1. Field of the Invention
This application relates to optical fibers in general and to photonic bandgap fibers in particular. Some aspects of this application are directed towards a photonic bandgap fiber having increased transmission bandwidth.
2. Description of the Related Art
Hollow core (HC) photonic bandgap fibers (PBGF) can be useful for many applications. Light in hollow core photonic bandgap fibers is substantially confined to a hollow core by a photonic bandgap in the cladding structure. Because light is largely guided in the air in hollow core PBGFs, high nonlinear thresholds can be obtained. Transmission, delivery and shaping of optical pulses with very high peak powers is possible in such fibers. HC PBGFs can also be useful for spectroscopy of gases due to the increase in interaction length when light is in a low loss guided mode.
HC PBGFs with hexagonally arranged cladding structures have been demonstrated and studied in the last decade. HC PBGFs having low loss, for example approximately 1 dB/km, and having a bandgap of approximately 300 nm centered around 1550 nm have been previously reported. In some embodiments, the limited width of the bandgap can be a practical constraint. For example, in some embodiments, the center of the bandgap may need to be carefully controlled to provide the correct transmission characteristic at a pre-determined wavelength. In some embodiments, the bandgap width can also be important for applications that require low third order dispersion, such as pulse shaping, and for applications which require wide bandgaps for new wavelength generation and spectroscopy.
The conventional PBGF cladding structure with a hexagonal lattice has limited bandgap which may make it difficult to increase its transmission window. An improvement in both design and fabrication of a PBGF that may increase the transmission bandwidth while supporting low-loss single mode propagation is desirable.
Various embodiments include hollow core (HC) photonic bandgap fibers (PBGFs) with a square lattice (SQL) configured with a wide transmission window and low loss. Various embodiments described herein include fibers that are fabricated with core and cladding pressure control that improves the air filling fraction. In at least some embodiments, a relative transmission window of at least about 35% (Δλ/λc=0.35) is obtained, and up to about 65% can be obtained, when Δλ is measured by the width of the transmission curve at approximately 10% of the maximum intensity. Some embodiments describe a SQL photonic bandgap fiber with relative bandgap beyond 40%.
In various embodiments described herein a HC SQL PBGF may be utilized for delivery of high peak power optical pulses, pulse shaping, or in sensor applications. Some embodiments described herein comprise a method for fabrication of a HC PBGFs. Various embodiments described herein comprise a method for fabricating a polarization maintaining (PM) HC PBGF. Various embodiments of a HC SQL PBGF may comprise 2-10 layers of air-holes. Some embodiments describe a fiber having Δλ/λc=0.45 and a loss as low as approximately 70 dB/km with 5 layers of air holes.
Various embodiments described herein comprise a photonic bandgap fiber (PBGF) for propagating light having a wavelength, λ. In some embodiments, the fiber comprises a core, and a cladding disposed about the core. The cladding may comprise a plurality of regions, at least one region having a dimension, Λ, and configured such that the cladding at least partially surrounds a hole having a hole dimension, D. In some embodiments, the plurality of regions may be arranged as a rectangular lattice. In various embodiments, the portions of the cladding form webs and nodes of the lattice such that at least a portion of the webs have a dimension, d2, and are configured as higher aspect ratio cladding material portions. A portion of the webs may be connected to the nodes and at least a portion of the nodes may have a dimension, d1, and be configured as lower aspect ratio cladding material portions. In various embodiments, D/Λ is in a range from about 0.9 to about 0.995 and the PBGF is configured such that a relative wavelength transmission window Δλ/λc is larger than about 0.35.
In various embodiments, the webs have a second dimension d3, such that the ratio of d3 to d2 is at least approximately 5:1. In various embodiments the ratio of d3 to d2 is at least approximately 10:1 or at least 25:1.
In various embodiments, d2/Λ maybe in a range from about 0.01 to about 0.1, and d1/Λ in a range from about 0.1 to about 0.5. In various embodiments, Δλ/λc may be in the range from about 0.35 to about 0.65. In various embodiments, the rectangular lattice may comprise 2 to 5 layers of cladding material. In various embodiments, the fiber is drawn from a preform having webs and nodes having sizes larger than d1 and d2, and the PBGF is configured such that a relative reduction in the node size is substantially less than a relative reduction in the web size. In various embodiments, the preform may be configured with preform parameters D/Λ=0.5-0.95, d2/Λ=0.05-0.5, and d1/Λ=0.2-0.6. In various embodiments an air filling fraction may exceed about 80%, and be up to about 95%. In various embodiments a dimension of the core may be in a range from about 10 μm to about 100 μm. In various embodiments, the fiber may be configured as a polarization maintaining SQL PBGF. In various embodiments, the holes may contain air. In various embodiments at least a portion of the high index cladding glass may comprise silica.
Various embodiments comprise a method of fabricating such a SQL PBGF. The method comprises stacking capillaries and rods to form a rectangular lattice. The rods comprise an optical material. The method comprises constructing a preform, and drawing the preform into a fiber. In some embodiments, the method comprises controlling core and cladding pressure during the drawing, with the core and cladding pressurized with different pressures. The controlling of the core and cladding pressures narrows a web dimension, d2, and substantially limits changes in node dimension, d1, of the SQL PBGF such that D/Λ is in a range from about 0.9 to about 0.99.
In various embodiments, cladding holes may be pressurized from about 0.5 to about 2.5 psi and the core may be pressurized from about of 0.2 to about 2 psi, and the pressurization of cladding holes exceeds pressurization of the core. In various embodiments a web dimension, d2, is less than about 0.25 μm.
Various embodiments comprise a method of making a polarization maintaining (PM) PBGF. The method comprises forming a cane comprising a lattice of cladding regions, and a core. The cane has a substantially circular outer diameter, and comprises an optical material. The method comprises forming a circular preform using the cane, modifying the circular preform to form a non-circular shape, and drawing the preform into a fiber. The method comprises transforming four-fold symmetry of the lattice into two-fold symmetry by deforming the core and the cladding during the drawing, thereby introducing birefringence into the fiber. In various embodiments the non-circular shape comprises flat boundary portions disposed opposite each other, and at a non-zero angle relative to axes defining the lattice. In various embodiments the lattice comprises a rectangular lattice.
Various embodiments described herein comprise a system for telecommunications, gas measurement, delivery of high peak power pulses, or laser pulse shaping, comprising a SQL PBGF.
In some embodiments, a SQL PBGF is disclosed. The SQL PBGF comprises a cladding region having 2-10 layers of air-holes and configured to provide a relative wavelength transmission window Δλ/λc larger than about 0.35 and minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km.
In various embodiments a photonic bandgap fiber (PBGF) for propagating light having a wavelength, λ, is disclosed. The PBGF fiber comprises a core; and a cladding region disposed about said core. The cladding region may comprise a plurality of features, the features having a periodicity, Λ. The cladding region may be configured such that the cladding region at least partially surrounds a hole having a hole dimension, D. In various embodiments, the plurality of features maybe arranged as a rectangular lattice. The cladding region may comprise webs and nodes of the lattice such that the webs have a width, d2, and are configured as higher aspect ratio cladding material portions. In various embodiments, the webs may be connected to the nodes, the nodes having a dimension, d1, and configured as lower aspect ratio cladding material portions. In some embodiments, the D/Λ may be in a range from about 0.9 to about 0.995 and the PBGF is configured such that a relative wavelength transmission window Δλ/λc is larger than about 0.35.
Unless otherwise stated throughout this application transmission window refers to the width of a spectral transmission curve at approximately 10% of maximum intensity. In embodiments, where a spectral passband includes significant ripple or other fluctuations, the ripple intensity may be represented by an average or median value.
U.S. Pat. No. 7,209,619 (the '619 patent) which is incorporated herein by reference in its entirety for the subject matter specifically referred to herein and for all other subject matter it discloses, includes among the many structures described therein photonic bandgap fibers designed to provide a desired dispersion spectrum. Additionally, designs for achieving wide transmission bands and lower transmission loss are also discussed. For example, a photonic bandgap fiber (PBGF) 100 as shown in
The fibers illustrated in
In various embodiments, the tubes may comprise hollow glass tubes, the glass portion comprising a relatively high index material in comparison to the hollow portion, which is empty and may be evacuated or filled with gas or air. After drawing, the glass portions fuse together forming a high index matrix having hollow regions therein. These hollow regions within the glass matrix form the microstructures 106 that provide the photonic band gap confinement of the cladding 104.
As discussed above, fibers 100 illustrated in
An illustration of a hexagonal stacked preform is shown in
Apart from confinement loss, an additional loss mechanism in PBGF is from the presence of surface modes around the core. Guided core modes can couple power into the surface modes. Part of this coupled power is subsequently lost. The presence of surface modes is a direct consequence of removing tubes in a regular matrix to form a core. Advantageously, however, the number of surface modes can be reduced by reducing or minimizing the width of the high index material around the core. In various preferred embodiments disclosed in the '619 patent, the width of the core/cladding boundary is much further reduced than that of the corresponding cladding. Much stronger coupling exists between the guided core modes and these surface modes than that of the guided core modes and the modes supported in the cladding. The width reduction of the core/cladding boundary is provided by the techniques described above for reducing the width of the high index material in the cladding structure.
Accordingly, as disclosed in the '619 patent, some loss in PBG fibers is due to the presence of surface modes around the core and cladding interface formed by the high index material closest to the core. This high index material may comprises a layer, which may be annular or ring-shaped as seen in the cross-section such as shown in
Additionally, in a construction of a hexagonal PBGF, a further step can be taken to eliminate surface modes. In this approach, a composite structure 208 is used in place of the tubes closest to the core 202 as is schematically illustrated in
Repeated stacking and drawing can be used to further reduce the dimension of the high index material. More of the cladding tubes, especially the ones nearer to the core 202, can be replaced by the composite structure 208 to be benefited by the small dimension of the high index material. This approach thus can substantially reduce the glass dimension around the core. The general approach illustrated in
As disclosed in the '619 patent, circular ring-shaped regions offer some performance advantages in comparison to hexagonal ring-shaped regions illustrated in the
Recently a new class of hollow core fibers have been developed which relies not on photonic bandgap of the cladding for guidance, but also on a low density of modes of the cladding, see for example, Couny et al, “Large pitch kagome-structured hollow-core photonic crystal fiber” Opt. Lett., vol. 31, pp. 3574-3576, 2006. This new class of hollow core fibers can provide an extremely wide transmission band, but they exhibit high loss, typically, in the few dB/m. Thus, such HC fibers are not well suited for a wide range of applications where smooth spectral transmission and low loss are important.
Hollow Core (HC) photonic bandgap fibers (PBGF) with a square lattice have received some consideration, and some advantages have been recognized. A PBGF with a square lattice was studied by Chen et. al. in “Square-structured photonic bandgap fibers”, Optics Communications, vol. 235, pp. 63-67, 2004. Chen et. al. noted that photonic bandgaps can exist in HC PBGFs with square lattice. Buczyńsky et. al. fabricated a hollow core fiber with square lattice as reported in “Hollow-core photonic crystal fibers with square lattice”, Proc. of SPIE, vol. 5950, 595015, 2005. A recent theoretical study, disclosed a square lattice PBG fiber, see for example, Poletti et. al. “Hollow-core photonic bandgap fibers based on a square lattice cladding”, Opt. Lett., vol 32, pp. 2282-2284, 2007.
In their study, Polletti et. al. “demonstrated that the width of the PBG crossing the air line can be up to 20% wider than achievable in a triangular lattice for an optimal choice of hole shape and can reach up to 38% of the central wavelength for a realistic cladding structure.” Thus a large bandgap along air line of Δλa/λc=0.38 is possible, where Δλa is the bandwidth along the air line and λc is center wavelength of the bandgap. However, a typical transmission bandwidth is much narrower. In a further simulation with 8 layers of air holes and 9 missing holes for the core, the analysis indicated a reduced relative transmission bandwidth. Applicants estimate that Δλ/λc=29% was obtained where Δλ is the 10% transmission bandwidth, and a minimum transmission loss of approximately 60 dB/km at approximately 1.55 μm was achieved by Polleti et. al. Polleti et al. recognized “that the widest bandgap is achieved by hole shapes that generate thin struts between two adjacent holes while providing large rods of glass at the intersection of four holes.”
Various embodiments described herein comprise hollow core (HC) photonic bandgap fibers (PBGF) wherein a cladding is formed with a square lattice (SQL). In various embodiments, the SQL structure may have a core formed by excluding 4, 9, 16, or 25 tubes. Some aspects of hexagonal and/or Bragg fiber design and fabrication, as described in the '619 patent and above, are also applicable to SQL PBGFs. When compared to Bragg fibers, however, accurate simulation is particularly difficult, in part because of resolution limits and numerical round-off considerations.
Use of SQL designs and performance evaluations are not widespread. Recently, however, it was recognized that HC SQL PBGFs can have some advantages, particularly increased transmission bandwidth. As disclosed herein, in various embodiments, geometric properties of the cladding of a SQL cladding structure were used and with fabrication techniques discussed below, further extended the transmission window and decreased the loss of PBGFs relative to both hexagonal and prior SQL designs.
In various embodiments of SQL PBGFs described herein, a wider transmission band or window can be achieved by greatly reducing the thickness of the high index webs 307 while maintaining relatively large high index nodes 306 in the cladding 302. Additionally, in various embodiments, transmission loss has a minimum at an optimized structure of this high index material in the cladding. Higher leakage loss can result at very small node size of the high index cladding material, and thus, the cladding no longer provides good confinement. In various preferred embodiments, the width of the core/cladding boundary is much further reduced than that of the corresponding node size in the cladding. Moreover, such a relative reduction of the core/cladding boundary may be beneficial in the construction of hexagonal PBGFs, or for other PBGF lattice configurations.
In various embodiments to increase transmission bandwidth and reduce transmission loss of a PBGF, the cladding lattice is formed so that nodes of appropriate dimensions can provide for significant large photonic bandgaps, while supporting webs are reduced to the extent feasible with fabrication technology, or sufficiently reduced so that they do not support any modes and/or affect modes supported by the nodes which would narrow the larger bandgap provided by the nodes. An effective way to increase photonic bandgap in the cladding is to reduce the width of high index webs of the cladding. The physical dimension of the optical material with the high refractive index is small enough so it supports few modes, with very little impact on the modes supported at the nodes, so that photonic bandgap can form over certain wavelength range.
Cane 500 can then be inserted into another tube which completes fabrication of the preform. By way of example, a tube with an outer diameter of 22.1 mm and inner diameter of 3.94 mm can be used. The preform can then be drawn into a fiber.
In some embodiments of a PBG SQL fiber having large transmission bandwidth, a cane 500 may be configured with cane parameters D/Λ=0.86, d2/Λ=0.14, and d1/Λ=0.52. In various embodiments, parameter ranges may include cane parameters D/Λ=0.5-0.95, d2/Λ=0.05-0.5, and d1/Λ=0.2-0.6.
The cladding holes and core can be pressurized differently during the fiber draw process. In various embodiments cladding holes can be pressurized to higher pressure than the core pressure. For example, in some embodiments, cladding holes are pressurized to a pressure of 1.6 psi and the core is pressurized to a pressure of 0.9 psi. In various preferred embodiments, cladding holes can be pressurized to a pressure in the range of approximately 0.5-2.5 psi and the core is pressurized to a pressure in the range of approximately 0.2-2 psi. In various embodiments, drawing temperature can be about 1900° C. In various preferred embodiments a drawing temperature range of approximately 1850° C. to approximately 2050° C. can be utilized. In at least one embodiment, the preform is fed at a rate of approximately 3 mm/min and a fiber is drawn at a rate of approximately 100 m/min.
In various embodiments a polarization maintaining (PM) HC SQL PBGF fiber may also be fabricated with a modified preform. A perfect SQL PBGF has four-fold rotational symmetry and will not be birefringent, and therefore not polarization-maintaining.
To make a PM HC SQL PBGF the symmetry can be reduced to two-fold rotational symmetry by a technique illustrated in
As illustrated in
Although illustrated with a HC SQL PBGF herein, such a PM fiber fabricating technique can be adapted for construction of other PM PBGFs, and implemented for hexagonal lattice designs, for example the designs disclosed in the '619 patent.
In the example described below, a HC SQL PBGF was fabricated with fiber outer diameter of 125 μm.
Transmission of the fabricated fiber was measured, and the results are illustrated in the plot of
The second measurement reveals the cladding bandgap characterized by the short wavelength band edge 1003 and long wavelength band edge 1004. The transmission window (bandwidth Δλ) is characterized by the wavelength span between the two steep rising band edges as shown. As a result of the thicker core and cladding boundary used in this example, a number of surface modes are supported. Guided core mode coupling to these surface modes leads to high loss at certain wavelengths at which phase matching of the two modes occurs. Some strong loss peaks due to surface mode coupling is indicated by the peaks 1005. These loss peaks significantly reduce transmission window for long fibers. Loss due to surface modes can be reduced by using a thinner core cladding boundary as disclosed in U.S. Pat. Nos. 7,209,619 and 7,418,836, which are incorporated herein by reference. The minimum loss measured in the first measurement as seen from
In another example, a fiber with similar cross section, minimum loss of 70 dB/km was measured in a fiber with 5 rings/layers of air holes. The relative bandwidth Δλ/λc was estimated to be approximately 45%.
Without being limited to any particular theory or explanation, it is believed that the use of rods 558 in the interstitial holes in the stack 550, in combination with core/cladding pressurization, reduces or minimizes web thickness, while limiting changes in the node size. The transmission bandwidth is further extended, with low transmission loss. The narrow widths d2 of the webs can be appreciated from examination of the SEM image of
Many variations and implementations of large bandwidth HC SQL PBGFs are possible. A wide variety of alternative configurations are also possible. For example, components (e.g., layers) may be added, removed, or rearranged. Similarly, processing and method steps may be added, removed, or reordered. For example, a lattice structure may be periodic or non-periodic. Hole sizes may be nearly uniform or may vary, for example with increasing hole size with radial distance. Hole shapes may vary, and may comprise a hole boundary having linear and curved portions. Holes may be regularly spaced, or irregularly spaced, for example randomly distributed. In various embodiments, the cladding glass may comprise silica. In various embodiments, a fiber diameter may be in a range from about 125 μm to about 400 μm and the core diameter may be in a range from about 10 μm to about 100 μm. In various embodiments, an air-filling fraction may be at least about 80% and up to about 95%. In various embodiments, a minimum transmission loss may be in a range from about 70 dB/km to about 0.1 dB/km. In various embodiments, a SQL PBGF may have a minimum loss in a range from about 70 dB/km to about 0.1 dB/km, with 2-10 layers of air holes, or with 2-5 layers of air holes. In various embodiments a web width may be less than about 200 nm, or in a range from about 50 nm to about 200 nm. An aspect ratio, corresponding to a length to width ratio d3/d2, of the webs may be in a range from about 5:1 up to about 40:1.
The photonic bandgap fibers described herein can be incorporated in numerous applications. For example,
PBGFs can also be employed in systems for generating optical pulses such as ultrafast optical pulses. Additional details regarding ultrafast pulse systems is included in U.S. patent application Ser. No. 10/814,502 entitled “Pulsed Laser Sources” and U.S. patent application Ser. No. 10/814,319 entitled “High Power Short Pulse Fiber Laser”, which are incorporated herein by reference in their entirety.
A PBGF (e.g. a HC SQL PBGF or other fibers described herein) with low loss and a wide transmission band can also be used for trace gas analysis with much improved sensitivity due to the long interaction length.
In such a system gas is introduced into the multiplexer and enters into portions of the PBGF though holes or openings therein. In various preferred embodiments, the core is hollow and the gas enters the hollow core. The gas affects the propagation of the light, for example, by attenuating the light due to absorption at one or more wavelengths. The absorption spectrum of the gas can, therefore, be measured using the detector 1508 and monochrometer or tunable filter 1507. In certain embodiments such as shown in
In the embodiment shown in
The multiplexer 1502 comprising a sealed chamber 1510A is illustrated in
The de-multiplexer 1505 is illustrated in
The Raman detection system shown in
The de-multiplexer 1604 is illustrated in
Optical connection is provided between the optical components as shown in
The systems and components shown in FIGS. 14A,-14C, 15A-15C, 16A, and 16B are examples only. One skilled in the art may devise alternative configurations and designs. For example, the filter 1516 shown in
Other variations are also possible. Additional components can be added to the systems. Likewise, some components in
Other applications not discussed herein or in the '619 patent are possible as well. Moreover, polarization-maintaining (PM) fibers as illustrated herein are often beneficial, and may be required for applications where preservation of polarization is important.
Accordingly, although the inventions described herein have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/165,328, titled “WIDE BANDWIDTH, LOW LOSS PHOTONIC BANDGAP FIBERS,” filed on Mar. 31, 2009 which is hereby incorporated by reference herein in its entirety. This application is also related to U.S. Pat. No. 7,209,619, entitled “Photonic Bandgap Fibers” filed on Dec. 30, 2005 (IMRAA.032A), and U.S. Pat. No. 7,418,836, filed on Mar. 15, 2007, entitled “Photonic Bandgap Fibers” (IMRAA.032DV1), each of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61165328 | Mar 2009 | US |