Wide field-of-view virtual image projector

Abstract
A wide field-of-view virtual image projector includes a rod light guide that is embossed with at least a first diffraction grating and a second diffraction grating that is substantially parallel to the first diffraction grating. The first diffraction grating is configured to receive a first light ray, and to project first diffracted light rays from the rod light guide at a first range of angles. The second diffraction grating is configured to receive a second light ray, and to project second diffracted light rays from the rod light guide at a second range of angles. The virtual image projector further includes a slab light guide configured to receive the first diffracted light rays and the second diffracted light rays, and to diffract the first diffracted light rays and the second diffracted light rays out of the slab light guide to generate a virtual image with a wide field-of view.
Description
BACKGROUND

A virtual image can be made by pointing a video projector into a light guide embossed with a grating to project the virtual image from a surface of the light guide. A pair of eyeglasses, or spectacles, can include a virtual image projector to project a virtual image in front of the eyes of a wearer of the eyeglasses. Virtual image projectors small enough to be placed on a pair of eyeglasses, however, typically project a virtual image with a narrow field-of-view.


SUMMARY

This document describes techniques and apparatuses for implementing a wide field-of-view virtual image projector. A wide field-of-view virtual image projector includes a rod light guide that is embossed with at least a first diffraction grating and a second diffraction grating that is substantially parallel to the first diffraction grating. The first diffraction grating is configured to receive first light rays, and to project first diffracted light rays from the rod light guide at a first range of angles. The second diffraction grating is configured to receive second light rays, and to project second diffracted light rays from the rod light guide at a second range of angles. The virtual image projector further includes a slab light guide configured to receive the first diffracted light rays and the second diffracted light rays, and to diffract the first diffracted light rays and the second diffracted light rays out of the slab light guide to generate a virtual image with a wide field-of view.


This summary is provided to introduce simplified concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of techniques and apparatuses for implementing a wide field-of-view virtual image projector are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:



FIG. 1 illustrates an example environment in which a wide field-of-view virtual image projector can be implemented.



FIG. 2 illustrates an example light guide embossed with a single diffraction grating.



FIG. 3 illustrates an example of the field-of-view of a light guide embossed with a single diffraction grating.



FIG. 4 illustrates a more-detailed example of a rod light guide of a virtual image projector.



FIG. 5 illustrates a more-detailed example of a rod light guide and a slab light guide of a virtual image projector.



FIG. 6 illustrates a more-detailed example of a slab light guide of a virtual image projector.



FIG. 7 illustrates an example method for controlling a wide field-of-view virtual image projector.



FIG. 8 illustrates an example device in which techniques for a wide field-of-view virtual image projector can be implemented.





DETAILED DESCRIPTION

Overview


A virtual image can be made by pointing a video projector into a light guide embossed with a grating to project the virtual image from a surface of the light guide. A pair of eyeglasses, or spectacles, can include a virtual image projector to project a virtual image in front of the eyes of a wearer of the eyeglasses. A typical virtual image projector small enough to be placed on a pair of eyeglasses, however, projects a virtual image with a horizontal field-of-view of only 30 degrees.


This document describes techniques and apparatuses for implementing a wide field-of-view virtual image projector. A wide field-of-view virtual image projector includes a rod light guide that is embossed with at least a first diffraction grating and a second diffraction grating that is substantially parallel to the first diffraction grating. The first diffraction grating is configured to receive first light rays, and to project first diffracted light rays from the rod light guide at a first range of angles. The second diffraction grating is configured to receive second light rays, and to project second diffracted light rays from the rod light guide at a second range of angles. The virtual image projector further includes a slab light guide configured to receive the first diffracted light rays and the second diffracted light rays, and to diffract the first diffracted light rays and the second diffracted light rays out of the slab light guide to generate a virtual image with a wide field-of view.


In some embodiments, the virtual image projector may be coupled to a pair of eyeglasses to generate the virtual image with the wide field-of-view in front of a lens of the eyeglasses so that a wearer of the eyeglasses, looking through the lens of the eyeglasses, sees the virtual image.


Example Environment


FIG. 1 is an illustration of an example environment 100 in which a wide field-of-view virtual image projector (herein a “virtual image projector”) can be implemented. Environment 100 can be implemented in a virtual image display device 102, which is illustrated, by way of example and not limitation, as a head-mounted display device 104 or a flat-panel display device 106. Head-mounted display device 104 can include a pair of eyeglass, sunglasses, goggles, or any other type of head-mounted display device. Flat-panel display device 106 may include any type of flat-panel display device that can generate virtual, three-dimensional (3D), and/or multi-view images, such as a television, a desktop computer, a laptop, a mobile computing device, or a tablet computing device.


Virtual image display device 102 includes processor(s) 108 and computer-readable media 110, which includes memory media 112 and storage media 114. Computer-readable media 110 also includes a controller 116. How controller 116 is implemented and used varies, and is described as part of the methods discussed below.


Virtual image display device 102 also includes virtual image projector 118 that can be controlled by controller 116 to generate a wide field-of-view virtual image. When device 102 is implemented as head-mounted display device 104, virtual image projector 118 can be controlled to generate a wide field-of-view virtual image that can be viewed by a wearer of the head-mounted display device, referred to as “viewer” herein. For example, virtual image projector 118 may be coupled to the lens of a pair of eyeglasses to generate a virtual image of infinitely distant objects directly in front of the viewer's eye to cause a lens of the viewer's eye to adjust to an infinite or near-infinite focal length to focus on the objects. Virtual image projector 118 may be at least partially transparent so that the viewer can see external objects as well as virtual images when looking through a lens of head-mounted display device 104. In addition, it is to be appreciated that virtual image projector 118, in some embodiments, may be small enough to fit onto the lens of a pair of eyeglasses without being noticeable to a viewer wearing the eyeglasses.


In some cases, virtual image projector 118 can be implemented as two projectors to generate a virtual image in front of each of the viewer's eyes. When two projectors are used, each virtual image projector 118 can project the same virtual image concurrently so that the viewer's right eye and left eye receive the same image at the same time. Alternately, the projectors may project slightly different images concurrently, so that the viewer receives a stereoscopic image (e.g., a three-dimensional image). For purposes of this discussion, however, virtual image projector 118 will be described as a single projector that generates a single virtual image.


Virtual image projector 118 includes an illuminator 120, a rod light guide 122, and a slab light guide 124. In some embodiments, rod light guide 122 and slab light guide 124 are polyhedral waveguides that transmit light by total internal reflection. The length of rod light guide 122 is substantially equal to the length of slab light guide 124. The height, however, of slab light guide 124 is significantly greater than the height of rod light guide 122. It is to be appreciated, however, that rod light guide 122 and slab light guide 124 are not limited to any specific size or shape.


Illuminator 120 can include a red laser, green laser, and blue laser. The red, green, and blue lasers may be semiconductor lasers, such as low-power diode lasers, or any other suitable lasers. The red, green, and blue lasers can be independently biased and modulated by controller 116. Illuminator 120 may also include merging optics that are configured to merge the monochromatic emission from each of the lasers to form a beam or ray of light. As described herein, the term “light ray” will be used to describe a “beam” or “ray” of light emitted by illuminator 120.



FIG. 2 illustrates an example 200 of a light guide 202 embossed with a single diffraction grating. In this example, an end face 204 of light guide 202 is positioned adjacent an illuminator 206 and is configured to receive a light ray 208 from illuminator 206. Light ray 208 passes through light guide 202 to opposite end face 210, where it encounters a redirection optic 212. Redirection optic 212 can be implemented as mirror or refractive structure, and is configured to vary an angle at which light rays are injected into light guide 202. In this example, redirection optic 212 reflects light ray 208 back into light guide 202 at an angle greater than the critical angle for total internal reflection. After reflecting off of redirection optic 212, light ray 208 propagates away from opposite end face 210 by total internal reflection. However, each time light ray 208 encounters a diffraction grating 214, part of light ray 208 is diffracted out of light guide 202 to form parallel diffracted light rays 216.


Light guide 202 projects diffracted light rays with a narrow field-of-view in the horizontal plane because it is equipped with a single diffraction grating. Consider, for example, FIG. 3, which illustrates an example 300 of the field-of-view light guide 202 embossed with single diffraction grating 214. In FIG. 3, a first light ray 302 exits light guide 202 when it encounters diffraction grating 214 if it exceeds the critical angle, which is approximately 45 degrees. Additionally, a second light ray 304 propagating at an angle of more than 75° may also exit light guide 202 when it encounters diffraction grating 214. The range of angles at which single diffraction grating 214 of light guide 202 projects light rays, therefore, is approximately 30 degrees. This range of angles is substantially equal to the field-of-view of light guide 202. In accordance with various embodiments, therefore, rod light guide 122 is configured with at least two diffraction gratings that enable virtual image projector 118 to generate virtual images with a wide field-of-view in the horizontal direction.



FIG. 4 illustrates a detailed example of rod light guide 122 of virtual image projector 118. In this example, rod light guide 122 is embossed with diffraction gratings 402, 404, 406, and 408. It is to be noted, however, that rod light guide 122 may be embossed with less than or more than four different diffraction gratings. In one embodiment, for example, rod light guide 122 is embossed with two diffraction gratings. Gratings 402, 404, 406, and 408 are oriented substantially parallel to each other, and are each configured to receive a separate light ray at 410, 412, 414, and 416, respectively, of end face 418 of rod light guide 122 from illuminator 120 (not pictured). In an embodiment, rod light guide 122 is a single rod light guide (e.g., a single piece of glass). For example, diffraction gratings 402, 404, 406, and 408 can be embossed onto a single rod light guide. Alternately, rod light guide 122 may include multiple rod light guides stacked side by side, where each rod is embossed with a different diffraction grating. For example, a rod light guide embossed with diffraction grating 402 can be stacked next to a rod light guide embossed with diffraction grating 404, and so on.


Each of gratings 402, 404, 406, and 408 acts similar to diffraction grating 214 of light guide 202 illustrated in FIG. 2. For example, a light ray received at 410 of end face 418 passes through rod light guide 122 to opposite end face 420, where it encounters a first redirection optic (not pictured). Like redirection optic 212 of FIG. 2, first redirection optic can be implemented as a reflective mirror or refractive structure, and is configured to vary an angle at which light rays are injected into rod light guide 122. In this example, the first redirection optic reflects the light ray back into rod light guide 122 at an angle greater than the critical angle for total internal reflection. After reflecting off of the first redirection optic, the light ray propagates away from opposite end face 420 by total internal reflection. The light ray travels parallel to the sides of rod light guide 122 while reflecting off of the surface embossed with diffraction grating 402 and the surface opposite diffraction grating 402. However, each time the light ray encounters diffraction grating 402, part of the light ray is diffracted out of rod light guide 122 to form parallel diffracted light rays, as shown in FIG. 2. Similarly, each time a light ray injected at 412, 414, or 416 encounters diffraction grating 404, 406, or 408, respectively, part of the light ray is diffracted out of rod light guide 122 to form parallel diffracted light rays, as shown in FIG. 2.


In some embodiments, virtual image projector 118 also includes a second redirection optic (not pictured), which overlays the surface of rod light guide 122 that is embossed with the diffraction gratings. The second redirection optic is configured to reflect the diffracted light rays back through rod light guide 122 and out of the surface opposite the diffraction gratings of rod light guide 122. It is to be noted that gratings 402, 404, 406, and 408 are weak, so they do not alter the diffracted light rays reflected back through rod light guide 122. As will be described in more detail below, the second redirection optic directs the diffracted light rays into slab light guide 124.


In accordance with various embodiments, the spatial frequencies of diffraction gratings 402, 404, 406, and 408 differ so that the diffracted light rays projected from each diffraction grating is projected at a different range of angles. In this example, grating 408 has a pitch short enough to project diffracted light rays at a range of angles between 30 degrees and 60 degrees to the surface normal. In contrast, grating 402 has a pitch long enough to project diffracted light rays at a range of angles between −60 degrees and −30 degrees. Similarly, grating 406 is configured to project diffracted light rays at a range of angles between 0 degrees to 30 degrees, and grating 404 is configured to project diffracted light rays at a range of angles between −30 and 0 degrees. Together, the different ranges of angles combine to form a wide field-of-view in the horizontal direction. In FIG. 4, for example, each diffraction grating projects light at a range of angles equal to 30 degrees. By using four diffraction gratings, therefore, the total range of angles is equal to 120 degrees. This enables rod light guide 122 to project light with a wide-field-of-view in the horizontal direction equal to 120 degrees. In embodiments, the ranges may overlap to smooth out any discontinuities.


In some embodiments, in order to generate a virtual image with a wide field-of-view, the output from rod light guide 122 is injected into slab light guide 124. FIG. 5 illustrates a more-detailed example of rod light guide 122 and slab light guide 124 of virtual image display device 102. In an embodiment, rod light guide 122 and slab light guide 124 may be a single piece of glass. In other embodiments, however, rod light guide 122 and slab light guide 124 are each separate light guides. As illustrated in FIG. 4, the length of rod light guide 122 is substantially equal to the length of slab light guide 124. The height, however, of slab light guide 124 is significantly greater than the height of rod light guide 122. In this example, the surface opposite the diffraction gratings of rod light guide 122 is oriented towards an entry surface of slab light guide 124. Slab light guide 124 is embossed with a diffraction grating 502 that is substantially perpendicular to diffraction gratings 402, 404, 406, and 408 of rod light guide 122. As described above, a second redirection optic 504 is configured to reflect diffracted light rays from rod light guide 122 into slab light guide 124. Second redirection optic 504 is shown partially cut off in FIG. 5, but it is to be appreciated that second redirection optic 504 runs the whole length of rod light guide 122. Slab light guide 124 receives the diffracted light rays from rod light guide 122, and projects the light rays to form a virtual image with a wide field-of-view.


It is to be noted that slab light guide 124 is thick enough to receive all the light from rod light guide 122 after it has reflected off of second redirection optic 504. However, light from any one grating of rod light guide 122 only partially fills a pupil of the slab. Thus, once the light rays have passed into slab light guide 124, they interact intermittently with diffraction grating 502 and therefore illuminate it at intervals. In some embodiments, therefore, slab light guide 124 is further configured with a partially-reflecting mirror 506. In this example, partially-reflecting mirror 506 is inserted into a plane of slab light guide 124 that is substantially parallel to the surface embossed with diffraction grating 502. Partially-reflecting mirror 506 is configured to reflect a portion, and transmit another portion, of each light ray that comes into contact with the partially-reflecting mirror.


By reflecting a portion, and transmitting another portion, of each light ray, partially-reflecting mirror 506 turns a single light ray into multiple light rays to ensure that the light projected by slab light guide 124 is uniform across its surface. Consider for example FIG. 6, which illustrates another view of slab light guide 124. In this example, a light ray 602 injected into slab light guide 124 encounters partially-reflecting mirror 506 at 604. When this occurs, partially-reflecting mirror 506 reflects a portion of light ray 602 towards the surface embossed with diffraction grating 502 as light ray 606, and transmits another portion of light ray 602 towards the surface opposite the diffraction gratings as light ray 608. Then, when light ray 606 comes into contact with diffraction grating 502, a portion of light ray 606 is projected from slab light guide 124 as diffracted light ray 610. This process then continues, where each time a light ray strikes partially-reflecting mirror 506 a portion is reflected, and another portion is transmitted. Thus, as illustrated by FIG. 6, partially-reflecting mirror 506 enables slab light guide 124 to turn one light ray into multiple light rays to project a virtual image with a wide field-of-view.


Example Method


FIG. 7 is flow diagram depicting an example method 700 for controlling a virtual image projector to generate a virtual image with a wide field-of-view. Block 702 receives data corresponding to a virtual image (e.g., video data corresponding to a movie or to television programming). For example controller 116 (FIG. 1) receives data corresponding to a virtual image.


Block 704 controls an illuminator to inject first light rays into a first diffraction grating of a rod light guide effective to diffract the first light rays out of the rod light guide at a first range of angles and into a slab light guide to generate the virtual image with a wide field-of-view. For example, controller 116 controls illuminator 120 to inject first light rays into first diffraction grating 402 (FIG. 5) of rod light guide 122 effective to diffract the first light rays out of rod light guide 122 at a first range of angles and into slab light guide 124 to generate the virtual image with a wide field-of-view.


Block 706 controls the illuminator to inject second light rays into a second diffraction grating of the rod light guide effective to diffract the second light rays out of the rod light guide at a second range of angles and into a slab light guide to generate the virtual image with the wide field-of-view. For example, controller 116 controls illuminator 120 to inject second light rays into second diffraction grating 404 (FIG. 5) of rod light guide 122 effective to diffract the second light rays out of rod light guide 122 at a second range of angles and into slab light guide 124 to generate the virtual image with the wide field-of-view. In various embodiments, the wide field-of-view of the virtual image is equal to the sum of the first range of angles and the second range of angles.


Example Device


FIG. 8 illustrates various components of example device 800 that can be implemented as any type of client, server, and/or display device as described with reference to the previous FIGS. 1-7 to implement techniques enabling a wide field-of-view virtual image projector. In embodiments, device 800 can be implemented as one or a combination of a wired and/or wireless device, a head-mounted display device (e.g., eyeglasses, sunglasses, etc.) as a form of flat panel display, television, television client device (e.g., television set-top box, digital video recorder (DVR), etc.), consumer device, computer device, server device, portable computer device, user device, communication device, video processing and/or rendering device, appliance device, gaming device, electronic device, and/or as another type of device. Device 800 may also be associated with a viewer (e.g., a person or user) and/or an entity that operates the device such that a device describes logical devices that include users, software, firmware, and/or a combination of devices.


Device 800 includes communication devices 802 that enable wired and/or wireless communication of device data 804 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). The device data 804 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device. Media content stored on device 800 can include any type of audio, video, and/or image data. Device 800 includes one or more data inputs 806 via which any type of data, media content, and/or inputs can be received, such as user-selectable inputs, messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.


Device 800 also includes communication interfaces 808, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 808 provide a connection and/or communication links between device 800 and a communication network by which other electronic, computing, and communication devices communicate data with device 800.


Device 800 includes one or more processors 810 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of device 800 and to enable techniques for implementing a wide field-of-view virtual image projector. Alternatively or in addition, device 800 can be implemented with any one or combination of hardware, firmware, a system-on-chip (SoC), or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 812. Although not shown, device 800 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.


Device 800 also includes computer-readable storage media 814, such as one or more memory devices that enable persistent and/or non-transitory data storage (i.e., in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), non-volatile RAM (NVRAM), flash memory, EPROM, EEPROM, etc.), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. Device 800 can also include a mass storage media device 816.


Computer-readable storage media 814 provides data storage mechanisms to store the device data 804, as well as various device applications 818 and any other types of information and/or data related to operational aspects of device 800. For example, an operating system 820 can be maintained as a computer application with the computer-readable storage media 814 and executed on processors 810. The device applications 818 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so on.


The device applications 818 also include any system components or modules to implement techniques using or enabling a wide field-of-view virtual image projector. In this example, the device applications 818 can include controller 116 for controlling a wide field-of-view virtual image projector.


CONCLUSION

This document describes various apparatuses and techniques for implementing a wide field-of-view virtual image projector. Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed invention.

Claims
  • 1. A method comprising: receiving data corresponding to a virtual image;controlling an illuminator to inject first light rays into a first diffraction grating of a rod light guide effective to diffract the first light rays out of the rod light guide at a first range of angles and into a slab light guide; andcontrolling the illuminator to inject second light rays into a second diffraction grating of the rod light guide effective to diffract the second light rays out of the rod light guide at a second range of angles and into the slab light guide, the first diffraction grating substantially parallel to the second diffraction grating on a first surface of the rod light guide, the first diffraction grating having a first spatial frequency that is different than a second spatial frequency of the second diffraction grating, the first spatial frequency causing the first diffraction grating to project the first diffracted light rays at the first range of angles, and the second spatial frequency causing the second diffraction grating to project the second diffracted light rays at the second range of angles, and the slab light guide configured to generate the virtual image.
  • 2. The method as described in claim 1, wherein the slab light guide is configured to generate the virtual image with a field-of-view that is equal to the sum of the first range of angles and the second range of angles.
  • 3. The method as described in claim 1, wherein the first range of angles is different than the second range of angles.
  • 4. The method as described in claim 1, further comprising: controlling the illuminator to inject third light rays into a third diffraction grating of the rod light guide effective to diffract the third light rays out of the rod light guide at a third range of angles and into the slab light guide.
  • 5. The method as described in claim 4, further comprising: controlling the illuminator to inject fourth light rays into a fourth diffraction grating of the rod light guide effective to diffract the fourth light rays out of the rod light guide at a fourth range of angles and into the slab light guide.
  • 6. The method as described in claim 5, wherein the slab light guide generates the virtual image with a field-of-view that is equal to the sum of the first range of angles, the second range of angles, the third range of angles, and the fourth range of angles.
  • 7. The method as described in claim 5, wherein: the first range of angles is approximately −60 degrees to −30 degrees, the second range of angles is approximately −30 degrees to 0 degrees, the third range of angles is approximately 0 degrees to 30 degrees, the fourth range of angles is approximately 30 degrees to 60 degrees.
  • 8. The method as described in claim 1, wherein the slab light guide is configured to generate the virtual image with a field-of-view that is approximately 120 degrees.
  • 9. The method as described in claim 1, wherein the slab light guide is embossed with a third diffraction grating that is substantially perpendicular to the first diffraction grating and the second diffraction grating, the third diffraction grating configured to cause the first diffracted light rays and the second diffracted light rays to be projected out of the slab light guide to generate the virtual image.
  • 10. The method as described in claim 1, wherein the slab light guide is configured with a partially-reflecting mirror that is configured to reflect a portion, and transmit another portion, of each of the first diffracted light rays and the second diffracted light rays.
  • 11. One or more computer-readable storage media comprising instructions stored thereon that, responsive to execution by one or more processors, perform operations comprising: receiving data corresponding to a virtual image;controlling an illuminator to inject first light rays into a first diffraction grating of a rod light guide effective to diffract the first light rays out of the rod light guide at a first range of angles and into a slab light guide;controlling the illuminator to inject second light rays into a second diffraction grating of the rod light guide effective to diffract the second light rays out of the rod light guide at a second range of angles and into the slab light guide, the first diffraction grating substantially parallel to the second diffraction grating on a first surface of the rod light guide, the first diffraction grating having a first spatial frequency that is different than a second spatial frequency of the second diffraction grating, the first spatial frequency causing the first diffraction grating to project the first diffracted light rays at the first range of angles, and the second spatial frequency causing the second diffraction grating to project the second diffracted light rays at the second range of angles, and the slab light guide configured to generate the virtual image.
  • 12. The one or more computer-readable storage media of claim 11, wherein the slab light guide is configured to generate the virtual image with a field-of-view that is equal to the sum of the first range of angles and the second range of angles.
  • 13. The one or more computer-readable storage media of claim 11, wherein the first range of angles is different than the second range of angles.
  • 14. The one or more computer-readable storage media of claim 11, wherein the operations further comprise controlling the illuminator to inject third light rays into a third diffraction grating of the rod light guide effective to diffract the third light rays out of the rod light guide at a third range of angles and into the slab light guide.
  • 15. The one or more computer-readable storage media of claim 14, wherein the operations further comprise controlling the illuminator to inject fourth light rays into a fourth diffraction grating of the rod light guide effective to diffract the fourth light rays out of the rod light guide at a fourth range of angles and into the slab light guide.
  • 16. The one or more computer-readable storage media of claim 15, wherein the slab light guide generates the virtual image with a field-of-view that is equal to the sum of the first range of angles, the second range of angles, the third range of angles, and the fourth range of angles.
  • 17. The one or more computer-readable storage media of claim 15, wherein: the first range of angles is approximately −60 degrees to −30 degrees, the second range of angles is approximately −30 degrees to 0 degrees, the third range of angles is approximately 0 degrees to 30 degrees, the fourth range of angles is approximately 30 degrees to 60 degrees.
  • 18. The one or more computer-readable storage media of claim 11, wherein the slab light guide is embossed with a third diffraction grating that is substantially perpendicular to the first diffraction grating and the second diffraction grating, the third diffraction grating configured to cause the first diffracted light rays and the second diffracted light rays to be projected out of the slab light guide to generate the virtual image.
  • 19. The one or more computer-readable storage media of claim 11, wherein the slab light guide is configured to generate the virtual image with a field-of-view that is approximately 120 degrees.
  • 20. The one or more computer-readable storage media of claim 11, wherein the slab light guide is configured with a partially-reflecting mirror that is configured to reflect a portion, and transmit another portion, of each of the first diffracted light rays and the second diffracted light rays.
RELATED APPLICATIONS

This application is a divisional of and claims priority to U.S. patent application Ser. No. 13/494,722 titled “Wide Field-of-View Virtual Image Projector” and filed Jun. 12, 2012, the disclosure of which is incorporated in its entirety by reference herein.

US Referenced Citations (729)
Number Name Date Kind
578325 Fleming Mar 1897 A
3600528 Leposavic Aug 1971 A
3777082 Hatley Dec 1973 A
3879586 DuRocher et al. Apr 1975 A
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4086451 Boulanger Apr 1978 A
4239338 Borrelli et al. Dec 1980 A
4243861 Strandwitz Jan 1981 A
4302648 Sado et al. Nov 1981 A
4317013 Larson Feb 1982 A
4365130 Christensen Dec 1982 A
4492829 Rodrique Jan 1985 A
4503294 Matsumaru Mar 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4576436 Daniel Mar 1986 A
4577822 Wilkerson Mar 1986 A
4588187 Dell May 1986 A
4607147 Ono et al. Aug 1986 A
4615579 Whitehead Oct 1986 A
4651133 Ganesan et al. Mar 1987 A
4735394 Facco Apr 1988 A
5008497 Asher Apr 1991 A
5021638 Nopper et al. Jun 1991 A
5128829 Loew Jul 1992 A
5220521 Kikinis Jun 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5339382 Whitehead Aug 1994 A
5363075 Fanucchi Nov 1994 A
5375076 Goodrich et al. Dec 1994 A
5406415 Kelly Apr 1995 A
5480118 Cross Jan 1996 A
5491313 Bartley et al. Feb 1996 A
5546271 Gut et al. Aug 1996 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5661279 Kenmochi Aug 1997 A
5666112 Crowley et al. Sep 1997 A
5681220 Bertram et al. Oct 1997 A
5737183 Kobayashi et al. Apr 1998 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5842027 Oprescu et al. Nov 1998 A
5861990 Tedesco Jan 1999 A
5874697 Selker et al. Feb 1999 A
5905485 Podoloff May 1999 A
5924555 Sadamori et al. Jul 1999 A
5926170 Oba Jul 1999 A
5971635 Wise Oct 1999 A
5999147 Teitel Dec 1999 A
6002389 Kasser Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6042075 Burch, Jr. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6046857 Morishima et al. Apr 2000 A
6061644 Leis May 2000 A
6108200 Fullerton Aug 2000 A
6128007 Seybold Oct 2000 A
6141388 Servais et al. Oct 2000 A
6178443 Lin Jan 2001 B1
6188391 Seely et al. Feb 2001 B1
6195136 Handschy et al. Feb 2001 B1
6232934 Heacock et al. May 2001 B1
6238078 Hed May 2001 B1
6254105 Rinde et al. Jul 2001 B1
6279060 Luke et al. Aug 2001 B1
6300986 Travis Oct 2001 B1
6329617 Burgess Dec 2001 B1
6342871 Takeyama Jan 2002 B1
6344791 Armstrong Feb 2002 B1
6353503 Spitzer et al. Mar 2002 B1
6362861 Hertz et al. Mar 2002 B1
6366440 Kung Apr 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6437682 Vance Aug 2002 B1
6450046 Maeda Sep 2002 B1
6469755 Adachi et al. Oct 2002 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6585435 Fang Jul 2003 B2
6597347 Yasutake Jul 2003 B1
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6603461 Smith, Jr. et al. Aug 2003 B2
6608664 Hasegawa Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6651943 Cho et al. Nov 2003 B2
6684166 Bellwood et al. Jan 2004 B2
6685369 Lien Feb 2004 B2
6695273 Iguchi Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6780019 Ghosh et al. Aug 2004 B1
6781819 Yang et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6795146 Dozov et al. Sep 2004 B2
6798887 Andre Sep 2004 B1
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6833955 Niv Dec 2004 B2
6847488 Travis Jan 2005 B2
6856506 Doherty et al. Feb 2005 B2
6856789 Pattabiraman et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6909354 Baker et al. Jun 2005 B2
6914197 Doherty et al. Jul 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6962454 Costello Nov 2005 B1
6970957 Oshins et al. Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
6979799 Kim et al. Dec 2005 B2
7007238 Glaser Feb 2006 B2
7025908 Hayashi et al. Apr 2006 B1
7051149 Wang et al. May 2006 B2
7058252 Woodgate et al. Jun 2006 B2
7066634 Kitamura et al. Jun 2006 B2
7091436 Serban Aug 2006 B2
7099149 Krieger et al. Aug 2006 B2
7101048 Travis Sep 2006 B2
7106222 Ward et al. Sep 2006 B2
7119965 Rolland et al. Oct 2006 B1
7123292 Seeger et al. Oct 2006 B1
7152985 Benitez et al. Dec 2006 B2
D535292 Shi et al. Jan 2007 S
7194662 Do et al. Mar 2007 B2
7199931 Boettiger et al. Apr 2007 B2
7213323 Baker et al. May 2007 B2
7213991 Chapman et al. May 2007 B2
7218830 Iimura May 2007 B2
7252512 Tai et al. Aug 2007 B2
7260221 Atsmon Aug 2007 B1
7277087 Hill et al. Oct 2007 B2
7301759 Hsiung Nov 2007 B2
7365967 Zheng Apr 2008 B2
7400805 Abu-Ageel Jul 2008 B2
7447934 Dasari et al. Nov 2008 B2
7457108 Ghosh Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7481566 Han Jan 2009 B2
7486165 Ligtenberg et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7499216 Niv et al. Mar 2009 B2
7502803 Culter et al. Mar 2009 B2
7515143 Keam et al. Apr 2009 B2
7542052 Solomon et al. Jun 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
7561131 Ijzerman et al. Jul 2009 B2
RE40891 Yasutake Sep 2009 E
7636921 Louie Dec 2009 B2
7639329 Takeda et al. Dec 2009 B2
7643213 Boettiger et al. Jan 2010 B2
7656392 Bolender Feb 2010 B2
7729493 Krieger et al. Jun 2010 B2
7731147 Rha Jun 2010 B2
7733326 Adiseshan Jun 2010 B1
7761119 Patel Jul 2010 B2
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7800708 Brott et al. Sep 2010 B2
7813715 McKillop et al. Oct 2010 B2
7822338 Wernersson Oct 2010 B2
7855716 McCreary et al. Dec 2010 B2
7865639 McCoy et al. Jan 2011 B2
7884807 Hovden et al. Feb 2011 B2
7893921 Sato Feb 2011 B2
D636397 Green Apr 2011 S
7918559 Tesar Apr 2011 B2
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7932890 Onikiri et al. Apr 2011 B2
7944520 Ichioka et al. May 2011 B2
7945717 Rivalsi May 2011 B2
7967462 Ogiro et al. Jun 2011 B2
7973771 Geaghan Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8016255 Lin Sep 2011 B2
8035614 Bell et al. Oct 2011 B2
8035624 Bell et al. Oct 2011 B2
8053688 Conzola et al. Nov 2011 B2
8059384 Park et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
RE42992 David Dec 2011 E
8090885 Callaghan et al. Jan 2012 B2
8098233 Hotelling et al. Jan 2012 B2
8102362 Ricks et al. Jan 2012 B2
8115499 Osoinach et al. Feb 2012 B2
8115718 Chen et al. Feb 2012 B2
8117362 Rodriguez et al. Feb 2012 B2
8118274 McClure et al. Feb 2012 B2
8120166 Koizumi et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8149219 Lii et al. Apr 2012 B2
8154524 Wilson et al. Apr 2012 B2
8162282 Hu et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8220929 Miyawaki et al. Jul 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8231099 Chen Jul 2012 B2
8243027 Hotelling et al. Aug 2012 B2
8248791 Wang et al. Aug 2012 B2
8249263 Cragun Aug 2012 B2
8255708 Zhang Aug 2012 B1
8264310 Lauder et al. Sep 2012 B2
8267368 Torii et al. Sep 2012 B2
8269731 Molne Sep 2012 B2
8274784 Franz et al. Sep 2012 B2
8279589 Kim Oct 2012 B2
8310768 Lin et al. Nov 2012 B2
8322290 Mignano Dec 2012 B1
8345920 Ferren et al. Jan 2013 B2
8346206 Andrus et al. Jan 2013 B1
8373664 Wright Feb 2013 B2
8387078 Memmott Feb 2013 B2
8403576 Merz Mar 2013 B2
8416206 Carpendale et al. Apr 2013 B2
8416559 Agata et al. Apr 2013 B2
8466902 Boer et al. Jun 2013 B2
8498100 Whitt, III et al. Jul 2013 B1
8543227 Perek et al. Sep 2013 B1
8548608 Perek et al. Oct 2013 B2
8564944 Whitt, III et al. Oct 2013 B2
8570725 Whitt, III et al. Oct 2013 B2
8582206 Travis Nov 2013 B2
8599542 Healey et al. Dec 2013 B1
8610015 Whitt et al. Dec 2013 B2
8614666 Whitman et al. Dec 2013 B2
8646999 Shaw et al. Feb 2014 B2
8674941 Casparian et al. Mar 2014 B2
8699215 Whitt, III et al. Apr 2014 B2
8717664 Wang et al. May 2014 B2
8719603 Belesiu May 2014 B2
8724302 Whitt et al. May 2014 B2
8744391 Tenbrook et al. Jun 2014 B2
8749529 Powell et al. Jun 2014 B2
8762746 Lachwani et al. Jun 2014 B1
8780540 Whitt, III et al. Jul 2014 B2
8780541 Whitt et al. Jul 2014 B2
8791382 Whitt, III et al. Jul 2014 B2
8825187 Hamrick et al. Sep 2014 B1
8830668 Whit, III et al. Sep 2014 B2
8850241 Oler et al. Sep 2014 B2
8854799 Whitt, III et al. Oct 2014 B2
8873227 Whitt et al. Oct 2014 B2
8896993 Belesiu et al. Nov 2014 B2
8903517 Perek et al. Dec 2014 B2
8935774 Belesiu et al. Jan 2015 B2
8947864 Whitt, III et al. Feb 2015 B2
8949477 Drasnin Feb 2015 B2
9019615 Travis Apr 2015 B2
9052414 Travis et al. Jun 2015 B2
9152173 Lee et al. Oct 2015 B2
9355345 Powell May 2016 B2
9513748 Rihn et al. Dec 2016 B2
9638835 Chen May 2017 B2
20010023818 Masaru et al. Sep 2001 A1
20020005108 Ludwig Jan 2002 A1
20020044216 Cha Apr 2002 A1
20020134828 Sandbach et al. Sep 2002 A1
20020135457 Sandbach et al. Sep 2002 A1
20030007648 Currell Jan 2003 A1
20030011576 Sandbach et al. Jan 2003 A1
20030051983 Lahr Mar 2003 A1
20030067450 Thursfield et al. Apr 2003 A1
20030108720 Kashino Jun 2003 A1
20030163611 Nagao Aug 2003 A1
20030165017 Amitai Sep 2003 A1
20030197687 Shetter Oct 2003 A1
20030231243 Shibutani Dec 2003 A1
20040005184 Kim et al. Jan 2004 A1
20040052506 Togino Mar 2004 A1
20040056843 Lin et al. Mar 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040156168 LeVasseur et al. Aug 2004 A1
20040160734 Yim Aug 2004 A1
20040169641 Bean et al. Sep 2004 A1
20040174709 Buelow, II et al. Sep 2004 A1
20040212598 Kraus et al. Oct 2004 A1
20040212601 Cake et al. Oct 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050001957 Amimori et al. Jan 2005 A1
20050002073 Nakamura et al. Jan 2005 A1
20050030728 Kawashima et al. Feb 2005 A1
20050052831 Chen Mar 2005 A1
20050055498 Beckert et al. Mar 2005 A1
20050057515 Bathiche Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050062715 Tsuji et al. Mar 2005 A1
20050073756 Poulsen Apr 2005 A1
20050084212 Fein Apr 2005 A1
20050099400 Lee May 2005 A1
20050100690 Mayer et al. May 2005 A1
20050134717 Misawa Jun 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050236848 Kim et al. Oct 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20050283731 Saint-Hilaire et al. Dec 2005 A1
20060002101 Wheatley et al. Jan 2006 A1
20060028400 Lapstun et al. Feb 2006 A1
20060049920 Sadler et al. Mar 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060092139 Sharma May 2006 A1
20060096392 Inkster et al. May 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060155391 Pistemaa et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060174143 Sawyers et al. Aug 2006 A1
20060181514 Newman Aug 2006 A1
20060187216 Trent, Jr. et al. Aug 2006 A1
20060192763 Ziemkowski Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060227393 Herloski Oct 2006 A1
20060238550 Page Oct 2006 A1
20060239006 Chaves et al. Oct 2006 A1
20060265617 Priborsky Nov 2006 A1
20060267931 Vainio et al. Nov 2006 A1
20060272429 Ganapathi et al. Dec 2006 A1
20060279501 Lu et al. Dec 2006 A1
20070002587 Miyashita Jan 2007 A1
20070003267 Shibutani Jan 2007 A1
20070047260 Lee et al. Mar 2007 A1
20070056385 Lorenz Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070069153 Pai-Paranjape et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070117600 Robertson et al. May 2007 A1
20070121956 Bai et al. May 2007 A1
20070126994 Hwang Jun 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070153545 Lee Jul 2007 A1
20070172229 Wernersson Jul 2007 A1
20070176902 Newman et al. Aug 2007 A1
20070178891 Louch et al. Aug 2007 A1
20070182663 Biech Aug 2007 A1
20070182722 Hotelling et al. Aug 2007 A1
20070185590 Reindel et al. Aug 2007 A1
20070189667 Wakita et al. Aug 2007 A1
20070200830 Yamamoto Aug 2007 A1
20070220708 Lewis Sep 2007 A1
20070223248 Han Sep 2007 A1
20070230227 Palmer Oct 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070236475 Wherry Oct 2007 A1
20070236873 Yukawa et al. Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070252674 Nelson et al. Nov 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070279744 Fujimoto Dec 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20070297625 Hjort et al. Dec 2007 A1
20080005423 Jacobs et al. Jan 2008 A1
20080053222 Ehrensvard et al. Mar 2008 A1
20080059888 Dunko Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080080166 Duong et al. Apr 2008 A1
20080088593 Smoot Apr 2008 A1
20080094398 Ng et al. Apr 2008 A1
20080104437 Lee May 2008 A1
20080122803 Izadi et al. May 2008 A1
20080129520 Lee Jun 2008 A1
20080150913 Bell et al. Jun 2008 A1
20080151478 Chern Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080179507 Han Jul 2008 A2
20080186660 Yang Aug 2008 A1
20080225205 Travis Sep 2008 A1
20080228969 Cheah et al. Sep 2008 A1
20080238871 Tam Oct 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080307242 Qu Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090009476 Daley, III Jan 2009 A1
20090033623 Lin Feb 2009 A1
20090067156 Bonnett et al. Mar 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090083562 Park et al. Mar 2009 A1
20090089600 Nousiainen Apr 2009 A1
20090096738 Chen et al. Apr 2009 A1
20090096756 Lube Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090140985 Liu Jun 2009 A1
20090142020 Van Ostrand et al. Jun 2009 A1
20090167718 Lee et al. Jul 2009 A1
20090174759 Yeh et al. Jul 2009 A1
20090189873 Peterson Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090195497 Fitzgerald et al. Aug 2009 A1
20090195518 Mattice et al. Aug 2009 A1
20090200384 Masalkar Aug 2009 A1
20090207144 Bridger Aug 2009 A1
20090231275 Odgers Sep 2009 A1
20090239586 Boeve et al. Sep 2009 A1
20090244832 Behar et al. Oct 2009 A1
20090251008 Sugaya Oct 2009 A1
20090259865 Sheynblat et al. Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090265670 Kim et al. Oct 2009 A1
20090285491 Ravenscroft et al. Nov 2009 A1
20090296331 Choy Dec 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090315830 Westerman Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100001963 Doray et al. Jan 2010 A1
20100013319 Kamiyama et al. Jan 2010 A1
20100023869 Saint-Hilaire et al. Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100039081 Sip Feb 2010 A1
20100039764 Locker et al. Feb 2010 A1
20100045633 Gettemy et al. Feb 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100052880 Laitinen et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100053771 Travis et al. Mar 2010 A1
20100054435 Louch et al. Mar 2010 A1
20100056130 Louch et al. Mar 2010 A1
20100072351 Mahowald Mar 2010 A1
20100073329 Raman et al. Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100079379 Demuynck et al. Apr 2010 A1
20100085321 Pundsack Apr 2010 A1
20100102182 Lin Apr 2010 A1
20100102206 Cazaux et al. Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100105443 Vaisanen Apr 2010 A1
20100106983 Kasprzak et al. Apr 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100133398 Chiu et al. Jun 2010 A1
20100142130 Wang et al. Jun 2010 A1
20100148995 Elias Jun 2010 A1
20100148999 Casparian et al. Jun 2010 A1
20100149073 Chaum et al. Jun 2010 A1
20100149100 Meiby Jun 2010 A1
20100149104 Sim et al. Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149117 Chien et al. Jun 2010 A1
20100149377 Shintani et al. Jun 2010 A1
20100156913 Ortega et al. Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100205472 Tupman et al. Aug 2010 A1
20100206614 Park et al. Aug 2010 A1
20100214659 Levola Aug 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100235546 Terlizzi et al. Sep 2010 A1
20100238620 Fish Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100259482 Ball Oct 2010 A1
20100265182 Ball et al. Oct 2010 A1
20100271771 Wu et al. Oct 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100282953 Tam Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100302469 Yue et al. Dec 2010 A1
20100302798 Papakonstantinou Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309617 Wang et al. Dec 2010 A1
20100313680 Joung et al. Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321877 Moser Dec 2010 A1
20100324457 Bean et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20110002577 Van Ostrand Jan 2011 A1
20110007047 Fujioka et al. Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110032127 Roush Feb 2011 A1
20110032215 Sirotich et al. Feb 2011 A1
20110035209 Macfarlane Feb 2011 A1
20110036965 Zhang et al. Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043479 van Aerle et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110044579 Travis et al. Feb 2011 A1
20110050576 Forutanpour et al. Mar 2011 A1
20110050626 Porter et al. Mar 2011 A1
20110055407 Lydon et al. Mar 2011 A1
20110057724 Pabon Mar 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110072391 Hanggie et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110096035 Shen Apr 2011 A1
20110102326 Casparian et al. May 2011 A1
20110107958 Pance et al. May 2011 A1
20110113368 Carvajal et al. May 2011 A1
20110115738 Suzuki et al. May 2011 A1
20110117970 Choi May 2011 A1
20110122071 Powell May 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110157046 Lee et al. Jun 2011 A1
20110157087 Kanehira et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110169762 Weiss Jul 2011 A1
20110169778 Nungester et al. Jul 2011 A1
20110170289 Allen et al. Jul 2011 A1
20110176035 Poulsen Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110184824 George et al. Jul 2011 A1
20110188199 Pan Aug 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110197156 Strait et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110216039 Chen et al. Sep 2011 A1
20110221678 Davydov Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110231682 Kakish et al. Sep 2011 A1
20110234535 Hung et al. Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110242440 Noma et al. Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110248941 Abdo et al. Oct 2011 A1
20110261001 Liu Oct 2011 A1
20110266672 Sylvester Nov 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110273475 Herz et al. Nov 2011 A1
20110290686 Huang Dec 2011 A1
20110291993 Miyazaki Dec 2011 A1
20110295697 Boston et al. Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110298919 Maglaque Dec 2011 A1
20110302518 Zhang Dec 2011 A1
20110304577 Brown Dec 2011 A1
20110304815 Newell Dec 2011 A1
20110305875 Sanford et al. Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20110317399 Hsu Dec 2011 A1
20110320204 Locker et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120007821 Zaliva Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120023401 Arscott et al. Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120026096 Ku Feb 2012 A1
20120032887 Chiu et al. Feb 2012 A1
20120032891 Parivar Feb 2012 A1
20120038495 Ishikawa Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120062850 Travis Mar 2012 A1
20120068919 Lauder et al. Mar 2012 A1
20120069540 Lauder et al. Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120075256 Izadi et al. Mar 2012 A1
20120077384 Bar-Niv et al. Mar 2012 A1
20120092279 Martin Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120098872 Kim et al. Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120102436 Nurmi Apr 2012 A1
20120102438 Robinson et al. Apr 2012 A1
20120113031 Lee et al. May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120113579 Agata et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120133678 Kim May 2012 A1
20120139727 Houvener et al. Jun 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120146943 Fairley et al. Jun 2012 A1
20120162088 van Lieshout et al. Jun 2012 A1
20120162126 Yuan et al. Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120170284 Shedletsky Jul 2012 A1
20120175487 Goto Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120182249 Endo et al. Jul 2012 A1
20120182743 Chou Jul 2012 A1
20120188243 Fujii et al. Jul 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120195063 Kim et al. Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120212438 Vaisanen Aug 2012 A1
20120218194 Silverman Aug 2012 A1
20120224073 Miyahara Sep 2012 A1
20120229634 Laett et al. Sep 2012 A1
20120242584 Tuli Sep 2012 A1
20120243102 Takeda Sep 2012 A1
20120243204 Robinson Sep 2012 A1
20120246377 Bhesania Sep 2012 A1
20120249443 Anderson et al. Oct 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120260177 Sehrer Oct 2012 A1
20120268912 Minami et al. Oct 2012 A1
20120274811 Bakin Nov 2012 A1
20120299872 Nishikawa et al. Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20120312955 Randolph Dec 2012 A1
20130009413 Chiu et al. Jan 2013 A1
20130027354 Yabuta et al. Jan 2013 A1
20130027867 Lauder et al. Jan 2013 A1
20130044074 Park et al. Feb 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130067126 Casparian et al. Mar 2013 A1
20130073877 Radke Mar 2013 A1
20130076617 Csaszar et al. Mar 2013 A1
20130082824 Colley Apr 2013 A1
20130088431 Ballagas et al. Apr 2013 A1
20130106766 Yilmaz et al. May 2013 A1
20130106813 Hotelling et al. May 2013 A1
20130107572 Holman et al. May 2013 A1
20130120760 Raguin et al. May 2013 A1
20130135214 Li et al. May 2013 A1
20130162554 Lauder et al. Jun 2013 A1
20130172906 Olson et al. Jul 2013 A1
20130181926 Lim Jul 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130201094 Travis Aug 2013 A1
20130207896 Robinson et al. Aug 2013 A1
20130217451 Komiyama et al. Aug 2013 A1
20130222353 Large Aug 2013 A1
20130227836 Whitt, III Sep 2013 A1
20130228023 Drasnin Sep 2013 A1
20130228433 Shaw Sep 2013 A1
20130228434 Whitt, III Sep 2013 A1
20130228439 Whitt, III Sep 2013 A1
20130229100 Siddiqui et al. Sep 2013 A1
20130229335 Whitman Sep 2013 A1
20130229347 Lutz, III Sep 2013 A1
20130229350 Shaw et al. Sep 2013 A1
20130229351 Whitt, III Sep 2013 A1
20130229354 Whitt, III et al. Sep 2013 A1
20130229357 Powell Sep 2013 A1
20130229363 Whitman Sep 2013 A1
20130229366 Dighde Sep 2013 A1
20130229380 Lutz, III Sep 2013 A1
20130229534 Panay Sep 2013 A1
20130229568 Belesiu et al. Sep 2013 A1
20130229570 Beck et al. Sep 2013 A1
20130229756 Whitt, III Sep 2013 A1
20130229757 Whitt, III et al. Sep 2013 A1
20130229758 Belesiu Sep 2013 A1
20130229759 Whitt, III et al. Sep 2013 A1
20130229760 Whitt, III Sep 2013 A1
20130229761 Shaw Sep 2013 A1
20130229762 Whitt, III Sep 2013 A1
20130229773 Siddiqui et al. Sep 2013 A1
20130230346 Shaw Sep 2013 A1
20130231755 Perek Sep 2013 A1
20130232280 Perek Sep 2013 A1
20130232348 Oler Sep 2013 A1
20130232349 Oler et al. Sep 2013 A1
20130232350 Belesiu et al. Sep 2013 A1
20130232353 Belesiu Sep 2013 A1
20130232571 Belesiu Sep 2013 A1
20130262886 Nishimura Oct 2013 A1
20130265220 Fleischmann et al. Oct 2013 A1
20130300590 Dietz Nov 2013 A1
20130300647 Drasnin Nov 2013 A1
20130301014 DeJong et al. Nov 2013 A1
20130301199 Whitt Nov 2013 A1
20130301206 Whitt Nov 2013 A1
20130304941 Drasnin Nov 2013 A1
20130322000 Whitt Dec 2013 A1
20130322001 Whitt Dec 2013 A1
20130329301 Travis Dec 2013 A1
20130329360 Aldana Dec 2013 A1
20130332628 Panay Dec 2013 A1
20130339757 Reddy Dec 2013 A1
20140012401 Perek et al. Jan 2014 A1
20140022629 Powell Jan 2014 A1
20140043275 Whitman Feb 2014 A1
20140048399 Whitt, III Feb 2014 A1
20140098085 Lee Apr 2014 A1
20140119802 Shaw May 2014 A1
20140168131 Rihn Jun 2014 A1
20140185215 Whitt Jul 2014 A1
20140185220 Whitt Jul 2014 A1
20140204514 Whitt Jul 2014 A1
20140204515 Whitt Jul 2014 A1
20140233237 Lutian Aug 2014 A1
20140247546 Whitt Sep 2014 A1
20140254032 Chen Sep 2014 A1
20140291134 Whitt Oct 2014 A1
20140293534 Siddiqui Oct 2014 A1
20140362506 Whitt, III et al. Dec 2014 A1
20140379942 Perek et al. Dec 2014 A1
20150036274 Belesiu et al. Feb 2015 A1
Foreign Referenced Citations (62)
Number Date Country
990023 Jun 1976 CA
87107536 Jun 1988 CN
1352767 Jun 2002 CN
1440513 Sep 2003 CN
101140384 Mar 2008 CN
102047155 May 2011 CN
102147643 Aug 2011 CN
102483522 May 2012 CN
103455149 Dec 2013 CN
0271956 Jun 1988 EP
1223722 Jul 2002 EP
1480029 Nov 2004 EP
1591891 Nov 2005 EP
2026178 Feb 2009 EP
2353978 Aug 2011 EP
2381290 Oct 2011 EP
2400365 Dec 2011 EP
2123213 Jan 1984 GB
56108127 Aug 1981 JP
H021802 Jan 1990 JP
H03198023 Aug 1991 JP
H1078357 Mar 1998 JP
10301055 Nov 1998 JP
10326124 Dec 1998 JP
1173239 Mar 1999 JP
11338575 Dec 1999 JP
2000010654 Jan 2000 JP
2000056259 Feb 2000 JP
2001142564 May 2001 JP
2001174746 Jun 2001 JP
2004038950 Feb 2004 JP
2006163459 Jun 2006 JP
2006294361 Oct 2006 JP
2008083599 Apr 2008 JP
2009003053 Jan 2009 JP
2009122551 Jun 2009 JP
2010244514 Oct 2010 JP
2012042654 Mar 2012 JP
6253117 Dec 2017 JP
20010107055 Dec 2001 KR
20050014299 Feb 2005 KR
20060003093 Jan 2006 KR
20080006404 Jan 2008 KR
20090029411 Mar 2009 KR
20100022059 Feb 2010 KR
20100067366 Jun 2010 KR
20100115675 Oct 2010 KR
20110064265 Jun 2011 KR
1020110087178 Aug 2011 KR
20110109791 Oct 2011 KR
20110120002 Nov 2011 KR
20110122333 Nov 2011 KR
101113530 Feb 2012 KR
WO-1999019995 Apr 1999 WO
WO-1999064784 Dec 1999 WO
WO-2000079327 Dec 2000 WO
WO-2006044818 Apr 2006 WO
WO-2007112172 Oct 2007 WO
WO-2009034484 Mar 2009 WO
WO-2011016200 Feb 2011 WO
WO-2011049609 Apr 2011 WO
WO-2012063410 May 2012 WO
Non-Patent Literature Citations (337)
Entry
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/408,257, Nov. 6, 2015, 23 pages.
“Final Office Action”, U.S. Appl. No. 13/773,496, dated Oct. 29, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/714,401, dated Dec. 3, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/786,233, dated Sep. 29, 2015, 10 pages.
“Foreign Office Action”, CN Application No. 201310225788.1, dated Feb. 29, 2016, 11 Pages.
“Foreign Office Action”, CN Application No. 201380030964.4, dated Feb. 14, 2016, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, dated Dec. 17, 2015, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/555,404, dated Feb. 4, 2016, 9 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/555,404, dated Mar. 10, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/555,404, dated May 2, 2016, 2 pages.
“Extended European Search Report”, EP Application No. 13861059.7, dated Apr. 29, 2016, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, dated May 25, 2016, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/714,401, dated May 12, 2016, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/786,233, dated May 5, 2016, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/773,496, dated Jun. 29, 2016, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, dated Jul. 10, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/714,401, dated Aug. 4, 2015, 15 pages.
“Foreign Office Action”, CN Application No. 201310225788.1, dated Jun. 23, 2015, 14 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/555,404, dated Aug. 17, 2015, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/773,496, dated Jun. 8, 2015, 16 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/647,507, dated Jun. 30, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/647,507, dated Jul. 16, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/647,507, dated Aug. 27, 2015, 2 pages.
“Foreign Office Action”, CN Application No. 201310225788.1, dated Sep. 1, 2016, 8 pages.
“Foreign Office Action”, CN Application No. 201380030964.4, dated Sep. 1, 2016, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/714,401, dated Aug. 22, 2016, 8 pages.
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 2011, 4 pages.
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 2012, 10 pages.
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, Dec. 22, 1996, 364 pages.
“Advisory Action”, U.S. Appl. No. 13/408,257, dated Apr. 8, 2015, 9 pages.
“Advisory Action”, U.S. Appl. No. 13/939,032, dated Feb. 24, 2014, 2 pages.
“Advisory Action”, U.S. Appl. No. 14/199,924, dated May 28, 2014, 2 pages.
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, Jan. 2013, 1 page.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Apr. 9, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Jul. 2, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, dated Sep. 30, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, dated Jan. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, dated Mar. 20, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, dated Jan. 22, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, dated Apr. 3, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, dated Mar. 10, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, dated Apr. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, dated Jul. 31, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,287, dated Aug. 21, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, dated Sep. 12, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, dated Sep. 23, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,726, dated Sep. 17, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, dated May 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, dated Jun. 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, dated May 22, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, dated Jun. 19, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, dated May 5, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, dated Jun. 26, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, dated Jul. 15, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, dated Aug. 29, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, dated Sep. 5, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, dated Sep. 19, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/277,240, dated Jan. 8, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/408,257, dated Mar. 28, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/408,257, dated Dec. 10, 2014, 15 pages.
“Final Office Action”, U.S. Appl. No. 13/468,882, dated Feb. 12, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 13/468,949, dated Oct. 6, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/470,951, dated Jan. 12, 2015, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/471,001, dated Jul. 25, 2013, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/471,054, dated Oct. 23, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/471,139, dated Sep. 16, 2013, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, dated Aug. 28, 2013, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, dated Oct. 6, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/471,376, dated Aug. 18, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/471,412, dated Dec. 15, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, dated Nov. 17, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/527,263, dated Jan. 27, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/564,520, dated Jan. 15, 2014, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, dated Aug. 15, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, dated Oct. 9, 2014, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/599,635, dated Aug. 8, 2014, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/647,507, dated Oct. 27, 2014, 33 pages.
“Final Office Action”, U.S. Appl. No. 13/651,195, dated Apr. 18, 2013, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/651,232, dated May 21, 2013, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/651,287, dated May 3, 2013, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/651,976, dated Jul. 25, 2013, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/653,321, dated Aug. 2, 2013, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, dated Jun. 11, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, dated Oct. 18, 2013, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, dated Sep. 17, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, dated Oct. 23, 2013, 14 pages.
“Final Office Action”, U.S. Appl. No. 13/714,401, dated Nov. 25, 2014, 15 pages.
“Final Office Action”, U.S. Appl. No. 13/773,496, dated Nov. 4, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, dated Mar. 28, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/786,233, dated May 27, 2015, 14 pages.
“Final Office Action”, U.S. Appl. No. 13/938,930, dated Nov. 8, 2013, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/939,002, dated Nov. 8, 2013, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/939,032, dated Dec. 20, 2013, 5 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, dated Jan. 12, 2015, 12 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, dated Apr. 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/199,924, dated May 6, 2014, 5 pages.
“Final Office Action”, U.S. Appl. No. 14/200,595, dated Nov. 19, 2014, 5 pages.
“Final Office Action”, U.S. Appl. No. 14/225,276, dated Dec. 17, 2014, 6 pages.
“FingerWorks Installation and Operation Guide for the TouchStream ST and TouchStream LP”, FingerWorks, Inc. Retrieved from <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000049862.pdf>, 2002, 14 pages.
“First Examination Report”, NZ Application No. 628690, dated Nov. 27, 2014, 2 pages.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012, Jan. 6, 2005, 2 pages.
“For Any Kind of Proceeding 2011 Springtime as Well as Coil Nailers as Well as Hotter Summer Season”, Lady Shoe Worlds, retrieved from <http://www.ladyshoesworld.com/2011/09/18/for-any-kind-of-proceeding-2011-springtime-as-well-as-coil-nailers-as-well-as-hotter-summer-season/> on Nov. 3, 2011, Sep. 8, 2011, 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An_Exploring_Technology.pdf>, Feb. 1990, pp. 1-6.
“Foreign Notice of Allowance”, CN Application No. 201320096755.7, dated Jan. 27, 2014, 2 pages.
“Foreign Notice of Allowance”, CN Application No. 201320097065.3, dated Nov. 21, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201110272868.3, dated Apr. 1, 2013, 10 pages.
“Foreign Office Action”, CN Application No. 201320097065.3, dated Jun. 18, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201320097066.8, dated Oct. 24, 2013, 5 Pages.
“Foreign Office Action”, CN Application No. 201320097079.5, dated Jul. 28, 2014, 4 pages.
“Foreign Office Action”, CN Application No. 201320097079.5, dated Sep. 26, 2013, 4 pages.
“Foreign Office Action”, CN Application No. 201320328022.1, dated Feb. 17, 2014, 4 Pages.
“Foreign Office Action”, CN Application No. 201320328022.1, dated Oct. 18, 2013, 3 Pages.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012, Jan. 7, 2005, 3 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 2012, 4 pages.
“Interlink Electronics FSR (TM) Force Sensing Resistors (TM)”, Retrieved at <<http://akizukidenshi.com/download/ds/ interlinkelec/94-00004+Rev+B%20FSR%201ntegration%20Guide.pdf on Mar. 21, 2013, 36 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028479, dated Jun. 17, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/031531, dated Jun. 20, 2014, 10 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028483, dated Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028484, dated Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028485, dated Jun. 25, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028769, dated Jun. 26, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/043546, dated Oct. 9, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/051421, dated Dec. 6, 2013, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/020050, dated May 9, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028771, dated Jun. 19, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028486, dated Jun. 20, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/041017, dated Jul. 17, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028489, dated Jun. 20, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028488, dated Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028767, dated Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016654, dated May 16, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028481, dated Jun. 19, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028948, dated Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/029461, dated Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028490, dated Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028766, dated Jun. 26, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028772, dated Jun. 30, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, dated Sep. 5, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028768, dated Jun. 24, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/075180, dated May 6, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028482, dated Jun. 20, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/042550, dated Sep. 24, 2013, 14 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2011/050471, dated Apr. 9, 2012, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/063156, dated Dec. 5, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028487, dated May 27, 2014, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028770, dated Jun. 26, 2014, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/042790, dated Aug. 8, 2013, 9 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012, Mar. 4, 2009, 2 pages.
“Microsoft Develops Glasses-Free Eye-Tracking 3D Display”, Tech-FAQ—retrieved from <http://www.tech-faq.com/microsoft-develops-glasses-free-eye-tracking-3d-display.html> on Nov. 2, 2011, Nov. 2, 2011, 3 pages.
“Microsoft Reveals Futuristic 3D Virtual HoloDesk Patent”, Retrieved from <http://www.patentbolt.com/2012/05/microsoft-reveals-futuristic-3d-virtual-holodesk-patent.htmlt> on May 28, 2012, May 23, 2012, 9 pages.
“Motion Sensors”, Android Developers—retrieved from <http://developer.android.com/guide/topics/sensors/sensors_motion.html> on May 25, 2012, 2012, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/409,967, dated Dec. 10, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, dated Feb. 25, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/882,994, dated Feb. 1, 2013, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/367,812, dated Sep. 18, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/408,257, dated Jul. 2, 2014, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/408,257, dated Dec. 5, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,882, dated Jul. 9, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,918, dated Dec. 26, 2013, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,949, dated Jun. 20, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/470,951, dated Jul. 2, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, dated Feb. 19, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, dated Jun. 17, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, dated Jan. 15, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, dated May 15, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, dated Jun. 3, 2014, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, dated Mar. 21, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,186, dated Feb. 27, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, dated Feb. 11, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,237, dated Mar. 24, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,282, dated Sep. 3, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, dated Jan. 18, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, dated May 7, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, dated Apr. 2, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, dated Oct. 20, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,405, dated Feb. 20, 2014, 37 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,412, dated Jul. 11, 2014, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, dated Feb. 24, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, dated Apr. 30, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/494,722, dated May 9, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,614, dated Nov. 24, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, dated Apr. 3, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, dated Jul. 19, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, dated Jun. 14, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, dated Jan. 26, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, dated Feb. 14, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, dated Jun. 19, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, dated Jun. 16, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, dated Jun. 17, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/595,700, dated Jun. 18, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, dated Feb. 12, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,507, dated Feb. 9, 2015, 37 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,507, dated Jun. 19, 2014, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, dated Jan. 2, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, dated Jan. 17, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, dated Dec. 5, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, dated Feb. 12, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, dated Jan. 29, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, dated Mar. 22, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, dated Mar. 22, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, dated Apr. 15, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, dated Mar. 18, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, dated Jul. 1, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, dated Feb. 22, 2013, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, dated Jun. 16, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, dated Feb. 1, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Feb. 7, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Feb. 26, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Jun. 3, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, dated Mar. 12, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, dated Apr. 23, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/714,401, dated Apr. 17, 2015, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/714,401, dated Jul. 8, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/773,496, dated Jun. 23, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, dated Sep. 15, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, dated Oct. 30, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/786,233, dated Nov. 20, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/938,930, dated Aug. 29, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, dated Aug. 28, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, dated Dec. 20, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,032, dated Aug. 29, 2013, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, dated Jan. 2, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, dated Sep. 2, 2014, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/147,252, dated Feb. 23, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/199,924, dated Apr. 10, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/200,595, dated Apr. 11, 2014, 4 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, dated Jun. 17, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, dated Jun. 13, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/277,240, dated Jun. 13, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 12/882,994, dated Jul. 12, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/367,812, dated Jan. 30, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/409,967, dated Feb. 14, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, dated Jun. 17, 2014, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Mar. 22, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, dated Sep. 5, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,139, dated Mar. 17, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,186, dated Jul. 3, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,202, dated May 28, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,237, dated May 12, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,405, dated Jun. 24, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/494,722, dated Dec. 18, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/563,435, dated Nov. 12, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/565,124, dated Dec. 24, 2013, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/595,700, dated Jan. 21, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/647,507, dated Jun. 3, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,195, dated Jul. 8, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, dated Apr. 25, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,272, dated May 2, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,287, dated May 2, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,304, dated Jul. 1, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,327, dated Jun. 11, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,726, dated May 31, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,871, dated Oct. 2, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,976, dated Jan. 21, 2015, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,321, dated Dec. 18, 2013, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,682, dated Sep. 24, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/938,930, dated Feb. 20, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,002, dated Mar. 3, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,032, dated Apr. 3, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/018,286, dated May 23, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/199,924, dated Jun. 10, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, dated Feb. 17, 2015, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, dated Feb. 25, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/277,240, dated Sep. 16, 2014, 4 pages.
“Notice to Grant”, CN Application No. 201320097089.9, dated Sep. 29, 2013, 2 Pages.
“Notice to Grant”, CN Application No. 201320097124.7, dated Oct. 8, 2013, 2 pages.
“Position Sensors”, Android Developers—retrieved from <http://developer.android.com/guide/topics/sensors/sensors_position.html> on May 25, 2012, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 13/468,918, dated Nov. 29, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/367,812, dated Mar. 11, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/471,139, dated Jan. 17, 2013, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/494,722, dated Dec. 20, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/595,700, dated May 28, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,304, dated Jan. 18, 2013, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,726, dated Feb. 22, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,871, dated Feb. 7, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 14/147,252, dated Dec. 1, 2014, 6 pages.
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: < http://www.solarcsystems.com/us_multidirectional_uv_light_therapy_1_intro.html > on Jul. 5, 2012, 2011, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, dated Aug. 29, 2014, 5 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, dated Dec. 17, 2014, 5 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/653,321, dated Mar. 28, 2014, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/018,286, dated Jun. 11, 2014, 5 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, Jun. 2012, 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, Mar. 28, 2008, 11 Pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2—retrieved from <http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Getting_Started_Guide/index.html> on Jun. 13, 2012, 24 pages.
“Welcome to Windows 7”, Retrieved from: <http://www.microsoft.com/en-us/download/confirmation.aspx?id=4984> on Aug. 1, 2013, Sep. 16, 2009, 3 pages.
“What is Active Alignment?”, http://www.kasalis.com/active_alignment.html, retrieved on Nov. 22, 2012, Nov. 22, 2012, 2 Pages.
“Written Opinion”, Application No. PCT/US2014/020050, dated Sep. 22, 2014, 6 Pages.
Bert,“Passive Matrix Addressing of Electrophoretic Image Display”, Conference on International Display Research Conference, Retrieved from <http://www.cmst.be/publi/eurodisplay2002_s14-1.pdf>, Oct. 1, 2002, 4 pages.
Block,“DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, Jul. 12, 2011, 14 pages.
Brown,“Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938_105-10304792-1.html> on May 7, 2012, Aug. 6, 2009, 2 pages.
Burge,“Determination of off-axis aberrations of imaging systems using on-axis measurements”, SPIE Proceeding, Retrieved from <http://www.loft.optics.arizona.edu/documents/journal_articles/Jim_Burge_Determination_of_off-axis_aberrations_of_imaging_systems_using_on-axis_measurements.pdf>, Sep. 21, 2011, 10 pages.
Butler,“SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight_crv3.pdf> on May 29, 2012, Oct. 19, 2008, 4 pages.
Chang,“Optical Design and Analysis of LCD Backlight Units Using ASAP”, Optical Engineering, Available at <http://www.opticsvalley.com/resources/kbasePDF/ma_oe_001_optical_design.pdf>, Jun. 2003, 15 pages.
Crider,“Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012, Jan. 16, 2012, 9 pages.
Dietz,“A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009, Oct. 2009, 4 pages.
DiVerdi,“An Immaterial Pseudo-3D Display with 3D Interaction”, In the proceedings of Three-Dimensional Television: Capture, Transmission, and Display, Springer, Retrieved from <http://www.cs.ucsb.edu/˜holl/pubs/DiVerdi-2007-3DTV.pdf>, Feb. 6, 2007, 26 pages.
Glatt,“Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2012, 2 pages.
Grossman,“Multi-Finger Gestural Interaction with 3D Volumetric Displays”, In the proceedings of the 17th annual ACM symposium on User interface software and technology, Retrieved from <http://www.dgp.toronto.edu/papers/tgrossman_UIST2004.pdf>, Oct. 24, 2004, 61-70.
Hanlon,“ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012, Jan. 15, 2006, 5 pages.
Harrison,“UIST 2009 Student Innovation Contest—Demo Video”, Retrieved From: <https://www.youtube.com/watch?v=PDI8eYIASf0> Sep. 16, 2014, Jul. 23, 2009, 1 pages.
Izadi,“ThinSight: A Thin Form-Factor Interactive Surface Technology”, Communications of the ACM, vol. 52, No. 12, retrieved from <http://research.microsoft.com/pubs/132532/p90-izadi.pdf> on Jan. 5, 2012, Dec. 2009, pp. 90-98.
Kaur,“Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012, Jun. 21, 2010, 4 pages.
Khuntontong,“Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3, Jul. 2009, pp. 152-156.
Lee,“Depth-Fused 3D Imagery on an Immaterial Display”, In the proceedings of IEEE Transactions on Visualization and Computer Graphics, vol. 15, No. 1, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04540094>, Jan. 2009, 20-33.
Lee,“Flat-Panel Autostereoscopic 3D Display”, Optoelectronics, IET, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04455550>, Feb. 2008, pp. 24-28.
Lee,“LED Light Coupler Design for a Ultra Thin Light Guide”, Journal of the Optical Society of Korea, vol. 11, Issue.3, Retrieved from <http://opticslab.kongju.ac.kr/pdf/06.pdf>, Sep. 2007, 5 pages.
Linderholm,“Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech_shows_cloth_keyboard_for_pdas.html> on May 7, 2012, Mar. 15, 2002, 5 pages.
Liu,“Three-dimensional PC: toward novel forms of human-computer interaction”, In the proceedings of Three-Dimensional Video and Display: Devices and Systems vol. CR76,
Retrieved from <http://www.google.co.in/url?sa=t&rct=j&q=Three-dimensional+PC:+toward+novel+forms+of+human-computer+interaction&source=web&cd=1&ved=0CFoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.32.9469%26rep%3Drep1%26, Nov. 5, 2000, 250-281.
McLellan,“Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012, Jul. 17, 2006, 9 pages.
Peli,“Visual and Optometric Issues with Head-Mounted Displays”, IS & T/OSA Optics & Imaging in the Information Age, The Society for Imaging Science and Technology, available at <http://www.u.arizona.edu/˜zrui3/zhang_pHMPD_spie07.pdf>, 1996, pp. 364-369.
Post,“E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4, Jul. 2000, pp. 840-860.
Prospero,“Samsung Outs Series 5 Hybrid PC Tablet”, Retrieved from: <http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8> on Oct. 31, 2013, Jun. 4, 2012, 7 pages.
Purcher,“Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Jan. 12, 2012, 15 pages.
Reisman,“A Screen-Space Formulation for 2D and 3D Direct Manipulation”, In the proceedings of the 22nd annual ACM symposium on User interface, Retrieved from <http://innovis.cpsc.ucalgary.ca/innovis/uploads/Courses/TableTopDetails2009/Reisman2009.pdf>, Oct. 4, 2009, 69-78.
Schoning,“Building Interactive Multi-Touch Surfaces”, Journal of Graphics, GPU, and Game Tools, vol. 14, No. 3, available at <http://www.libavg.com/raw-attachment/wiki/Multitouch/Multitouchguide_draft.pdf>, Nov. 2009, pp. 35-55.
Takamatsu,“Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011, Oct. 28, 2011, 4 pages.
Travis,“Flat Projection for 3-D”, In Proceedings of the IEEE, vol. 94 Issue: 3, Available at <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1605201>, Mar. 13, 2006, pp. 539-549.
Yan,“Edge-Lighting Light Guide Plate Based on Micro-Prism for Liquid Crystal Display”, Journal of Display Technology, vol. 5, No. 9, Available at <http://ieeexplore.ieee.org/ielx5/9425/5196834/05196835.pdf?tp=&arnumber=5196835&isnumber=5196834>, Sep. 2009, pp. 355-357.
Yu,“A New Driving Scheme for Reflective Bistable Cholesteric Liquid Crystal Displays”, Society for Information Display International Symposium Digest of Technical Papers, Retrieved from <http://www.ee.ust.hk/˜eekwok/publications/1997/bcd_sid.pdf >, May 1997, 4 pages.
Zhang,“Design of Head Mounted Displays”, Retrieved at <<http://www.optics.arizona.edu/optomech/student%20reports/2007/Design%20of%20mounteddisplays%20Zhang.pdf>>, Dec. 12, 2007, 6 pages.
Zhang,“Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>, May 20, 2006, pp. 371-380.
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/492,232, Feb. 9, 2017, 5 pages.
“Foreign Office Action”, JP Application No. 2015-517278, dated Mar. 7, 2017, 5 pages.
“Foreign Office Action”, EP Application No. 13730686.6, dated Mar. 27, 2017, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/773,496, dated Dec. 27, 2016, 18 pages.
“Foreign Notice of Allowance”, CN Application No. 201380030964.4, dated Dec. 7, 2016, 4 pages.
“Foreign Office Action”, EP Application No. 13728072.3, dated Jan. 2, 2017, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/786,233, dated Dec. 21, 2016, 8 pages.
“PTAB Decision”, U.S. Appl. No. 13/408,257, Jan. 30, 2017, 8 pages.
“Foreign Office Action”, CN Application No. 201480009664.2, dated Nov. 3, 2017, 11 pages.
“Foreign Notice of Allowance”, JP Application No. 2015-517278, dated Oct. 24, 2017, 4 pages.
“Foreign Office Action”, CN Application No. 201310225788.1, dated Sep. 20, 2017, 10 pages.
“Foreign Office Action”, CN Application No. 2014800121118.4, dated Sep. 4, 2017, 14 pages.
“Foreign Notice of Allowance”, JP Application No. 2014-560120, dated Sep. 29, 2017, 4 pages.
“Foreign Office Action”, EP Application No. 13858283.8, dated Oct. 18, 2017, 4 pages.
“Office Action Issued in Japanese Patent Application No. 2017-106561”, dated Feb. 27, 2018, 6 Pages.
Related Publications (1)
Number Date Country
20150177497 A1 Jun 2015 US
Divisions (1)
Number Date Country
Parent 13494722 Jun 2012 US
Child 14641831 US