This invention relates generally to coherent beam combining and, in particular, to apparatus and methods for increasing the field-of-view (FOV) in such systems.
Coherent beam combiners are useful in many applications, including optical communications and laser radar. An overall receiver system, of which the beam combiner 100 is a part, is shown in FIG. 1. Radiation from an object space 102 typically enters through a mechanical scanner (not shown) before interacting the combiner itself, which merges the received wavefront with the signal from a local oscillator 104. In the balanced detection scheme, two detectors D1, D2 are used as shown, for better signal to noise ratio, for any given line of sight in the wide field of view. Using current technology, coherent beam combining is limited to the coherent field of view (FOV), given by 1.63λ/D, where λ is the wavelength of the radiation, and D is the aperture diameter. For example, for D=1 m, λ=1 micron, the coherent FOV=1.63λ/D=1 microradian=93 millionths of a degree.
In a typical system, a telescope is used to reduce the beam diameter at the input to the combiner, so that more economical optical elements with smaller small practical dimensions can be used. For example, with a beam combiner aperture size of 10 cm, a telescope with magnification M=20 has input aperture of 2 meters, and if M=100 the input aperture is 10 meters. The large telescope aperture significantly increases the light gathering capacity of the receiver.
Thus, in contrast to the coherent FOV, the total FOV is usually much larger, determined by the optical design of the receive optics (such as the telescope or lens assembly), and can be as large as 1 degree for reflecting telescopes, and several tens of degrees for wide angle camera lenses. The pointing range of receive direction can further be increased by using a mechanical scanning arrangement such as a scan mirror or gimbaled optic.
That is, while the total FOV of the system allows receiving radiation over large angles, coherent combining is limited to a very small neighborhood (=coherent FOV) of that particular direction within the total FOV. The point to note is that the coherent FOV (1.63λ/D) is extremely small compared to total FOV, unless the aperture is made extremely small, such as that of a fiber. As the aperture is made small, the collection area decreases as its square, and so the signal strength drops off dramatically. Even if fibers are used, the collection area is so small that one has to use a focusing optics before it, and the coherent FOV of the front end is limited again by the receive aperture size of the front end, and so we are back to the same problem of very small coherent FOV, even when a fiber is used at the focal plane.
The current state-of-the-art technology, as shown in
For a beam combiner using fiber optics (see FIG. 2(b)), the FOV in object space is approximately (d/f−λ/D)/M, where M is the magnification of telescope preceding the beam combiner, d is the core diameter of fiber, f is the focal length and D is the aperture of the lens focusing into the fiber and λ is the wavelength. For typical values of M=20, d=5 um (single mode), f=0.1 m, λ=1.5 μm, and D=0.1 m, we have FOV=(d/f−λ/D)/M=1.75 μrad.
In summary, for a given FOV, telescope magnification reduces the FOV in the object space. For example, if the Beam Combiner FOV is 20 μrad, then the FOV in the object space is only 1 μrad for M=20, and only 0.2 μrad for M=100. Accordingly, beam combiners exhibiting a wider FOV are of great value.
Broadly, this invention removes the small FOV limitation of current coherent beam combiner technology, and enables beam combining over significantly larger fields of view. In a typical configuration, fields of view on the order of several hundred micro radians are possible in the object space.
The system includes an input to receive an input wavefront, a local oscillator to generate a reference wavefront, and an optical combiner such as a beam splitter to combine the input wavefront and the reference wavefront to produce an output wavefront which is received by a detector. According to the invention, an optical element is supported to receive the reference wavefront and generate, in effect, a plurality of local oscillator point sources which provide a set of wavefronts that cover the required wider FOV.
In the preferred embodiment, the optical element is a diffuser, and may optionally include a mechanism for rotating the diffuser to reduce speckle. In an alternative embodiment the optical element is a lenslet array. The spacing of the lenslets in the array is preferably such that the angle subtended by centers of two adjacent lenslets as seen from the center of the system's collimating lens or mirror is less than 0.83λ/D, where λ is the wavelength of the radiation, and D is the aperture diameter.
This invention finds utility in any application which uses coherent beam combining, including optical communication systems, laser radar systems, and other fields of endeavor.
Two different implementations are shown in FIGS. 3(a) and 3(b). Referring to FIG. 3(a), the local oscillator wave front illuminates a diffuser 302, different points of which effectively behave as point sources of the local oscillator. The signals from these point sources are coherent but with a temporally fixed, spatially random phase difference between the points. While this introduces a delay error, this error is insignificant in applications such as optical communication systems and laser radar systems. In laser radar systems, for example, this phase error will result in a range error equivalent to the optical path difference corresponding to the optical thickness variations in the diffuser, which is less than a few tens of microns. In communication systems, this delay error is so small (˜1013 sec) that it does not cause any synchronization problems. Thus, for any direction in the receiver FOV there is a local oscillator wave front, which makes coherent combining possible. If speckle is a problem at the diffuser, it may be alleviated by appropriate schemes such as rotating the diffuser. (In the case of laser radar, there may be speckle at the object being imaged in any case, which should be alleviated by some averaging procedure.) Device 302′ is a lens or mirror.
In the alternative embodiment of FIG. 3(b), the diffuser is replaced by the focal plane 302 of a lenslet array 304 which is illuminated by the local oscillator wavefront. The lenslet array thus creates an array of point sources of the local oscillator signal, which provide a set of wavefronts that cover the required wide FOV. The spacing of the lenslets in the array is preferably such that the angle subtended by centers of two adjacent lenslets as seen from the center of the collimating lens (or mirror) is less than 0.83Vλ/D, so that for any received wave front at any direction in the FOV, there is a local oscillator wave front within the coherence cone wherein the coherent beam combining can take place. There is no speckle effect in this arrangement.
The beam combiners shown in
Number | Name | Date | Kind |
---|---|---|---|
4063084 | Goodwin et al. | Dec 1977 | A |
4283116 | Weis | Aug 1981 | A |
4522466 | Lindig et al. | Jun 1985 | A |
4648134 | Stewart | Mar 1987 | A |
4699466 | Brandstetter et al. | Oct 1987 | A |
4794395 | Cindrich et al. | Dec 1988 | A |
4850048 | Mohr | Jul 1989 | A |
4910523 | Huguenin et al. | Mar 1990 | A |
5000567 | Fleshner | Mar 1991 | A |
5005946 | Brandstetter | Apr 1991 | A |
H933 | Buczek et al. | Jul 1991 | H |
5108168 | Norbert et al. | Apr 1992 | A |
5159489 | Massie et al. | Oct 1992 | A |
5299035 | Leith et al. | Mar 1994 | A |
5345304 | Allen | Sep 1994 | A |
5363235 | Kiunke et al. | Nov 1994 | A |
5796506 | Tsai | Aug 1998 | A |
5835214 | Cabib et al. | Nov 1998 | A |
5875030 | Cooke et al. | Feb 1999 | A |
6075883 | Stern et al. | Jun 2000 | A |
6091523 | Brandstetter | Jul 2000 | A |
6307895 | Alexander et al. | Oct 2001 | B1 |
6687006 | Pering et al. | Feb 2004 | B2 |
20020093695 | Berman et al. | Jul 2002 | A1 |
20030053066 | Redner | Mar 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040036978 A1 | Feb 2004 | US |