Disclosed is a wide field of view millimeter wave imaging system and a method of assembling the same. Detector chips, each comprising a diode sensor and an integrated antenna, are attached to a two dimensional flexible multilayer printed circuit board. This flexible printed circuit board is then folded up into a geodesic structure that fits around, and contacts the spherical lens through mechanically stabilized contact points.
Current millimeter wave imaging arrays mostly use convex lenses to focus an image onto a flat focal plane. The angular field of view is then limited to the amount of defocusing that can be tolerated away from the center of the focal plane. The presently disclosed technology shows how to practically assemble multiple focal planes around a spherical lens for a very wide angular field of view. In addition, the presently disclosed technology teaches how to use monolithically integrated diode and antenna detector chips that may be flip-chip attached to a folded hybrid printed circuit board to create a compact, three-dimensional imaging system with a wide field of view.
The millimeter wave imaging assembly described herein may be used in many different possible applications, including vehicle collision avoidance system for use in harsh weather (such as fog), wide angle imaging for aircraft landing systems, and battlefield and civil disaster imaging through clouds and smoke. Millimeter wave imaging is an aid to infrared and/or visible imaging systems when harsh environmental conditions obscure the shorter wavelength systems.
The prior art includes:
B. Schoenlinner, X. Wu, J. P. Ebling, G. V. Eleftheriades, and G. M. Rebiez, “Wide-Scan Spherical-Lens Antennas for Automotive Radars,” IEEE Trans. Microwave Theory Technique, Vol. 50, No. 9, September 2002, pp. 2166-2175,
This paper describes a millimeter wave automotive radar that uses a spherical lens and an array of pick-up antennas that surround the lens. This system uses a spherical lens for focusing and printed circuit tapered slot antennas to receive the signal and channel it into a detector. The antenna array surrounds the lens in one diametric plane only, thus it would have to be physically scanned to receive signals from other planes and thus form an image. The presently disclosed technology utilizes a dielectric resonator antenna fabricated monolithically from the same substrate that has the detector diode. This allows a much denser fill of pixels and also allows us to produce an image from multiple diametric planes simultaneously.
J. H. Schaffner, J. J. Lynch, and D. F. Sievenpiper, “Antenna System and RF Signal Interference Abatement Method,” Patent Application Publication US2003/0043086 A1, Mar. 6, 2003.
This published patent application includes a description of using a spherical lens surrounded by patch antenna elements to simultaneously focus on multiple GPS satellites over a very wide field of view. The major differences between that patent application and the present disclosure are:
The prior art does not need dense angular discrimination since the locations of the GPS satellites are frequently widely spread across the celestial field of view. The present disclosure shows how to densely pack detectors for a much finer angular resolution that is needed for imaging systems.
The prior art assumes that the antennas to which the signals are focused are separate from the lens and in fact stand off from the lens. In this disclosure we describe a single imaging system and method of assembly whereby the focal plane arrays are in intimate contact with the lens to form a very compact system.
B. Tomasic, J. Turtle, and S. Liu, “A geodesic sphere phased array antenna for satellite control and communications,” presented at the URSI General Assembly 2002 Conference, Jul. 15, 2002, paper B8.0.9.
This paper describes the use of a geodesic dome to support a phased array antenna for wide field of view radar scanning. The difference between this report and the present disclosure is that the report describes a phased array antenna while we describe an imaging array. In the paper, the antenna elements radiate away from the spherical surface and each facet of the dome is fed through a corporate feed network. This disclosure is not directed to a phased array antenna, but rather relies on a dielectric lens to focus the point of an image.
Additional prior art documents include:
A millimeter wave imaging system assembly consists of a spherical dielectric lens and multiple detector focal planes, bounded by triangles, arranged as a geodesic structure surrounding and approximately conforming to the lens.
Compact circuit geometry of a geodesic structure panel containing an array of densely placed monolithic detector chips comprised of diodes and integrated antennas. These panels are replicated to form a geodesic structure around the dielectric lens sphere. The detector chips are flip-chip attached to the substrate board which comprises the geodesic panels.
A single flexible multilayer printed circuit board which is fabricated so that the detector chips and sensor cables can be attached while the board is flat, and then can be readily folded into a geodesic structure that is placed around the lens such that the center of each triangle of the geodesic structure is at the focal point of the lens.
A flexible multiple line sensor cable that is solder attached to the outside (the side away from the lens) of a selected panel of the geodesic structure. The purpose of the cable is to be able to individually address each detector chip from a sensor integrator and controller.
a and 6b are perspective and plan view depictions of a detector chip flip-chip attached to the substrate.
a and 7b are simulated results of the detector chip antenna,
A wide field of view millimeter wave imaging assembly is shown in
where D is the diameter of the sphere and ∈ is the dielectric constant. For fused silica, ∈ is 3.8 which puts the focal point at a distance approximately 1.03*D/2, or slightly beyond the sphere's surface. For Duopt® Delrin® brand acetal plastic the dielectric constant is 3.7 which puts the focal point at 1.04*D/2 beyond the sphere's surface. A reasonable range of relative dielectric constant for a homogenous spherical lens is roughly between 3 and 6. For a Luneburg lens the relative dielectric constant varies from 2 (at its center) to 1 at its outer surface.
An array 12 of millimeter wave detectors 14 is placed around the sphere 10, covering up to 2π steradians, i.e. a hemisphere, to capture the RF signals coming from waves impinging upon the sphere and focused at points behind the sphere along the direction of propagation. A detector 14 consists of a millimeter wave power detection device, such as a Schottky or backward diode, and an antenna to efficiently funnel the signal to the detection device. In
Δl=1.22fλ/D,
where Δl is the distance between the two images on the focal plane, D is the aperture dimension of the focusing lens or reflector, f is the focal distance, and λ, is the wavelength. For the case of focusing to the surface of the spherical lens of diameter D, f is equal to D/2 so that the resolution limit is 0.61λ. This defines the nominal spacing between detectors 14.
The detectors are supported by a geodesic structure 16 (see also
Each triangle 18 of the geodesic structure 16 approximates a focal plane (approximate because the true focal points of a sphere sweep out a spherical surface). Discrete detectors 14 can be assembled onto the substrate 16 and electrically connected to bond pads by wirebonding or by flip-chip soldering, or a triangular array of monolithic detectors can be bonded to the substrate 16. The substrate material 16 should be thin enough to readily fold into geodesic shape (or at least thin enough along the fold lines 22); typical substrate materials used for flexible printed circuits are polyimide films such as Dupont Kapton® or polyesters such as Dupont Mylar®. And such materials may be used, for example, as the substrate 16.
The detected image signals, typically DC, are conducted through via holes 24 (see also
An embodiment for a 94 GHz imaging assembly is shown in
Two conductive lines 30 lead from each detector bond pad (one for signal and one for ground) through a conductive via hole 24 and on to an adjacent triangle 18. Because there are so many detector output pairs that need to run to a connector 35, the connector 35 is relatively large and it is difficult to place the connector on the same triangle as the detectors 14. To get around this obstacle, the detector signals may be routed to adjacent triangles that do not contain detectors (in a preferred embodiment) where there is plenty of room for the connector 35. If there are many contiguous triangles with detectors 14, the routing of the signals becomes more difficult. At the adjacent triangle 18 the lines 30 are terminated in an array for attachment to cables 26 which bring the detected signals from the triangle to a central connection point 28 for the data logger 32 (as shown in
A close up of the substrate circuit is shown in
An embodiment of the cable that will attach to one of the triangles 18 with cable connection pads 36 can be made from Kapton® brand polyimide and copper traces 30. A ribbon cable 26 is preferably fabricated for each triangle 18 that is to be connected to the data logging processor 32 (
A profile of the geodesic circuit substrate which shows an example of the fabrication layers for this embodiment is shown in
14-9 Ni—Au CABLE SIDE BONDPADS: Same as layer 14-8, except the pads are on the cable side and are for attaching the cable 26.
The detector 14 will now be described in greater detail. The disclosed millimeter wave detector 14 contains an RF sensing device 54 (see
A slot ring 52 is preferably used to feed the DRA 50, although other types of feed structures could be used, such as linear slots or metallic patches. The slot ring 52 is preferably fabricated from metal deposited on the DRA chip 50, and for GaAs and InP chips the preferred metal is gold. The detector diode 54 is preferably grown in the DRA 50 semiconductor and is located across the slot 52 such that the anode (for example) of the diode 54 contacts the inner metal circle 56 and the cathode (for example) of the diode 54 contacts the outer metal 58. The diode 54 could also be fabricated in the opposite polarity direction as well. One advantage of the slot ring feed antenna structure 52, 56, 58 is that the DRA 50 can respond to circular polarization by properly locating an RF short circuit 60 across the slot 52. The distance the short 60 is from the diode 54 is determined by the conjugate impedance match of the slot ring 52 and DRA 50 to the diode's impedance. In practice, the RF short circuit is preferably made from a relatively large capacitor, thus creating DC isolation across the slot 52 for the diode 54 to work properly. Fabricating the detector 14 to respond to RF circular polarization facilitates attachment of the chip 64 to the geodesic dome substrate 16 in that rotational alignment of the chip 64 can be based upon layout requirements rather than on the received RF polarization requirements. Also shown in
An example of a detector 14 based upon fabrication with an InP chip substrate 56 was designed for 94 GHz operation and simulated using Ansoft Corporation's field simulation software HFSS®. A small signal equivalent circuit of the diode was used to determine the diode impedance at 94 GHz, which was calculated to be 10-j33.7Ω. This value was used to determine the dimensions of the DRA 50 and slot ring diameter, and to determine the position of the short circuit to provide optimum performance at 94 GHz. In the simulation, the diode 54 was replaced by a small source with impedance identical to the diode's impedance. A 1 pF capacitor was used as the RF short 60. Also, it was assumed in the simulation that the geodesic dome structure substrate 16 was 0.005″ thick and that the top of the DRA 50 was attached to a fused silica (quartz) superstrate 0.040″ thick (shown in
In addition it was assumed that the solder bumps held the detector chip 56 off of the substrate 16 by 0.001″.
The simulated results of the antenna performance are shown in
For the particular short circuit location, the antenna was optimized for left-hand circular polarization. If the short were placed on the other side of the diode, the antenna would be optimized for right-hand circular polarization. Simulations with varying loads at the end of the detected signal lines were performed and the resulting variation in the antenna performance was small.
The sphere is preferably mounted in a rigid fashion relative to the cup in order to maintain a fixed distance between the sphere surface and the detectors. This distance can be zero, or there can be a nonzero gap (e.g. 50 mils).
Having described the invention in connection with certain embodiments thereof, modification will now suggest itself to those skilled in the art. As such, the invention is not to be limited to the disclosed embodiment except as is specifically required by the appended claims.
This application is the divisional of U.S. patent application Ser. No. 11/008,716 filed on Dec. 8, 2004, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2682235 | Fuller | Jun 1954 | A |
3618090 | Garrison | Nov 1971 | A |
3697998 | Schaufelberger | Oct 1972 | A |
4114162 | Wild | Sep 1978 | A |
4146895 | Wild | Mar 1979 | A |
4217590 | Wild et al. | Aug 1980 | A |
4488156 | DuFort et al. | Dec 1984 | A |
4825216 | DuFort | Apr 1989 | A |
5047776 | Baller | Sep 1991 | A |
6141034 | McCutchen | Oct 2000 | A |
6208288 | Shoucri et al. | Mar 2001 | B1 |
6292134 | Bondyopadhyay | Sep 2001 | B1 |
6594582 | Quinn | Jul 2003 | B1 |
6867741 | Schaffner et al. | Mar 2005 | B2 |
7796173 | Lettvin | Sep 2010 | B2 |
20030043086 | Schaffner et al. | Mar 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11008716 | Dec 2004 | US |
Child | 12852316 | US |