The present disclosure relates generally to an open air, wide area noise cancellation system and method. More particularly, the present disclosure relates to a system and method for improved identification and characterization of noise sources including identifying locations and predicted paths of moving noise sources and then generating noise cancelling sound waves based on the detected locations and predicted paths of the noise sources.
As cities continue to grow, environmental noise pollution has become an increasing problem for the location of homes and businesses. Airports, highways, construction sites, and factories are common noise producing sources located near homes and businesses.
Noise blocking walls are often built between roads and nearby houses. However, it is not practical to build sound blocking walls to block off all homes and businesses from noise producing sources. The wide area noise cancellation system and method of the present disclosure provides improved noise cancellation without requiring the use of such noise blocking walls or other sound blocking structures.
As air traffic continues to increase and cities continue to grow, homes and businesses are often located near airports. At the same time, the size of aircraft continues to increase leading to greater noise pollution. Public complaints often lead to restrictions being imposed on flight paths and operation hours for airports. Often, residential development may be prohibited or restricted in areas surrounding the airport flight paths. The system and method of the present disclosure reduces the impact of noise pollution within areas located near common noise sources, such as airports. Therefore, the present system and method may allow use of property close to airports (or other noise sources) without requiring substantial usage restrictions.
While one embodiment of the present disclosure is particularly useful in areas surrounding airports, other embodiments may be used in other areas such as near construction sites, sporting venues such as automobile race tracks, factories or adjacent highways. In one embodiment, the open air noise cancellation system of the present disclosure is used in areas surrounding a military base or other noise producing area to substantially reduce or cancel noises occurring on the base from being heard outside a base perimeter. This reduces the likelihood that persons located outside the base perimeter will hear operations occurring inside the military base.
In one illustrated embodiment of the present disclosure, a wide area noise cancellation system is provided for reducing the effect of noise generated by at least one noise source within a noise producing area at locations outside the noise producing area. The system includes a plurality of spaced apart microphone arrays positioned within the noise producing area. Each microphone array detects noise from at least one noise source located in the noise producing area and generates an output signal indicative of the detected noise. The system also includes a noise signal processor configured to receive the output signals from the plurality of microphone arrays. The processor processes the output signals to determine noise cancellation signals to reduce the effect of noise from the at least one noise source. The system further includes a plurality of speaker arrays located at spaced apart locations around a periphery of the noise producing area. The plurality of speaker arrays receive the noise cancellation signals from the processor and generate inverse sound waves to reduce the effect of the noise from the at least one noise source before the noise from exits the noise producing area.
In one illustrated embodiment, the plurality of microphone arrays are spaced apart around a perimeter of noise producing area, and the plurality of speaker arrays are spaced apart around the perimeter of noise producing area at locations radially outwardly from the locations of the plurality of microphone arrays. Illustratively, the noise producing area is a military base, a construction site, or a factory.
In another illustrated embodiment of the present disclosure, a method is provided for reducing the effect of noise generated by at least one noise source within a noise producing area at locations outside the noise producing area. The method includes providing a plurality of speaker arrays located at spaced apart locations around a periphery of the noise producing area, detecting noise from the at least one noise source located in the noise producing area, determining noise cancellation signals based on the detected noise to reduce the effect of noise from the at least one noise source, and driving the plurality of speaker arrays with the noise cancellation signals to generate inverse sound waves to reduce the effect of the noise from the at least one noise source before the noise from exits the noise producing area.
In yet another illustrated embodiment of the present disclosure, a wide area noise cancellation system is provided for reducing the effect of noise generated by a noise source. The system includes at least one speaker array and at least one microphone array configured to detect noise from the noise source before the noise reaches the at least one speaker array. Each speaker array includes a plurality of speakers arranged to provide substantially 360° coverage for sound waves produced by the speaker array. Each microphone array generates an output signal indicative of the noise detected from the noise source. The system also includes a noise signal processor configured to receive the output signals from the at least one microphone array. The processor processes the output signals to determine a location of the noise source, to determine inverse sound waves based on the output signals, and to generate noise cancellation signals to drive the at least one speaker array so that the at least one speaker array genera s the inverse sound waves to reduce the effect of the detected noise from the noise source before the noise reaches the location of the at least one speaker array.
In an illustrated embodiment, the noise source is a moving noise source, and the processor determines the location and a predicted path of the moving noise source based on the output signals received from the at least one microphone array. The location and the predicted path of the moving noise source are used by the processor along with the output signals from the at least one microphone array to determine the inverse sound wave. In one illustrated embodiment, the processor adjusts a phase and a frequency of the inverse sound waves based on the location of the at least one speaker array relative to the location and the predicted path of the noise source.
In still another illustrated embodiment of the present disclosure, a method is provided for reducing the effect of noise generated by a noise source. The method includes providing at least one speaker array. Each speaker array includes a plurality of speakers arranged to provide substantially 360° coverage for sound waves produced by the speaker array. The method also includes detecting noise from the noise source before the noise reaches the at least one speaker array, determining a location of the noise source, generating noise cancellation signals based on the detected noise and the determined location of the noise source, and driving the at least one speaker array with the noise cancellation signals so that the at least one speaker array generates the inverse sound waves to reduce the effect of the detected noise from the noise source before the noise reaches the location of the at least one speaker array.
In one illustrated embodiment of the present disclosure, the method further includes generating calibration sound waves with the at least one speaker array, detecting the calibration sound waves, determining areas of sound interference within a noise cancellation area, and adjusting the noise cancellation signals based on the determined areas of sound interference within the noise cancellation area.
In another illustrated embodiment of the present disclosure, the method further includes generating and storing sound profiles from at least one known noise source, and adjusting the noise cancellation signals to generate the inverse sound waves based on the stored sound profiles from the at least one known noise source.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings.
Corresponding reference characters indicate corresponding parts throughout the several views. Although the drawings represent embodiments of various features and components according to the present disclosure, the drawings are not necessarily to scale and certain features may be exaggerated in order to better illustrate and explain the present disclosure. The exemplification set out herein illustrates embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings, which are described below. The embodiments disclosed below are not tended to be exhaustive or limit the invention to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. It is understood that no limitation of the scope of the invention is thereby intended. The invention includes any alterations and further modifications in the illustrated devices and described methods and further applications of the principles of the invention which would normally occur to one skilled in the art to which the invention relates.
Referring initially to
The noise signal processor 30 evaluates output signals from the microphone arrays 18 indicative of the detected noise from the noise source. Processor 30 determines the inverse sound waves necessary to cancel or reduce the effect of noise from the airplane 25 in a conventional manner. Typically, the inverse sound waves are 180 degrees out of phase with the sound from the noise source to cancel the noise. In the embodiment of
Another embodiment of the present disclosure is illustrated in
A plurality of microphone arrays 18 are spaced apart around a perimeter of area 22 defined by inner fence 26 surrounding the noise sources 24. The microphone arrays 18 detect noises from noise sources 24 within the area 22 and provide the detected noise signals to a central processor 30. The central processor 30 processes the detected noise signals, determines the positions and any movement of the noise sources 24, and determines the inverse sound waves necessary to substantially reduce or cancel the noise from noise sources 24. Processor 30 then provides individualized signals to drive a plurality of speaker arrays 20 to optimize cancellation of the noise from noise sources 24. In the illustrated embodiment, the speaker arrays 20 are spaced apart and surround the perimeter of the noise producing area 22. For example, in one embodiment the speaker arrays 20 are located between the first and second fences 26 and 28.
Inverse sound waves generated by the speaker arrays 20 substantially reduce or cancel noise from noise sources 24 before noise exits the noise producing area 22 or as the noise is exiting the area. For military base applications, people located outside the noise producing area 22 cannot hear activities or maneuvers taking place on the military base. For construction sites, factories, race tracks, or the like surrounding areas have substantially reduced noise levels to minimize the noise pollution impact of the construction sites or factories on nearby locations.
In certain illustrated embodiments, other location indicators or sensors 32 are provided to facilitate locating the noise sources. For instance, transponder data or GPS data from moving objects such as airplanes or radar data may be provided as inputs to the noise signal processor 30 to facilitate detection of the location of the noise source 24 such as airplane 25. Noise signal processor 30 is also coupled to a computer memory 34 to provide a database to facilitate processing of the noise signals and generating the inverse wave forms for driving the speaker arrays 20 as discussed below. In other embodiments, temperature and humidity sensors 32 provide data to processor 30.
In an illustrated embodiment, the speaker arrays 20 are high quality outdoor speaker arrays such as warning sirens or stadium speakers. As discussed above, each speaker array 20 includes a plurality of speakers 38 to transmit sound waves in any desired direction away from the speaker array 20. Depending on the application, only certain speakers 38 in the speaker array 20 may be driven to provide directional sound waves from the speaker array 20 as discussed below. The speaker arrays 20 are positioned throughout a neighborhood or desired coverage area to minimize sound wave overlap from the other speaker arrays 20, but to ensure maximum coverage of the entire desired noise cancellation area. In illustrated embodiments, the speaker arrays 20 may be directional speaker arrays or modulator series speaker arrays available from Federal Signal Corporation located in University Park, Ill., for example. It is understood that any other suitable speaker array 20 may also be used.
Illustratively, the microphone arrays 18 include at least 3-4 microphones arranged to detect directional vectors for the noise sources. The microphones in each array 18 are illustratively arranged in a triangular or pyramidal configuration. The Doppler effect may be used to locate the noise source. By using multiple microphone arrays 18 each including multiple microphones, the noise signal processor 30 processes the detected noise signals to generate a three dimensional (3D) noise picture associated with sounds produced by a noise source. The processor 30 processes the 3D noise picture to detect a peak signal and determine a motion vector from each of the microphone arrays 18.
In one illustrated embodiment disclosed in
The processor 30 modifies the inverse sound waves for each speaker array 20 location relative to the noise source location and the predicted path as illustrated at block 48. A location of each of the speaker arrays 20 is stored in database 34. Therefore, processor 30 knows the locations for each speaker array 20 within a noise cancellation area relative to the detected noise source. The processor 30 modifies the phase and/or frequency of the inverse sound waves for each particular speaker array 20 based on its location relative to the determined location of the noise source and the predicted path of the noise source. In addition, processor 30 modifies the inverse sound waves based on the locations of speaker arrays 20 relative to each other as illustrated at block 50. After the necessary inverse sound waves for each speaker array 20 are calculated, the processor 30 generates individualized signals to drive speakers 38 within each speaker array 20 to reduce or cancel the noise from the noise source as illustrated at block 52.
As discussed above, in certain illustrated embodiments, inputs from other location indicators or sensors 32 are provided to the central noise signal processor 30 to assist with the location of the noise sources 24, 25 and the calculation of the predicted paths for the noise sources 24, 25. Humidity or temperature sensor inputs may also be used to alter the inverse sound waves. The use of inputs from other sensors 32 is illustratively shown in
Using both the signals detected by the microphone arrays 18 and the signals from other indicators or sensors 32, processor 30 identifies the location of the noise source 24, 25 and determines a predicted path for the noise source as illustrated at block 64. Next, processor 30 calculates the inverse sound waves needed to cancel the predicted noise as illustrated at block 66. Processor 30 then generates individualized signals to drive each speaker array 20 to cancel or reduce the noise from the noise sources 24, 25 as illustrated at block 68.
In certain instances, such as near airports or construction zones, noises are often repeated by the noise sources 24, 25 at different times. For instance, airplanes 25 taking off or landing have distinct sound profiles which may be recorded and stored in database 34 for future reference. Different airplanes 25 having different engines produce different sound profiles. Flap settings on the airplanes 25 during takeoff and landing are a significant cause of noise. By recording and storing sound profiles associated with certain reoccurring noise events, such as airplanes 25 taking off and landing, the signal processor 30 can use the recorded sound profiles to help predict expected sound profiles and paths of movement for newly detected noise sources. In addition, certain equipment within construction sites or factories may produce sound profiles which can be recorded and stored in database 34 to facilitate with the determination of the inverse sound waves for noise cancellation.
When installing the wide area noise cancellation system 10 within a neighborhood or desired area, large structures or certain geographic features impact the way sound travels through the noise cancellation area. During installation, the system 10 determines the impact of these geographic features or large structures on system performances as shown in
Next, a new noise source is detected with the plurality of microphone arrays 18 as illustrated at block 92. Processor 30 determines the desired inverse sound waves based on the detected noise, including the noise location and predicted path, and using the stored area sound map as illustrated at block 94. In other words, the processor 30 makes adjustments to the inverse sound waves based upon the pre-determined interference from large structures or geographical features within the noise cancellation area. Next, processor 30 generates signals to drive each speaker array 20 to provide inverse sound waves to reduce or cancel the noise from the noise source as illustrated at block 96.
While the illustrated embodiments use the stored sound maps of interference patterns for reducing the noise from noise sources, the stored interference maps are used in another embodiment to alter sound waves produced by the speaker arrays 20 for producing warning sirens, public address messages or other acoustic signals to improve sound quality in the area around speaker arrays 20. In one illustrated embodiment, speaker arrays 20 are giant voice speakers.
The multidirectional or omni-directional speaker arrays 20 are particularly effective at cancelling noise from moving noise sources 24, 25 before the noise reaches the speaker array 20. In one illustrated embodiment shown in
The microphone arrays 18 detect noise from the moving noise source 24 and provide the received signals to central noise signal processor 30 as discussed above. The noise signal processor 30 determines the location of the noise source 24 and calculates a predicted path of movement of the noise source shown by arrow 25. The processor 30 generates signals to drive speaker(s) 38A of speaker array 20 to produce inverse sound waves directionally as shown by waves 102A to cancel the noise from moving noise source 20 before the noise source 24 reaches the speaker array 20 shown in
In certain embodiments, additional speakers or adjustable sound reflectors 104A, 104B are located on certain buildings 100A, 100B, respectively. In an illustrated embodiment of the present invention, the noise signal processor 30 adjusts the position and/or angular orientation of speakers 38A using the mechanical adjustment controller 39 to form and guide the inverse sound wave 102A generated by speaker 38A. In addition, a noise signal processor 30 may provide input signals to speakers or adjustable sound reflectors 104A, 104B to help guide or steer the inverse sound wave 102A toward the optimal location to cancel the noise from moving noise source 24. Adjustable or non-adjustable sound reflectors or sound absorbers 104A, 104B may be used on the buildings 100A, 100B to help minimize sound reflections or interference to focus and steer the sound waves 102A toward the noise source 24.
While embodiments of the present disclosure have been described as having exemplary designs, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
The invention described herein was made in the performance of official duties by employees of the Department of the Navy and may be manufactured, used and licensed by or for the United States Government for any governmental purpose without payment of any royalties thereon.
Number | Name | Date | Kind |
---|---|---|---|
4208735 | Suzuki et al. | Jun 1980 | A |
4473906 | Warnaka et al. | Sep 1984 | A |
4562589 | Warnaka et al. | Dec 1985 | A |
5018202 | Takahashi et al. | May 1991 | A |
5189425 | Dabbs | Feb 1993 | A |
5448645 | Guerci | Sep 1995 | A |
5699437 | Finn | Dec 1997 | A |
5834647 | Gaudriot et al. | Nov 1998 | A |
5966452 | Norris | Oct 1999 | A |
6041127 | Elko | Mar 2000 | A |
6463156 | Gaudriot et al. | Oct 2002 | B1 |
6738482 | Jaber | May 2004 | B1 |
7317801 | Amir | Jan 2008 | B1 |
7492911 | Nakajima et al. | Feb 2009 | B2 |
20020048376 | Ukita | Apr 2002 | A1 |
20050254664 | Kwong et al. | Nov 2005 | A1 |
20050276422 | Buswell et al. | Dec 2005 | A1 |
20060285697 | Nishikawa et al. | Dec 2006 | A1 |
20070036367 | Ko | Feb 2007 | A1 |
20070223714 | Nishikawa | Sep 2007 | A1 |
20070297620 | Choy | Dec 2007 | A1 |
20080159555 | Asada et al. | Jul 2008 | A1 |
20080170729 | Lissaman et al. | Jul 2008 | A1 |
20090136052 | Hohlfeld et al. | May 2009 | A1 |
20100034398 | Odent et al. | Feb 2010 | A1 |
20110274283 | Athanas | Nov 2011 | A1 |
20120057716 | Chang et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
7219559 | Sep 1995 | JP |
2001172925 | Jun 2001 | JP |
2003108151 | Apr 2003 | JP |
Entry |
---|
Efron, et al., Wide-Area Adaptive Active Noise Cancellation, IEEE Transactions on Circuits and Systems, vol. 41, No. 6, pp. 405-409, Jun. 1994. |
Federal Signal Corporation, Modulator Series Speaker Arrays, Installation and Maintenance Instructions, 23 pages, Mar. 2007. |
Federal Signal Corporation, Directional Speaker Array, Model DSA brochure, 2 pages, 2009. |
Number | Date | Country | |
---|---|---|---|
20120237049 A1 | Sep 2012 | US |