The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the claims. Furthermore, in the detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Briefly stated, embodiments of the present invention are directed to methods and circuits for canceling input bias current with a reduced voltage overhead. In some embodiments, a voltage overhead as low as 0.1 V or 1VCE(sat) may be achieved.
The base current of Q3 is sensed by a base current sensing circuit. In one embodiment, to base current sensing circuit comprises transistor QP0. The base current sensed by the base current sensing circuit (e.g., QP0) is then mirrored by a current mirror (e.g., transistors QP1 and a QP2). In doing so, QP1 mirrors the base current of Q3 for the base of Q1 and QP2 mirrors the base current of Q3 for the base of Q2. It should be appreciated that the current mirror transistors QP1 and QP2 must re-amplify the base current of Q3 by a factor of N.
Thus, the bias current cancellation circuit 220 applies substantially the same amount of current into the bases of the bipolar differential pair 210 that the pair's bases use. Circuit 300 requires only 1VCE of voltage headroom to prevent the transistors QP1 and QP2 from going into saturation. For example, in order to prevent QP1 from going into saturation, an input voltage applied to the base of Q1 must not exceed the supply voltage (VCC) minus the collector-emitter voltage of QP1. Similarly, in order to prevent QP2 from going into saturation, an input voltage applied to the base of Q2 must not exceed VCC minus the collector-emitter voltage of QP2.
Circuit 300 may be modified to minimize potential Early effect. For example,
Block 510 involves generating a second current and that is proportional to a first current, or in the first current drives a bipolar differential pair. Block 520 involves biasing a transistor with the second current. In one embodiment, the second current drives the emitter current of the transistor. Assuming the transistors operating in the active region, applying the second current to the emitter of the transistor generates a corresponding collector currents and base current for the transistor. Since the emitter current of the transistor is proportional to the emitter currents of the bipolar differential pair, to base current of the transistors also proportional to the base currents of the bipolar differential pair.
Block 530 involves mirroring the base current of the transistor for the bases of the bipolar differential pair. It should be appreciated that the current mirror may amplify the base current of the transistor to account for the proportion of the second current to the first current. Thus, by applying the same amount of current into the bases of the bipolar differential pair as is required in terms of their base current, any external input bias current scene at the inputs of the bipolar differential pair is effectively canceled (i.e., diverted away from the bipolar differential pair.
Block 540 involves maintaining the base of the transistor at substantially the same voltage as the bases of the bipolar differential pair. This serves to compensate for Early effect. In one embodiment, a second transistor (e.g., QP0) senses the base current of the first transistor (e.g., Q3). The base current of the first transistor (e.g., Q3) seen by the second transistor (e.g., QP0) may then be mirrored by a current mirror. In order to cancel the Early effect, the second transistor (e.g., QP0) should be biased to the same state as the current mirror. In one embodiment, this is achieved by maintaining the base of the first transistor (e.g., Q3), and thus the collector of the second transistor (e.g., QP0), at substantially the same voltage as the bases of the bipolar differential pair.
Thus, embodiments provide for bias current cancellation and requires a significantly smaller voltage headroom than the 2VCE(sat) had required by op-amp 100 of
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present Application for Patent claims priority to Provisional Application No. 60/841,889 entitled “WIDE INPUT COMMON MODE FOR INPUT BIAS CURRENT CANCELLATION” filed Aug. 31, 2006, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60841889 | Aug 2006 | US |