 700) is disposed between the middle electrode 2 and the upper electrode 1 to isolate and maintain the distance between the two electrodes 2 and 1. The controller (or sensor processor (“ECU”)) 626 is in electrical communication with the electrodes 1, 2 for processing sensed data received therefrom.
In resistive mode, the middle electrode 2 acts as an upper resistive element and the lower electrode 3 acts as a lower resistive element. The middle and lower electrodes 2, 3 are connected at one end of the sensor 622 to a pre-determined resistor 721 (
According to one embodiment, the obstacle sensor 622 includes an elongate non-conductive casing 700 having three elongate conductive electrodes 1, 2, 3 extending along its length. The electrodes 1, 2, 3 are encapsulated in the casing 700 and are normally spaced apart. When the sensor 622 is compressed by a force exerted in a direction having not more than a selected angle relative to the normal plane PN shown in
According to one embodiment, the upper (first) electrode 1 may include a first conductor 1a embedded in a first partially conductive portion or body or sheath 1b, the middle (second) electrode 2 may include a second conductor 2a embedded in a second partially conductive portion or body or sheath 2b, and the lower (third) electrode 3 may include a third conductor 3a embedded in a third partially conductive portion or body or sheath 3b. The conductors 1a, 2a, 3a may be formed from a metal wire. The partially conductive bodies 1b, 2b, 3b may be formed from a conductive resin. And, the casing 700 may be formed from a non-conductive (e.g., dielectric) material (e.g., rubber, etc.). Again, the upper electrode 1 is separated from the middle electrode 2 by a portion 720 of the casing 700. The middle electrode 2 is separated from the lower electrode 3 by an air gap 730 formed in the casing 700.
According to one embodiment, the obstacle sensor 622 is mounted on the liftgate 612 as shown in
According to one embodiment, the casing 700 may be formed as an extruded, elongate, elastomeric trim piece with co-extruded conductive bodies 1b, 2b, 3b and with the conductors 1a, 2a, 3a molded directly into the bodies 1b, 2b, 3b. The trim piece may be part of the liftgate water sealing system, i.e., form part of a seal, it may form part of the decorative fascia of the vehicle 614, or it may form part of the interior trim of the liftgate 612.
As shown in
With respect to resistive sensing, the air gap 730 electrically insulates the middle electrode 2 and the lower electrode 3. However, the spring side walls 701, 702 of the sensor casing 700 are flexible enough to enable the outer surfaces 2c, 3c of the partially conductive bodies 2b, 3b of the two electrodes 2, 3 to touch one another when the sensor 622 is compressed (e.g., as a result of a pinch event). The flexibility of the sensor 622 may be controlled by its cross-sectional configuration, including controlling the thickness of the side walls 701, 702 of the casing 700 and the thickness of the partially conductive bodies 2b, 3b. The outer surfaces 2c, 3c of the partially conductive bodies 2b, 3b are shaped to increase the activation angle (i.e., the angle from the normal at which a compressive or pinch force is applied to the sensor 622) of the sensor 622. According to one embodiment, the outer surface 2c of the middle electrode 2 may have a ball shape and the outer surface 3c of lower electrode 3 may have a socket shape as shown in
The controller 626 measures the resistance (or resistance value) between the middle electrode 2 and the lower electrode 3. The resistance will be large in magnitude when the partially conductive bodies 2b, 3b are separated from each other by the air gap 730, and will reduce in magnitude if a portion of the partially conductive bodies 2b, 3b contact one another when the sensor 622 is compressed. This drop in measured resistance is indicative of contact with an obstacle (i.e., a pinch event).
With respect to capacitive sensing, a portion 720 of the casing 700 electrically insulates the upper electrode 1 and the middle electrode 2 so that electrical charge can be stored therebetween in the manner of a conventional capacitor. According to one embodiment, the inner surface 2d of the middle electrode 2 may be shaped to improve the shielding function of the middle electrode 2. According to one embodiment, the inner surface 2d may be flat as shown in
The sensor 622 is used by the controller 626 to measure a capacitance (or capacitance value) of an electric field extending through the opening 601 under the liftgate 612. According to one embodiment, the middle electrode 2 functions as a shielding electrode since it is positioned closer to the sheet metal of the liftgate 612. As such, the electric field sensed by the upper electrode 1 will be more readily influenced by the closer middle electrode 2 than the vehicle sheet metal. To improve signal quality, the liftgate 612 may be electrically isolated from the remainder of the vehicle 614. A powered sliding door, for example, may be isolated through the use of non-conductive rollers.
The capacitance (or capacitance value) of the sensor 622 is measured as follows. The capacitive sensor electrode 1 and the capacitive shield/upper resistive sensor electrode 2 are charged by the controller 626 to the same potential using a pre-determined pulse train. For each cycle, the controller 626 transfers charge accumulated between the electrodes 1, 2 to a larger reference capacitor (not shown), and records an electrical characteristic indicative of the capacitance of the sensor 622. The electrical characteristic may be the resultant voltage of the reference capacitor where a fixed number of cycles is used to charge the electrodes 1, 2, or a cycle count (or time) where a variable number of pulses are used to charge the reference capacitor to a predetermined voltage. The average capacitance of the sensor 622 over the cycles may also be directly computed. When an obstacle enters the opening 601 under the liftgate 612, the dielectric constant between the electrodes 1, 2 will change, typically increasing the capacitance of the sensor 622 and thus affecting the recorded electrical characteristic. This increase in measured capacitance is indicative of the presence of the obstacle (i.e., the proximity of the obstacle to the liftgate 612).
Thus, according to one embodiment, there is provided an obstacle sensor 622, comprising: an elongate non-conductive casing 700 enclosing first, second, and third elongate conductive electrodes 1, 2, 3; the first and second electrodes 1, 2 being separated by a portion 720 of the casing 700, a capacitance between the first and second electrodes 1, 2 changing when an obstacle approaches the first electrode 1 to provide a proximity indication of the obstacle to the pinch sensor; and, the second and third electrodes 2, 3 being separated by an air gap 730 formed in the casing 700, a resistance between the second and third electrodes 2, 3 changing when the second and third electrodes 2, 3 come into contact with one another upon compression of the casing 700 by the obstacle, thereby providing an indication of contact of the obstacle with the pinch sensor.
The embodiments of the sensor 622 may contribute to an improved obstacle sensor and may provide one or more advantages. For example, by detecting proximity of an obstacle by capacitive sensing, overloading of the sensor 622 and the pinched obstacle during the time lag encountered by the powered opening of the liftgate 612 is reduced. Additionally, the sensor 622 allows for the use of resistive contact sensing as a back-up to capacitive proximity sensing.
In an alternative embodiment, the sensor 500 shown in
Reference is made to
The engagement region of the first conductive portion 906 (which is the engagement region of the first electrode 907, and which is shown at 930) may be generally arcuate and may include a central (curved) region 933 on the normal plane PN and left and right lateral regions 935 and 937 (one on either side of the central region 933) which slope lower than the central region. The engagement region 930 is at a generally constant spacing D from the engagement region shown at 932 of the second electrode 911, which is also arcuate. The arcuate shape, combined with the generally constant spacing D, permits a generally consistent activation distance (i.e. the distance between the point at which the casing 902 is first engaged with an obstacle and the point at which the two electrodes 907 and 911 engage each other causing activation of the sensor 902). The spacing D may remain between about 1 mm to about 1.3 mm along the entirety of the engagement regions 930 and 932.
In similar manner to the lower engagement surface 930, the upper engagement surface 932 includes left and right lateral regions 936 and 938 that extend downwardly towards the lower conductive portion 906, as compared to a central region 940 along the normal plane PN. In general, this permits providing a more consistent activation distance than is achieved with the sensor 500 which has an upper engagement surface 531 that is generally planar.
It will be noted that there are areas of relief (also referred to for convenience as notches) 934 and 935 on the sides of the second conductive portion 910, between the conductive portion 910 and each of the side walls 918 and 920. These notches 934 and 935 permit the spacing D between the two conductive portions 906 and 910 to be relatively small while still maintaining a selected height for the side walls 918 and 920, such that the side walls have a height that is greater than the spacing D.
Thus, with the configuration shown in
Reference is made to
In general, while foam tape is an example of a mounting member that can be used to mount one of the sensors described herein, any other suitable means for mounting the sensors to an element in the vehicle may be used. An example of a different mounting member is shown at 960 in
Many other variations of the mounting member 960 could alternatively be used to mount the sensor 966 to an element of the vehicle.
Reference is made to
While
When describing the figures of this disclosure, use of terms relating to direction such as ‘up’, ‘upwards’ and ‘upper’ are intended to describe a direction that is away from a base of a sensor, and terms such as ‘down’, ‘downwards’ and ‘lower’ are intended to describe a direction that is towards a base of a sensor. Similarly, terms such as ‘higher’ and ‘lower’ refer to relative distances to a base of a sensor, wherein ‘higher’ means ‘farther from the base’ along the normal plane to the base.
It will be noted that, in each embodiment of a sensor having three electrodes and both capacitive and resistive sensing capability, one of the three electrodes (e.g. electrode 1) is provided in the wall of the casing itself, and two of the three electrodes (e.g. electrodes 2 and 3) are positioned in an interior space provided in the casing.
Those skilled in the art will understand that a variety of modifications may be effected to the embodiments described herein without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3652911 | Gorissen | Mar 1972 | A |
3724526 | Huprich | Apr 1973 | A |
3727348 | Steinmann et al. | Apr 1973 | A |
3762099 | Chaisson | Oct 1973 | A |
3797171 | Farmer | Mar 1974 | A |
3919809 | Haughton | Nov 1975 | A |
3936977 | Runft et al. | Feb 1976 | A |
4045631 | Dann | Aug 1977 | A |
4157845 | Queveau | Jun 1979 | A |
4171410 | Frob | Oct 1979 | A |
4351016 | Felbinger | Sep 1982 | A |
4443972 | Dolhaine | Apr 1984 | A |
4453112 | Sauer et al. | Jun 1984 | A |
4506378 | Noso et al. | Mar 1985 | A |
4557072 | Rittmeister et al. | Dec 1985 | A |
4625456 | Lafontaine | Dec 1986 | A |
4683975 | Booth et al. | Aug 1987 | A |
4746845 | Mizuta et al. | May 1988 | A |
4773155 | Buchien | Sep 1988 | A |
4783048 | St. Clair | Nov 1988 | A |
4843761 | Sandling | Jul 1989 | A |
4920698 | Friese et al. | May 1990 | A |
4998577 | Kobayashi et al. | Mar 1991 | A |
5056847 | Stillwell et al. | Oct 1991 | A |
5072080 | Beckhausen | Dec 1991 | A |
5072544 | Breck, Jr. | Dec 1991 | A |
5105131 | Schap | Apr 1992 | A |
5129192 | Hannush | Jul 1992 | A |
5150275 | Lee | Sep 1992 | A |
5158340 | Boda | Oct 1992 | A |
5167432 | Buttner et al. | Dec 1992 | A |
5299386 | Naegelli et al. | Apr 1994 | A |
5333411 | Tschirschwitz et al. | Aug 1994 | A |
5459962 | Bonne et al. | Oct 1995 | A |
5512716 | Buchien | Apr 1996 | A |
5515649 | Strab | May 1996 | A |
5530329 | Shigematsu et al. | Jun 1996 | A |
5575372 | Huebner et al. | Nov 1996 | A |
5594316 | Hayashida | Jan 1997 | A |
5605429 | Hejazi et al. | Feb 1997 | A |
5610484 | Georgin | Mar 1997 | A |
5644869 | Buchanan, Jr. | Jul 1997 | A |
5653144 | Fenelon | Aug 1997 | A |
5661385 | McEwan | Aug 1997 | A |
5689160 | Shigematsu et al. | Nov 1997 | A |
5689250 | Kremser | Nov 1997 | A |
5693993 | Ito et al. | Dec 1997 | A |
5711111 | Nyffenegger et al. | Jan 1998 | A |
5728983 | Ishihara et al. | Mar 1998 | A |
5787636 | Buchanan, Jr. | Aug 1998 | A |
5801340 | Peter | Sep 1998 | A |
5801501 | Redelberger | Sep 1998 | A |
5816309 | Paradise | Oct 1998 | A |
5857510 | Krupke et al. | Jan 1999 | A |
5880421 | Tsuge et al. | Mar 1999 | A |
5920521 | Kromer et al. | Jul 1999 | A |
5929406 | Thiel | Jul 1999 | A |
5932931 | Tanaka et al. | Aug 1999 | A |
5949207 | Luebke et al. | Sep 1999 | A |
5955854 | Zhang et al. | Sep 1999 | A |
5982126 | Hellinga et al. | Nov 1999 | A |
6032415 | Tajima | Mar 2000 | A |
6034495 | Tamagawa et al. | Mar 2000 | A |
6034497 | Tamagawa et al. | Mar 2000 | A |
6037727 | Kawanobe et al. | Mar 2000 | A |
6051901 | Ishida | Apr 2000 | A |
6051945 | Furukawa | Apr 2000 | A |
6082499 | O'Donnell | Jul 2000 | A |
6088965 | Fukumoto et al. | Jul 2000 | A |
6097299 | Yamamura | Aug 2000 | A |
6107712 | Yamamura et al. | Aug 2000 | A |
6114820 | Nishigaya | Sep 2000 | A |
6125583 | Murray et al. | Oct 2000 | A |
6134836 | Kawanobe et al. | Oct 2000 | A |
6134837 | Kawanobe et al. | Oct 2000 | A |
6141908 | Bowen | Nov 2000 | A |
6145918 | Wilbanks, II | Nov 2000 | A |
6150781 | Hollerbach | Nov 2000 | A |
6160370 | Ohnuma | Dec 2000 | A |
6163080 | Castellon | Dec 2000 | A |
6164015 | Kawanobe et al. | Dec 2000 | A |
6169346 | Nakamura et al. | Jan 2001 | B1 |
6169379 | Zhang et al. | Jan 2001 | B1 |
6183040 | Imaizumi et al. | Feb 2001 | B1 |
6189265 | Fink | Feb 2001 | B1 |
6194855 | Lochmahr et al. | Feb 2001 | B1 |
6199322 | Itami et al. | Mar 2001 | B1 |
6199943 | Lamm et al. | Mar 2001 | B1 |
6209264 | D'Abreu | Apr 2001 | B1 |
6220026 | Ritter | Apr 2001 | B1 |
6223468 | Kobayashi | May 2001 | B1 |
6226925 | Shimura et al. | May 2001 | B1 |
6233872 | Glagow et al. | May 2001 | B1 |
6271512 | Lewis | Aug 2001 | B1 |
6274947 | Terashima | Aug 2001 | B1 |
6283543 | Hahn et al. | Sep 2001 | B1 |
6290283 | Fukumoto et al. | Sep 2001 | B1 |
6291957 | Hopson et al. | Sep 2001 | B1 |
6297605 | Butler et al. | Oct 2001 | B1 |
6297609 | Takahashi et al. | Oct 2001 | B1 |
6304178 | Hayashida | Oct 2001 | B1 |
6340199 | Fukumoto et al. | Jan 2002 | B1 |
6341448 | Murray et al. | Jan 2002 | B1 |
6366042 | Gerbetz | Apr 2002 | B1 |
6377009 | Philipp | Apr 2002 | B1 |
6382701 | Langguth et al. | May 2002 | B1 |
6386620 | Fukumoto et al. | May 2002 | B1 |
6404084 | Niki et al. | Jun 2002 | B1 |
6405485 | Itami et al. | Jun 2002 | B1 |
6425206 | Noda et al. | Jul 2002 | B1 |
6426604 | Ito et al. | Jul 2002 | B1 |
6430872 | Fin | Aug 2002 | B1 |
6456916 | Edgar et al. | Sep 2002 | B1 |
6472835 | Ogasawara | Oct 2002 | B2 |
6472984 | Risi | Oct 2002 | B1 |
6483054 | Suzuki et al. | Nov 2002 | B2 |
6502352 | Bonduel | Jan 2003 | B1 |
6504332 | Lamm | Jan 2003 | B1 |
6531840 | Sugawara | Mar 2003 | B2 |
6534939 | Kato et al. | Mar 2003 | B2 |
6550597 | Taniguchi | Apr 2003 | B2 |
6552506 | Kramer et al. | Apr 2003 | B2 |
6555978 | Castellon | Apr 2003 | B1 |
6573676 | Klesing | Jun 2003 | B1 |
6573677 | Gerbetz | Jun 2003 | B2 |
6573678 | Losey et al. | Jun 2003 | B2 |
6575864 | Dean | Jun 2003 | B1 |
6580240 | Buchheit et al. | Jun 2003 | B2 |
6580241 | Sugawara | Jun 2003 | B1 |
6588151 | Gosicki et al. | Jul 2003 | B1 |
6592178 | Schober et al. | Jul 2003 | B2 |
6600284 | Weber et al. | Jul 2003 | B1 |
6605910 | Mullet et al. | Aug 2003 | B2 |
6606914 | Kume | Aug 2003 | B2 |
6609432 | Kume | Aug 2003 | B2 |
6630808 | Kliffken et al. | Oct 2003 | B1 |
6633147 | Gerbetz | Oct 2003 | B2 |
6633148 | Klesing | Oct 2003 | B1 |
6660200 | Nakajo | Dec 2003 | B2 |
6660955 | Bues | Dec 2003 | B1 |
6667591 | Mullet et al. | Dec 2003 | B2 |
6670654 | Lanzerotti et al. | Dec 2003 | B2 |
6672362 | Mullet et al. | Jan 2004 | B1 |
6678601 | Whinnery | Jan 2004 | B2 |
6689970 | Burgess et al. | Feb 2004 | B2 |
6690096 | Sasaki | Feb 2004 | B2 |
6701779 | Volant et al. | Mar 2004 | B2 |
6703933 | Sicuranza | Mar 2004 | B2 |
6706978 | Wagatsuma et al. | Mar 2004 | B2 |
6717081 | Miyake | Apr 2004 | B2 |
6719356 | Cleland et al. | Apr 2004 | B2 |
6724324 | Lambert | Apr 2004 | B1 |
6729071 | Kawanobe et al. | May 2004 | B1 |
6731483 | Mason, Jr. et al. | May 2004 | B2 |
6740826 | Friedrich et al. | May 2004 | B1 |
6744365 | Sicuranza | Jun 2004 | B2 |
6747233 | Glinkowski | Jun 2004 | B1 |
6748308 | Losey | Jun 2004 | B2 |
6752330 | DiMaggio et al. | Jun 2004 | B2 |
6753669 | Spreng et al. | Jun 2004 | B2 |
6756754 | Bent et al. | Jun 2004 | B2 |
6759614 | Yoneyama | Jul 2004 | B2 |
6769358 | Jordan | Aug 2004 | B2 |
6769938 | Eckert et al. | Aug 2004 | B2 |
6771159 | Ramahi et al. | Aug 2004 | B2 |
6772559 | Bouamra et al. | Aug 2004 | B1 |
6788016 | Whinnery | Sep 2004 | B2 |
6794771 | Orloff | Sep 2004 | B2 |
6794837 | Whinnery et al. | Sep 2004 | B1 |
6798029 | Volant et al. | Sep 2004 | B2 |
6802154 | Holt et al. | Oct 2004 | B1 |
6809440 | Peterreins | Oct 2004 | B2 |
6809488 | Otte | Oct 2004 | B2 |
6812466 | O'Connor et al. | Nov 2004 | B2 |
6822410 | Whinnery et al. | Nov 2004 | B2 |
6830173 | Barber et al. | Dec 2004 | B2 |
6831380 | Rybnicek et al. | Dec 2004 | B2 |
6833713 | Schoepf et al. | Dec 2004 | B2 |
6836209 | Ploucha | Dec 2004 | B2 |
6842098 | Van Zeeland | Jan 2005 | B2 |
6846999 | Kawakami et al. | Jan 2005 | B2 |
6850145 | Kremers et al. | Feb 2005 | B1 |
6855902 | Lee et al. | Feb 2005 | B2 |
6856112 | Ohshima | Feb 2005 | B2 |
6859030 | Otte | Feb 2005 | B2 |
6867563 | Ohshima | Mar 2005 | B2 |
6873127 | Murray | Mar 2005 | B2 |
6883382 | Ogino et al. | Apr 2005 | B2 |
6889578 | Spaziani et al. | May 2005 | B2 |
6896268 | Hofmann et al. | May 2005 | B2 |
6898295 | Inamura et al. | May 2005 | B2 |
6903288 | Varga | Jun 2005 | B2 |
6906514 | Ausserlechner | Jun 2005 | B2 |
6906527 | Niimi et al. | Jun 2005 | B1 |
6917002 | Burgess et al. | Jul 2005 | B2 |
6922006 | Nomerange | Jul 2005 | B2 |
6924538 | Jaiprakash et al. | Aug 2005 | B2 |
6924614 | Onozawa et al. | Aug 2005 | B2 |
6930577 | Subramanian et al. | Aug 2005 | B2 |
6936984 | Wilson | Aug 2005 | B2 |
6936986 | Nuber | Aug 2005 | B2 |
6936988 | Nakazawa et al. | Aug 2005 | B2 |
6940028 | Eggers | Sep 2005 | B2 |
6940246 | Mochizuki et al. | Sep 2005 | B2 |
6943310 | Eisenhower | Sep 2005 | B2 |
6946608 | Brede et al. | Sep 2005 | B2 |
6952087 | Lamm | Oct 2005 | B2 |
6955206 | Mullet et al. | Oct 2005 | B2 |
6962228 | Ogino et al. | Nov 2005 | B2 |
6963029 | Rivers et al. | Nov 2005 | B1 |
6963267 | Murray | Nov 2005 | B2 |
6964132 | Otomo et al. | Nov 2005 | B2 |
6966149 | Fenelon | Nov 2005 | B2 |
6967451 | Miyauchi | Nov 2005 | B2 |
6968746 | Shank et al. | Nov 2005 | B2 |
6972536 | Mukai et al. | Dec 2005 | B2 |
6975047 | Pippin | Dec 2005 | B2 |
6990009 | Bertin et al. | Jan 2006 | B2 |
7000352 | Ishihara | Feb 2006 | B2 |
7009153 | Tomatsu | Mar 2006 | B2 |
7009352 | Yamamoto et al. | Mar 2006 | B2 |
7012491 | Geisberger et al. | Mar 2006 | B1 |
7015409 | Duffek et al. | Mar 2006 | B2 |
7015666 | Staus | Mar 2006 | B2 |
7021001 | Schooler | Apr 2006 | B1 |
7023307 | Dooley | Apr 2006 | B2 |
7026930 | Appel et al. | Apr 2006 | B2 |
7038154 | Hofte et al. | May 2006 | B2 |
7038414 | Daniels et al. | May 2006 | B2 |
7038896 | Sullivan et al. | May 2006 | B2 |
7044271 | De Coi | May 2006 | B2 |
7046129 | Regnet et al. | May 2006 | B2 |
7049535 | Matsuyama et al. | May 2006 | B2 |
7050897 | Breed et al. | May 2006 | B2 |
7056033 | Castellon | Jun 2006 | B2 |
7067794 | Le Gallo et al. | Jun 2006 | B2 |
7070226 | Cleland et al. | Jul 2006 | B2 |
7071023 | Bertin et al. | Jul 2006 | B2 |
7073291 | Kawanobe et al. | Jul 2006 | B2 |
7075256 | Murray | Jul 2006 | B2 |
7086687 | Aoki et al. | Aug 2006 | B2 |
7095200 | Shinohara et al. | Aug 2006 | B2 |
7099136 | Seale et al. | Aug 2006 | B2 |
7102089 | Burgess et al. | Sep 2006 | B2 |
7104589 | Takeda et al. | Sep 2006 | B2 |
7109677 | Gagnon et al. | Sep 2006 | B1 |
7115823 | Anaya-Burgos | Oct 2006 | B1 |
7123487 | Saito et al. | Oct 2006 | B2 |
7132642 | Shank et al. | Nov 2006 | B2 |
7135946 | Hoffmann | Nov 2006 | B2 |
7137541 | Baskar et al. | Nov 2006 | B2 |
7138595 | Berry et al. | Nov 2006 | B2 |
7138669 | Lanzerotti et al. | Nov 2006 | B2 |
7139158 | Niayesh et al. | Nov 2006 | B2 |
7140151 | Spaziani et al. | Nov 2006 | B2 |
7143548 | Kleinmann et al. | Dec 2006 | B2 |
7144068 | Oxley et al. | Dec 2006 | B2 |
7145761 | Shimizu et al. | Dec 2006 | B2 |
7151220 | Rubin de la Borbolla | Dec 2006 | B1 |
7151331 | Niayesh et al. | Dec 2006 | B2 |
7152695 | Happ et al. | Dec 2006 | B2 |
7161106 | Kohatsu et al. | Jan 2007 | B2 |
7161787 | Joens | Jan 2007 | B2 |
7165457 | Ogino et al. | Jan 2007 | B2 |
7173514 | Mullet et al. | Feb 2007 | B2 |
7174674 | Hattori et al. | Feb 2007 | B2 |
7179995 | Dinh | Feb 2007 | B2 |
7183508 | Kasai | Feb 2007 | B2 |
7183672 | Lewis | Feb 2007 | B2 |
7186270 | Elkins | Mar 2007 | B2 |
7187146 | Saito et al. | Mar 2007 | B2 |
7202674 | Nakano et al. | Apr 2007 | B2 |
7202764 | Deligianni et al. | Apr 2007 | B2 |
7205734 | Kidokoro | Apr 2007 | B2 |
7208680 | Drane | Apr 2007 | B2 |
7211975 | Murray et al. | May 2007 | B2 |
7224136 | Saitou et al. | May 2007 | B2 |
7226112 | Ward | Jun 2007 | B2 |
7227447 | Ohtaki et al. | Jun 2007 | B2 |
7228883 | Murray | Jun 2007 | B1 |
7230354 | Lewis | Jun 2007 | B2 |
7243461 | Rogers, Jr. et al. | Jul 2007 | B2 |
7244148 | Maguire et al. | Jul 2007 | B2 |
7244213 | Gueler et al. | Jul 2007 | B2 |
7250571 | Magno | Jul 2007 | B2 |
7250736 | Hirai | Jul 2007 | B2 |
7259410 | Jaiprakash et al. | Aug 2007 | B2 |
7265311 | Schaltenbrand et al. | Sep 2007 | B1 |
7269924 | Otomo et al. | Sep 2007 | B2 |
7282656 | Niiyama | Oct 2007 | B2 |
7283023 | Robert | Oct 2007 | B2 |
7285877 | Gorti et al. | Oct 2007 | B2 |
7289014 | Mullet et al. | Oct 2007 | B2 |
7289310 | Yuan | Oct 2007 | B1 |
7301099 | Korcz | Nov 2007 | B1 |
7305290 | Russ et al. | Dec 2007 | B2 |
7307395 | Bouamra et al. | Dec 2007 | B2 |
7309971 | Honma et al. | Dec 2007 | B2 |
7312414 | Yatsu et al. | Dec 2007 | B2 |
7315228 | Dooley | Jan 2008 | B2 |
7319301 | Pribisic | Jan 2008 | B2 |
7323638 | Radosavljevic | Jan 2008 | B1 |
7329822 | Orrico | Feb 2008 | B1 |
7339401 | Bertin et al. | Mar 2008 | B2 |
7342190 | Burgess et al. | Mar 2008 | B2 |
7345252 | Takenaka et al. | Mar 2008 | B2 |
7359783 | Vives et al. | Apr 2008 | B2 |
7360635 | Rhodes et al. | Apr 2008 | B2 |
7362068 | Yamamoto | Apr 2008 | B2 |
7365279 | Beerling | Apr 2008 | B2 |
7365622 | Kajan et al. | Apr 2008 | B2 |
7375299 | Pudney | May 2008 | B1 |
7381913 | Sjostrom | Jun 2008 | B2 |
7385154 | Klug | Jun 2008 | B2 |
7426803 | Fronz et al. | Sep 2008 | B2 |
7439636 | Lewis | Oct 2008 | B2 |
7462792 | Hellmers et al. | Dec 2008 | B1 |
7488906 | Taguchi et al. | Feb 2009 | B2 |
7498923 | Iversen | Mar 2009 | B2 |
7499254 | Joens | Mar 2009 | B2 |
7514641 | Kohatsu et al. | Apr 2009 | B2 |
7530850 | Maguire et al. | May 2009 | B2 |
7531743 | Johnson et al. | May 2009 | B2 |
7535327 | Desilva et al. | May 2009 | B2 |
7541759 | Hirai | Jun 2009 | B2 |
7542334 | Bertin et al. | Jun 2009 | B2 |
7548809 | Westerhoff | Jun 2009 | B2 |
7570001 | Noro et al. | Aug 2009 | B2 |
7581314 | Deligianni et al. | Sep 2009 | B2 |
7583508 | Hagiwara et al. | Sep 2009 | B2 |
7588960 | Bertin et al. | Sep 2009 | B2 |
7605554 | Kunkel | Oct 2009 | B2 |
20010013200 | Fink | Aug 2001 | A1 |
20010017587 | Suzuki et al. | Aug 2001 | A1 |
20010024063 | Sasaki | Sep 2001 | A1 |
20010027146 | Spaziani et al. | Oct 2001 | A1 |
20010030520 | Losey et al. | Oct 2001 | A1 |
20010042820 | Wilson | Nov 2001 | A1 |
20010048280 | Wilson | Dec 2001 | A1 |
20020014871 | Sugawara | Feb 2002 | A1 |
20020024308 | Kato et al. | Feb 2002 | A1 |
20020039008 | Edgar et al. | Apr 2002 | A1 |
20020040266 | Edgar et al. | Apr 2002 | A1 |
20020043948 | Ogasawara | Apr 2002 | A1 |
20020046815 | Taniguchi | Apr 2002 | A1 |
20020047678 | Wilson | Apr 2002 | A1 |
20020088283 | Kume | Jul 2002 | A1 |
20020093420 | Sicuranza | Jul 2002 | A1 |
20020101098 | Schober et al. | Aug 2002 | A1 |
20020113602 | Ishihara et al. | Aug 2002 | A1 |
20020117985 | Buchheit et al. | Aug 2002 | A1 |
20020143452 | Losey | Oct 2002 | A1 |
20020152684 | Fink | Oct 2002 | A1 |
20020154012 | Risi | Oct 2002 | A1 |
20020180269 | Dalakuras et al. | Dec 2002 | A1 |
20020189168 | Sicuranza | Dec 2002 | A1 |
20020190677 | Gerbetz | Dec 2002 | A1 |
20020190679 | Lamm | Dec 2002 | A1 |
20020190680 | Gerbetz | Dec 2002 | A1 |
20030006728 | Spreng et al. | Jan 2003 | A1 |
20030011336 | Kramer et al. | Jan 2003 | A1 |
20030030299 | Cleland et al. | Feb 2003 | A1 |
20030062865 | Mullet et al. | Apr 2003 | A1 |
20030076062 | Mullet et al. | Apr 2003 | A1 |
20030085679 | Bledin et al. | May 2003 | A1 |
20030111995 | Otte | Jun 2003 | A1 |
20030111996 | Otte | Jun 2003 | A1 |
20030115801 | Goscicki et al. | Jun 2003 | A1 |
20030140565 | Otomo et al. | Jul 2003 | A1 |
20030151382 | Daniels et al. | Aug 2003 | A1 |
20030174044 | Murray | Sep 2003 | A1 |
20030210005 | Murray | Nov 2003 | A1 |
20030222610 | Whinnery | Dec 2003 | A1 |
20030222614 | Whinnery et al. | Dec 2003 | A1 |
20030225497 | Whinnery | Dec 2003 | A1 |
20030233183 | Nuber | Dec 2003 | A1 |
20030234543 | Onozawa et al. | Dec 2003 | A1 |
20040040771 | Ploucha | Mar 2004 | A1 |
20040056199 | O'Connor et al. | Mar 2004 | A1 |
20040061462 | Bent et al. | Apr 2004 | A1 |
20040070316 | Neubauer et al. | Apr 2004 | A1 |
20040079867 | Le Gallo et al. | Apr 2004 | A1 |
20040090203 | Appel et al. | May 2004 | A1 |
20040099382 | Mullet et al. | May 2004 | A1 |
20040104701 | Ohshima | Jun 2004 | A1 |
20040108171 | De Coi | Jun 2004 | A1 |
20040111970 | Fenelon | Jun 2004 | A1 |
20040112139 | Ogino et al. | Jun 2004 | A1 |
20040112662 | Ogino et al. | Jun 2004 | A1 |
20040116499 | Mayser et al. | Jun 2004 | A1 |
20040124662 | Cleland et al. | Jul 2004 | A1 |
20040124972 | Strzelczyk | Jul 2004 | A1 |
20040130285 | Le Gallo | Jul 2004 | A1 |
20040134129 | Hattori et al. | Jul 2004 | A1 |
20040136659 | Castellon | Jul 2004 | A1 |
20040138843 | Bouamra et al. | Jul 2004 | A1 |
20040139656 | Takeda et al. | Jul 2004 | A1 |
20040164693 | Murray et al. | Aug 2004 | A1 |
20040172879 | Regnet et al. | Sep 2004 | A1 |
20040187391 | Fenelon | Sep 2004 | A1 |
20040189046 | Kawanobe et al. | Sep 2004 | A1 |
20040215382 | Breed et al. | Oct 2004 | A1 |
20040216383 | Rogers, Jr. et al. | Nov 2004 | A1 |
20040222759 | Ohshima | Nov 2004 | A1 |
20040236478 | Le Gallo et al. | Nov 2004 | A1 |
20040261317 | Murray | Dec 2004 | A1 |
20050012482 | Kidokoro | Jan 2005 | A1 |
20050012484 | Gifford et al. | Jan 2005 | A1 |
20050016290 | Shank et al. | Jan 2005 | A1 |
20050017460 | Hofmann et al. | Jan 2005 | A1 |
20050017600 | Nomerange | Jan 2005 | A1 |
20050017667 | Yamamoto | Jan 2005 | A1 |
20050030153 | Mullet et al. | Feb 2005 | A1 |
20050043872 | Heyn | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050067987 | Nakazawa et al. | Mar 2005 | A1 |
20050072049 | Spaziani et al. | Apr 2005 | A1 |
20050073852 | Ward | Apr 2005 | A1 |
20050083003 | Mochizuki et al. | Apr 2005 | A1 |
20050083004 | Yamamoto et al. | Apr 2005 | A1 |
20050092097 | Shank et al. | May 2005 | A1 |
20050103117 | Ogino et al. | May 2005 | A1 |
20050110300 | Oxley et al. | May 2005 | A1 |
20050117270 | Scherraus | Jun 2005 | A1 |
20050134426 | Mullet et al. | Jun 2005 | A1 |
20050146298 | Murray | Jul 2005 | A1 |
20050151495 | Miyauchi | Jul 2005 | A1 |
20050160673 | Kleinmann et al. | Jul 2005 | A1 |
20050160675 | Fenelon | Jul 2005 | A1 |
20050168010 | Cleland et al. | Aug 2005 | A1 |
20050177977 | Hattori et al. | Aug 2005 | A1 |
20050179409 | Honma et al. | Aug 2005 | A1 |
20050179445 | Nakano et al. | Aug 2005 | A1 |
20050187688 | Bigorra Vives et al. | Aug 2005 | A1 |
20050187689 | Westerhoff | Aug 2005 | A1 |
20050203690 | Russ et al. | Sep 2005 | A1 |
20050235564 | Fronz et al. | Oct 2005 | A1 |
20050246054 | Fink | Nov 2005 | A1 |
20050264033 | Aoki et al. | Dec 2005 | A1 |
20050269038 | Murakami et al. | Dec 2005 | A1 |
20050275363 | Honma et al. | Dec 2005 | A1 |
20050276449 | Pedemas et al. | Dec 2005 | A1 |
20050277512 | Gueler et al. | Dec 2005 | A1 |
20060006823 | Ferretti | Jan 2006 | A1 |
20060022618 | Rhodes et al. | Feb 2006 | A1 |
20060028159 | Otomo et al. | Feb 2006 | A1 |
20060090400 | Los et al. | May 2006 | A1 |
20060131915 | Ogino et al. | Jun 2006 | A1 |
20060151231 | Bucksch et al. | Jul 2006 | A1 |
20060178795 | Queveau et al. | Aug 2006 | A1 |
20060282204 | Breed | Dec 2006 | A1 |
20060288642 | Marentette | Dec 2006 | A1 |
20070084120 | Kobayashi et al. | Apr 2007 | A1 |
20070125000 | Fenelon | Jun 2007 | A1 |
20070183182 | Pribisic | Aug 2007 | A1 |
20080052996 | Sugiura | Mar 2008 | A1 |
20080065296 | Stolz | Mar 2008 | A1 |
20080136358 | Newman et al. | Jun 2008 | A1 |
20080190028 | Oxley | Aug 2008 | A1 |
20080204047 | Wern et al. | Aug 2008 | A1 |
20080229667 | Dufour et al. | Sep 2008 | A1 |
20080244984 | Kelly | Oct 2008 | A1 |
20080295408 | Heissler | Dec 2008 | A1 |
20080296927 | Gisler et al. | Dec 2008 | A1 |
20080297076 | Sakai et al. | Dec 2008 | A1 |
20080302014 | Szczerba et al. | Dec 2008 | A1 |
20090000198 | Brown | Jan 2009 | A1 |
20090000424 | Taubmann et al. | Jan 2009 | A1 |
20090058347 | Whinnery | Mar 2009 | A1 |
20090100755 | Ishihara | Apr 2009 | A1 |
20090100758 | Nagakura | Apr 2009 | A1 |
20090107050 | Suzuki | Apr 2009 | A1 |
20090139142 | Li | Jun 2009 | A1 |
20090173006 | Jitsuishi et al. | Jul 2009 | A1 |
20090206784 | Inoue et al. | Aug 2009 | A1 |
20090211156 | Appel | Aug 2009 | A1 |
20090217596 | Neundorf et al. | Sep 2009 | A1 |
20090222174 | Frommer et al. | Sep 2009 | A1 |
20090229183 | Kamiya | Sep 2009 | A1 |
20090260289 | Carpenter et al. | Oct 2009 | A1 |
20090265989 | Mueller et al. | Oct 2009 | A1 |
20090272035 | Boisvert et al. | Nov 2009 | A1 |
20150128715 | Kamimura | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1460111 | Dec 1968 | DE |
1660717 | Mar 1971 | DE |
1660737 | Apr 1971 | DE |
1660738 | Aug 1971 | DE |
2729738 | Apr 1979 | DE |
7936058 | Apr 1980 | DE |
8011510 | Jul 1980 | DE |
8104702 | Nov 1981 | DE |
3130473 | Feb 1983 | DE |
8433857 | Apr 1985 | DE |
3507922 | Sep 1986 | DE |
4002026 | Sep 1990 | DE |
3915931 | Nov 1990 | DE |
9014432 | Jan 1991 | DE |
3930644 | Mar 1991 | DE |
9306553 | Aug 1993 | DE |
9311354 | Sep 1993 | DE |
4240622 | Jun 1994 | DE |
9403972 | Jul 1994 | DE |
9407645 | Jul 1994 | DE |
9311632 | Sep 1994 | DE |
9414962 | Nov 1994 | DE |
4321139 | Jan 1995 | DE |
4328167 | Mar 1995 | DE |
9415040 | Oct 1995 | DE |
4422698 | Jan 1996 | DE |
4433957 | Mar 1996 | DE |
19529079 | Feb 1997 | DE |
19531550 | Mar 1997 | DE |
19538071 | Apr 1997 | DE |
19538073 | Apr 1997 | DE |
9321338 | Jun 1997 | DE |
19546504 | Jun 1997 | DE |
19602744 | Jul 1997 | DE |
19604128 | Aug 1997 | DE |
19615548 | Oct 1997 | DE |
19629671 | Jan 1998 | DE |
19632592 | Jan 1998 | DE |
4329535 | Mar 1998 | DE |
19632590 | Mar 1998 | DE |
19632591 | Mar 1998 | DE |
19913106 | May 2000 | DE |
19913105 | Oct 2000 | DE |
19925050 | Dec 2000 | DE |
20013310 | Dec 2000 | DE |
20015330 | Mar 2001 | DE |
19948321 | Apr 2001 | DE |
10046974 | Oct 2001 | DE |
10046975 | May 2002 | DE |
10109005 | Sep 2002 | DE |
10109280 | Sep 2002 | DE |
10133644 | Apr 2003 | DE |
10140930 | Jun 2003 | DE |
20204796 | Sep 2003 | DE |
10221315 | Nov 2003 | DE |
10046975 | Apr 2004 | DE |
202004014861 | Jan 2005 | DE |
10310066 | Feb 2005 | DE |
10349650 | May 2005 | DE |
202005008450 | Oct 2005 | DE |
10220187 | Nov 2005 | DE |
20221517 | Mar 2006 | DE |
102004055476 | Mar 2006 | DE |
102004060328 | Jun 2006 | DE |
102005028739 | Jun 2006 | DE |
102005016252 | Feb 2007 | DE |
102006015687 | Oct 2007 | DE |
102004002415 | Jul 2008 | DE |
102008010074 | Feb 2009 | DE |
202008013508 | Feb 2009 | DE |
102007050352 | Apr 2009 | DE |
102008050897 | Jul 2009 | DE |
0259573 | Mar 1988 | EP |
0296134 | Dec 1988 | EP |
0215037 | Aug 1989 | EP |
0425628 | May 1990 | EP |
0408537 | Jan 1991 | EP |
0489610 | Jun 1992 | EP |
0326623 | Mar 1993 | EP |
0638701 | Sep 1993 | EP |
0625283 | Nov 1993 | EP |
0630588 | May 1994 | EP |
0615047 | Sep 1994 | EP |
0640740 | Mar 1995 | EP |
0562076 | Jun 1995 | EP |
0663981 | Jul 1995 | EP |
0730743 | Sep 1995 | EP |
0666956 | Jul 1997 | EP |
0782158 | Jul 1997 | EP |
0803628 | Oct 1997 | EP |
0812049 | Dec 1997 | EP |
0673464 | Aug 1998 | EP |
0901210 | Sep 1999 | EP |
0823957 | Dec 1999 | EP |
1017145 | Jul 2000 | EP |
1031696 | Aug 2000 | EP |
1081829 | Mar 2001 | EP |
1091062 | Apr 2001 | EP |
1096089 | May 2001 | EP |
1134631 | Sep 2001 | EP |
1186456 | Sep 2001 | EP |
1146191 | Oct 2001 | EP |
1167675 | Jan 2002 | EP |
1176687 | Jan 2002 | EP |
1180443 | Feb 2002 | EP |
1275313 | Jun 2002 | EP |
1286478 | Jun 2002 | EP |
1221705 | Jul 2002 | EP |
0842504 | Aug 2002 | EP |
1271739 | Jan 2003 | EP |
0910718 | Mar 2003 | EP |
1298275 | Apr 2003 | EP |
1304442 | Apr 2003 | EP |
1464786 | Apr 2003 | EP |
1003950 | May 2003 | EP |
1321324 | Jun 2003 | EP |
1079983 | Feb 2004 | EP |
0853714 | Mar 2004 | EP |
1361095 | Mar 2004 | EP |
108251 | Apr 2004 | EP |
1159504 | May 2004 | EP |
1422090 | May 2004 | EP |
0883724 | Jun 2004 | EP |
1431094 | Jun 2004 | EP |
1431095 | Jun 2004 | EP |
1502817 | Jul 2004 | EP |
1455044 | Sep 2004 | EP |
1467461 | Oct 2004 | EP |
1469332 | Oct 2004 | EP |
1526241 | Oct 2004 | EP |
1361096 | Nov 2004 | EP |
1402639 | Nov 2004 | EP |
1484466 | Dec 2004 | EP |
0826095 | Jan 2005 | EP |
1057673 | Jan 2005 | EP |
1474582 | Apr 2005 | EP |
1259692 | Aug 2005 | EP |
1564357 | Aug 2005 | EP |
1566510 | Aug 2005 | EP |
1371803 | Sep 2005 | EP |
1586732 | Oct 2005 | EP |
1589177 | Oct 2005 | EP |
1103009 | Dec 2005 | EP |
1602518 | Dec 2005 | EP |
1607562 | Dec 2005 | EP |
1607564 | Dec 2005 | EP |
1617030 | Jan 2006 | EP |
1039084 | Feb 2006 | EP |
1509824 | Feb 2006 | EP |
1621712 | Feb 2006 | EP |
1637682 | Mar 2006 | EP |
1476627 | May 2006 | EP |
1652710 | May 2006 | EP |
1655436 | May 2006 | EP |
0992410 | Jun 2006 | EP |
1672151 | Jun 2006 | EP |
1691015 | Aug 2006 | EP |
1250507 | Oct 2006 | EP |
1504167 | Oct 2006 | EP |
1722339 | Nov 2006 | EP |
1726761 | Nov 2006 | EP |
1446544 | Sep 2007 | EP |
1015723 | Oct 2007 | EP |
1842998 | Oct 2007 | EP |
1842999 | Oct 2007 | EP |
1854677 | Nov 2007 | EP |
1854953 | Nov 2007 | EP |
1884616 | Feb 2008 | EP |
1715127 | Mar 2008 | EP |
1918493 | May 2008 | EP |
1709276 | Jun 2008 | EP |
1953569 | Aug 2008 | EP |
1959321 | Aug 2008 | EP |
2048014 | Sep 2008 | EP |
1265767 | Oct 2008 | EP |
1487653 | Oct 2008 | EP |
1975361 | Oct 2008 | EP |
1447511 | Dec 2008 | EP |
1997996 | Dec 2008 | EP |
2093365 | Jan 2009 | EP |
1690713 | Feb 2009 | EP |
2055881 | May 2009 | EP |
2101023 | Sep 2009 | EP |
6260054 | Sep 1994 | JP |
2009090667 | Apr 2009 | JP |
2009121054 | Jun 2009 | JP |
2009161966 | Jul 2009 | JP |
2009161967 | Jul 2009 | JP |
2009161968 | Jul 2009 | JP |
2009167606 | Jul 2009 | JP |
2009167632 | Jul 2009 | JP |
8400992 | Mar 1984 | WO |
8605317 | Sep 1986 | WO |
9014677 | Nov 1990 | WO |
9308356 | Apr 1993 | WO |
9408121 | Apr 1994 | WO |
9412996 | Jun 1994 | WO |
9422212 | Sep 1994 | WO |
9509959 | Apr 1995 | WO |
9525380 | Sep 1995 | WO |
9609559 | Mar 1996 | WO |
9635036 | Nov 1996 | WO |
9635037 | Nov 1996 | WO |
9641087 | Dec 1996 | WO |
9701835 | Jan 1997 | WO |
9706518 | Feb 1997 | WO |
9722775 | Jun 1997 | WO |
9722776 | Jun 1997 | WO |
9732102 | Sep 1997 | WO |
9740402 | Oct 1997 | WO |
9802631 | Jan 1998 | WO |
9826145 | Jun 1998 | WO |
9901637 | Jan 1999 | WO |
9909282 | Feb 1999 | WO |
9953345 | Oct 1999 | WO |
9953589 | Oct 1999 | WO |
0012421 | Mar 2000 | WO |
0053878 | Sep 2000 | WO |
0057013 | Sep 2000 | WO |
0058119 | Oct 2000 | WO |
0114676 | Mar 2001 | WO |
0129356 | Apr 2001 | WO |
0136772 | May 2001 | WO |
0153640 | Jul 2001 | WO |
0156142 | Aug 2001 | WO |
0165044 | Sep 2001 | WO |
0166372 | Sep 2001 | WO |
0212699 | Feb 2002 | WO |
0227132 | Apr 2002 | WO |
0238905 | May 2002 | WO |
02068389 | Sep 2002 | WO |
02068424 | Sep 2002 | WO |
02073787 | Sep 2002 | WO |
02082613 | Oct 2002 | WO |
02087912 | Nov 2002 | WO |
02097947 | Dec 2002 | WO |
02101929 | Dec 2002 | WO |
02103874 | Dec 2002 | WO |
03016966 | Feb 2003 | WO |
03036774 | May 2003 | WO |
03038220 | May 2003 | WO |
03038221 | May 2003 | WO |
03063318 | Jul 2003 | WO |
03069104 | Aug 2003 | WO |
03074308 | Sep 2003 | WO |
03078776 | Sep 2003 | WO |
03095779 | Nov 2003 | WO |
03102338 | Dec 2003 | WO |
03102339 | Dec 2003 | WO |
03103349 | Dec 2003 | WO |
2004001438 | Dec 2003 | WO |
2004018817 | Mar 2004 | WO |
2004029565 | Apr 2004 | WO |
2004031520 | Apr 2004 | WO |
2004054834 | Jul 2004 | WO |
2004054835 | Jul 2004 | WO |
2004063512 | Jul 2004 | WO |
2004022895 | Sep 2004 | WO |
2004084609 | Oct 2004 | WO |
2004088074 | Oct 2004 | WO |
2004090273 | Oct 2004 | WO |
2005059285 | Jun 2005 | WO |
2005066442 | Jul 2005 | WO |
2005080727 | Sep 2005 | WO |
2005098186 | Oct 2005 | WO |
2005116385 | Dec 2005 | WO |
2006001002 | Jan 2006 | WO |
2006031185 | Mar 2006 | WO |
2006031599 | Mar 2006 | WO |
2006042236 | Apr 2006 | WO |
2006066524 | Jun 2006 | WO |
2006066535 | Jun 2006 | WO |
2006086892 | Aug 2006 | WO |
2006090161 | Aug 2006 | WO |
2006106078 | Oct 2006 | WO |
2007017014 | Feb 2007 | WO |
2007022355 | Feb 2007 | WO |
2007093910 | Aug 2007 | WO |
2007093912 | Aug 2007 | WO |
2007093914 | Aug 2007 | WO |
2007136943 | Nov 2007 | WO |
2007140493 | Dec 2007 | WO |
2007148178 | Dec 2007 | WO |
2008006424 | Jan 2008 | WO |
2008025422 | Mar 2008 | WO |
2008046514 | Apr 2008 | WO |
2008052523 | May 2008 | WO |
2008081026 | Jul 2008 | WO |
2008081029 | Jul 2008 | WO |
2008151573 | Dec 2008 | WO |
2009010798 | Jan 2009 | WO |
2009026912 | Mar 2009 | WO |
2009027819 | Mar 2009 | WO |
2009053677 | Apr 2009 | WO |
2009074088 | Jun 2009 | WO |
2009128910 | Oct 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20130307567 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61267574 | Dec 2009 | US | |
61791472 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12963359 | Dec 2010 | US |
Child | 13949203 | US |