The invention is in the field of reconfigurable antennas. In particular, the invention includes an antenna structure capable of generating omnidirectional and directional radiation patterns. An implementation of the antenna structure includes an antenna design that allows switching among four directional patterns and a single omnidirectional mode over a single wide frequency bandwidth or multiple frequencies. The antenna is suitable for small devices due to its compact planar design.
Current antenna systems can be divided into three main categories: i) antennas which radiate with a fixed pattern and polarization (“standard antennas”); ii) antennas including a matrix of active elements that radiates with variable patterns and/or polarizations by conveniently phasing each active element (“phased array”); and iii) antennas including a single active element showing a different pattern and polarization depending on the adopted current distribution on the radiating element (“reconfigurable antennas”).
These two classes of adaptive antennas (phased arrays and reconfigurable antennas) have received strong attention in the last several years with respect to standard antennas due to their capability of dynamically changing the radiation properties of the antenna in response to the multivariate behavior of the wireless channel. The reconfigurable antenna solution is then preferable with respect to a phased array antenna mainly because i) it employs a single active element and therefore it occupies a small space and ii) it allows for high radiation efficiency since it does not employ phase shifters and power dividers.
Different types of reconfigurable antennas capable of changing pattern and polarization have been proposed in the art. These antennas may employ embedded switches or variable capacitors to change the current distribution on the metallization of the active element, or may employ an active antenna element surrounded by passive elements (parasitic elements) loaded with variable capacitors or connected to switches.
However, none of the prior art approaches allows radiating with omnidirectional and directional radiation patterns while preserving a planar design (e.g., two layer printed circuit board). To the inventors' knowledge, the only antenna technology capable of achieving this type of reconfigurability is the one described by M. Facco and D. Piazza, in “Reconfigurable Zero-Order Loop Antenna,” IEEE International Symposium on Antennas and Propagation and USNC/URSI, 2012. However, the metamaterial active element of such design along with the surrounded reactive components results in a narrow frequency bandwidth. The invention described herein allows designs of planar reconfigurable antennas capable of generating omnidirectional and directional radiation patterns over a wide frequency band or over multiple bands.
The invention addresses the above-mentioned needs in the art by providing a planar reconfigurable antenna that is capable of generating omnidirectional and directional radiation patterns over a wide frequency band or over multiple frequency bands. In exemplary embodiments, such an antenna includes a substrate, a plurality of conductive elements on at least one side of the substrate, a common RF feed point, and respective switches that selectively connect all or some of the conductive elements to the common RF feed point. In a first mode, all of the conductive elements are connected to the common RF feed point for generation of an omnidirectional radiation pattern, while in a second mode, a pair of conductive elements on opposite sides of the substrate are connected to the common RF feed point for generation of a directional radiation pattern. Each of the conductive elements may be a wideband or multiband radiating element. Also, the conductive elements that are not connected to the common RF feed point act as a reflector for other conductive elements that are connected to the common RF feed point in the direction radiation mode.
In exemplary embodiments, the conductive elements are arranged on the substrate such that when all of the conductive elements are directly connected to the common RF feed point, the current distribution is uniform and it generates the omnidirectional radiation pattern in an azimuth plane. Also, in the exemplary embodiments, the conductive elements are placed symmetrically on the substrate with respect to the common RF feed point at a center of the antenna and at a relative distance with respect to other conductive elements which is less than one quarter of a wavelength of the antenna in free space.
In other exemplary embodiments, the plurality of conductive elements include four folded metallic elements on each side of the substrate, and pairs of the conductive elements on opposite sides of the substrate form four pairs of branches that are disposed 90 degrees with respect to each other and are connected to the common RF feed point via a pin diode or any other RF switching device that allows one to connect/disconnect metallic elements. Also, in other exemplary embodiments the planar antenna may or may not have additional parasitic elements placed on the top or bottom layer. These parasitic elements can be placed around the main 90° elements, acting as enhancement for directivity and gain of the beams. In essence, the parasitic elements act as directors and/or reflectors during directional modes of operation, enhancing front-to-back ratio and gain of the radiation patterns. Even when an omnidirectional beam is generated, the gain is appreciably improved.
The conductive elements may also have different shapes and sizes. For example, each of the conductive elements may be in the form of a wing having a first section that is connected to the common RF feed port and a second section that is substantially perpendicular to the first section. The second section may or may not have a slot depending upon whether a single wide bandwidth or dual band behavior is desired. Also, the second section may form a double wing structure whereby the second section and the first section together form an “F” shape to resonate over multiple frequencies. Alternatively, the second section may form a tapered wing structure to permit the antenna to resonate over a wide bandwidth.
The conductive elements may also be arranged to provide a multi-band solution. In multi-band arrangements, a first set of conductive elements forming a first antenna configured for a first frequency may be rotated (i.e., angularly offset) with respect to a second set of conductive elements forming a second antenna configured for a second frequency. Conversely, the first and second set of conductive elements may have the same angular configuration but different radii. In these multi-band configurations, additional pin diodes or other RF switching devices are provided to enable switching between the respective antenna elements. In an exemplary embodiment, the first antenna is configured to transmit/receive 5 GHz signals while the second antenna is configured to transmit/receive 2.4 GHz signals.
The common RF feed point may include a coaxial feed port that passes through the substrate and has a first coaxial part that is connected on a first side of the substrate to bottom layer conductive elements and a second coaxial part that is connected on a second side of the substrate to the top layer conductive elements. Also, the first and second coaxial parts of the coaxial feed port may be connected to respective conductive circles on respective sides of the substrate. In exemplary embodiments, the respective conductive circles have respective radii that act as a tuning parameter for impedance matching over single or multiple frequency bands.
The foregoing and other beneficial features and advantages of the invention will become apparent from the following detailed description in connection with the attached figures, of which:
a and 8b illustrate respective multiband antenna designs in accordance with the invention.
a and 9b respectively illustrate multiple single-band elements and switchable multi-band elements in accordance with the invention.
The present invention may be understood more readily by reference to the following detailed description taken in connection with the accompanying figures and examples, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific products, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of any claimed invention. Similarly, any description as to a possible mechanism or mode of action or reason for improvement is meant to be illustrative only, and the invention herein is not to be constrained by the correctness or incorrectness of any such suggested mechanism or mode of action or reason for improvement. Throughout this text, it is recognized that the descriptions refer both to methods and software for implementing such methods.
A detailed description of illustrative embodiments of the present invention will now be described with reference to
The arrangement of the metallic elements 102 is such that when at least one metallic element 102 is not connected to the RF feed point 104 (e.g., the RF switch 106 that connects the RF feed point 104 with the metallic element 102 is in the OFF state), the metallic element(s) 102 not connected to the RF feed point 104 acts as a reflector/director for the other elements and allows the generation of a directional radiation beam in one direction. On the other hand, the multiband/wideband behavior of the antenna 100 is obtained by using metallic elements 102 with multiband/wideband characteristics.
In the embodiment of
When all of the folded metallic elements 102 are connected to the central RF feed point 104 by means of RF switches 106, the radiating structure resembles an Alford loop antenna, which radiates an omnidirectional radiation pattern in in the plane of the antenna design (azimuth). On the other hand, directional modes are achieved by connecting just one pair of branches to the center feed 104, while the other three disconnected branches act as reflector elements.
In the embodiment of the invention depicted in
As best illustrated in
In respective embodiments of the invention, the branches of antenna 100 can be realized to have a single wide frequency bandwidth or multiple resonant frequencies. If each pair of branches is designed to have a single slotted wing as shown in
A relevant feature of the antenna described herein is the possibility of generating reconfigurable patterns without the need of extra parasitic elements. Each pair of branches acts as a radiating element if connected to the center feed 104, and as a reflector (parasitic) when disconnected. The dual behavior of the microstrip branches provide the ability to generate omnidirectional and directional patterns without the need of extra parasitic elements and, in addition, avoids the need of complex matching networks just by tuning the radius of the top and bottom layer circles 202 and 204. This adjustment acts as a reactive effect that provides the optimal matching condition over the desired frequencies of operation.
The antenna 100 is also designed to operate by switching between four pairs of microstrip elements 102. The connection/disconnection to the feed port 104 of these elements 102 is provided by 8 pin diodes 106 (4 in top and 4 in bottom layer). Thus, each pair of branches can be connected/disconnected to the center feed port 104 by applying a proper forward voltage across the pin diodes 106. A total of just four low voltages (0 V in OFF state and 1 V in ON state) can be used to switch between the elements and generate omnidirectional or directional patterns.
Also, due to the compact design and the simple low power controllability, the antenna 100 can be implemented as a reconfigurable antenna in small wireless devices such as ZigBee modules and in general wireless sensors networks. In addition, the highly directive patterns reduce the interferences generated by employing many sensors, as opposed to the case where many sensors equipped with standard omnidirectional antennas are used.
Emerging networking devices incorporate many wireless standards into a single product. The antenna described herein can satisfy the demand of covering a single frequency band using the single band antenna design of
a and 8b illustrate respective multiband antenna designs in accordance with the invention. As illustrated in
a illustrates how the respective elements 102 of the respective antenna branches may be connected to the RF feed port 104 by RF switching elements (e.g., pin diodes) 106 for the embodiments of
The antennas of
As noted above, the antennas described herein may be used to generate reconfigurable patterns without the need of extra parasitic elements. The planar antenna may or may not have additional parasitic elements placed on the top or bottom layer. These parasitic elements can be placed around the main 90° elements, acting as enhancement for beams directivity and gain. In essence, the parasitic elements act as director and/or reflectors during directional modes of operation, enhancing front-to-back ratio and gain of the radiation patterns. The, parasitic elements may be implemented to increase directivity and gain along 45° directions so as to generate more radiation patterns as illustrated in
In mobile devices or vehicles, it is always fundamental to be able to provide a 360° coverage using, ideally, a small antenna. The antenna design described herein has potential applications to be incorporated into vehicles for terrestrial communications or in airplanes for air-to-air communications. It is relevant that a smart control of the antenna 100 can be implemented for security. For example, during in flight communications, it is important to guarantee a reliable connection with the flying aircraft. The employment of the antenna described herein can meet the demand of spreading (broadcasting) a signal to all the other aircraft covering 360° (using omnimode). To prevent interferences/intruders, the directional pattern also can focus the beam toward a single legitimate aircraft for communication.
The antenna described herein may also be used for femtocell applications. A femtocell is a small and low power cellular base station installed for small business or home purposes. Several studies pointed out the importance of having omnidirectional and directional radiation patterns to overcome interfering effects and to provide a stronger connectivity to the users. For this purpose, the antenna described herein can satisfy all these characteristics along with the advantage of being very compact and inexpensive.
The main advantage of the antenna configuration described herein is that it allows the design of planar reconfigurable antennas capable of generating omnidirectional and directional radiation patterns over a wide frequency band or over multiple bands. As noted above, to the inventors' knowledge, the only antenna technology capable of omnidirectional and directional modes is the one described by M. Facco and D. Piazza, in “ Reconfigurable Zero-Order Loop Antenna,” IEEE International Symposium on Antennas and Propagation and USNC/URSI, 2012. However, the design described in that paper does not allow one to cover multiple or wide bands. By contrast, the antenna described herein can generate omnidirectional and directional patterns covering multiple or wide bandwidths.
The antenna configuration described herein also has many degrees of freedom in terms of generated bandwidth. In fact, by tuning the layout of the wings, the antenna 100 can resonate over a wide bandwidth or over multiple frequencies as depicted in
In designing reconfigurable antenna 100 described herein, a primary goal is to make the antenna suitable for the market by having smaller dimensions. In this regard, the antenna 100 described herein combines the benefits described above within a small area. The design is implemented over two layers of a standard PCB substrate and can be etched using commercial automated processes as used for circuit boards. The planar design also makes the antenna suitable for small form factor devices. In an exemplary embodiment, the overall design fits within a square of about 0.5λ×0.5λ.
Because of the small form factors and the ease of the manufacturing process, the total antenna cost is very low. By adding the price for the small PCB substrate 108, 8 pin diodes 106, and 8 inductors (for DC biasing), the total cost is extremely low compared to other reconfigurable antennas such as the Leaky Wave Antenna and Phased array or ESPAR antennas.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. For example, the branches need not be 90 degrees with respect to each other but may be disposed at other angles that permit the reflection of the directed beams. Also, those skilled in the art will appreciate that any diodes, transistors, etc. utilized in an exemplary embodiment may be replaced by corresponding optical elements. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements.
The present application claims priority to U.S. Provisional Patent Application No. 61/740,913, filed Dec. 21, 2012. The contents of that application are hereby incorporated by reference.
The subject matter disclosed herein was made with government support under award/contract/grant number CNS-0916480 awarded by the National Science Foundation. The Government has certain rights in the herein disclosed subject matter.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/76816 | 12/20/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61740913 | Dec 2012 | US |