Frequency synthesizers are commonly used in wireless communication systems for generating a range of frequencies from a single oscillator. In recent years, the number of different wireless bands and standards in which a mobile device may communicate has increased dramatically. For example, mobile devices may communicate using different standards such as GSM/EDGE, 3G, 4G, WiFi, GPS, Bluetooth, and others, each of which utilize different frequency bands. However, traditional frequency synthesizers are unable to generate low noise signals over a large range of frequencies. While some mobile devices overcome this problem by utilizing multiple frequency synthesizers tuned to different frequency ranges, this traditional design comes at a substantial area and power penalty.
The teachings of the embodiments herein can be readily understood by considering the following detailed description in conjunction with the accompanying drawings.
A frequency synthesizer generates a wide range of frequencies from a single oscillator while achieving good noise performance. The frequency synthesizer can therefore be used in a multiband wireless transceiver compatible with a variety of different wireless standards. In one embodiment, for example, a frequency range of 900 MHz to 6 GHz is achieved to enable compatibility with standards such as, GSM/GPRS/EDGE, WCDMA, RFID, ZigBee, UWB, 802.11 and 802.16.
In one embodiment, the frequency synthesizer comprises a cascaded phase-locked loop (PLL) circuit in which a first PLL circuit has an LC voltage controlled oscillator (VCO) and a second PLL circuit has a ring VCO. A feedforward path from the first PLL circuit to the second PLL circuit improves phase noise, thereby reducing or eliminating spur and quantization effects. Furthermore, an embodiment of the frequency synthesizer directly generates in-phase and quadrature phase output signals and uses a split-tuned ring-based VCO to reduce or eliminate I-Q phase error. Various embodiments of the frequency synthesizer are described in further detail below.
Cascaded Phase-Locked Loop Circuit
In one embodiment, first PLL circuit 110 comprises a fractional-N LC-based PLL circuit such as, for example, the PLL circuit 200 of
In an alternative embodiment, a cascaded PLL architecture includes an LC-based PLL 110 coupled to a ring-based PLL 120, but omits the feedforward control path (feedforward control 130 and signals 112, 114) shown in
LC-Based Phase Locked Loop Circuit
Control element 210 receives phase difference signal 208 and generates frequency control signal 224 for controlling variable frequency oscillator 226. In one embodiment, control element 210 comprises charge pump 212 and loop filter 222. Charge pump 212 drives current into or draws current from loop filter 222 based on phase difference signal 208. In one embodiment, charge pump 212 is implemented as a first current source 214 coupled to a first switch 216 and a second current source 218 coupled to a second switch 220. When phase difference signal 208 indicates an “up signal,” first switch 216 turns on, thereby coupling first current source 214 to loop filter 222, and second switch 220 turns off, thereby decoupling second current source 218 from loop filter 222. This configuration causes a positive current to flow through loop filter 222 and the voltage of frequency control signal 224 increases. Alternatively, when phase difference signal 208 indicates a “down signal,” first switch 216 turns off, thereby decoupling first current source 214 from loop filter 222, and second switch 220 turns on, thereby coupling second current source 218 to loop filter 222. This configuration causes a negative current to flow through loop filter 222 and the voltage of frequency control signal 224 decreases. Loop filter 222 filters out jitter and reduces voltage overshoot when charge pump 212 switches between the up configuration and the down configuration. For example, in one embodiment, the loop filter is implemented as a passive RC filter. In alternative embodiments, a different configuration of control element 210 may be used to generate frequency control signal 224 from phase difference signal 208.
Variable frequency oscillator 226 receives the frequency control signal and generates an oscillating output signal 228 having an output frequency fPLL that varies based on frequency control signal 224. Variable frequency oscillator 226 may be implemented as, for example, an LC voltage controlled oscillator (VCO). In general, the frequency fPLL of output signal 228 will have a fractional-N relation with the reference frequency fREF, as will be explained in further detail below.
Circuit element 230 generates first phase signal 232 and second phase signal 234 based on output signal 228. First phase signal 232 and second phase signal 234 have the same frequency but second phase signal 234 is phase-shifted relative to first phase signal 232. In one embodiment, circuit element 230 comprises a frequency divider (e.g., a divide frequency by two circuit) and first phase signal 232 and second phase signal 234 comprise in-phase (I) and quadrature phase (Q) component signals respectively each having a frequency of fPLL/2. Alternatively, a different phase-shift may be applied and first phase signal 232 and second phase signal 234 are not necessarily 90 degrees out of phase.
Phase interpolator 236 receives first phase signal 232 and second phase signal 234 and generates interpolated signal 244 based on a modulated phase control signal 238. Interpolated signal 244 comprises a signal having an average phase in between (or equal to) the phases of first phase signal 232 and second phase signal 234.
Frequency divider circuit 246 receives interpolated signal 244 and divides the frequency of interpolated signal 244 to generate PLL feedback signal 206. For example in one embodiment, frequency divider circuit 246 divides by N/2, where N is predefined integer value.
In one embodiment, frequency selection signal 242 provides a desired frequency to control output frequency 228 of PLL 200. Modulator 240 (e.g., a delta-sigma modulator) receives frequency selection signal 242 that generates modulated phase control signal 238. In one embodiment, modulated phase control signal 238 is based on a high frequency clock having a frequency much higher than the frequency of first phase signal 232 and second phase signal 234. Modulated phase control signal 238 specifies a selected phase for each period of modulated phase control signal 238 from two or more selectable phases. Modulator 240 selects between the possible phases such that an average phase over time is added by phase interpolator 236 to achieve the desired frequency specified by frequency selection signal 242. For example, in one embodiment, modulator 240 applies a delta-sigma modulation technique to achieve the correct average phase.
In one embodiment, the average phase of modulated signal 244 (relative to the first phase signal 232) is controllable based on a parameter P and a parameter L of phase interpolator 236, where 2P−1 specifies a programmable step size out of 2L phase steps evenly spaced between 0° and 360°. For example, if L=4, P=2, there are 16 phase steps (e.g., 0°, 22.5° 45°, 67.5°, 90°, . . . ) and phase interpolator 236 adds, on average, a phase of 3 step sizes (67.5°) to first phase signal 232. Applying a phase shift at each cycle is equivalent to a fractional increase in period, thereby achieving a fractional decrease in frequency of modulated signal 244 relative to first phase signal 232.
The feedback loop of PLL circuit 200 operates to configure the output frequency fPLL so that once divided/reduced in frequency, the feedback frequency fFB will match the reference frequency fREF. By varying the parameters, P, L, and N, a variety of different frequencies can be achieved at the output fPLL from a single reference frequency fREF.
Operation of PLL circuit 200 can be further understood in view of the equations below. As stated above, the desired output frequency fPLL is achieved when the feedback frequency fFB matches the reference frequency fREF, or equivalently, the reference period TREF matches the feedback period TFB:
TREF=TFB (1)
The feedback period TFB is given by:
where TPLL is the period of output signal 228 (therefore 2TPLL is the period of first phase signal 232 and second phase signal 234 generated by element 230), 2L is the number of average phase steps (evenly spaced between 0° and 360°) that phase interpolator 236 can add to the first phase signal 232, 2P−1 is the average number of steps applied, and N/2 is the frequency division ratio of frequency divider 246. Thus, as can be seen from equation (2), phase interpolator 236 operates to lengthen or reduce the period 2TPLL of first phase signal 234 by some fractional amount. The period is then further lengthened by N/2 to enable a wide range of periods having fraction relationships to the reference period TREF. Solving equations (1) and (2) for TREF yields:
Converting equation (3) to frequency gives:
where fPLL=1/TPLL and fREF=1/TREF. As can be seen from equation (4), a desired output frequency fPLL can be achieved from a reference frequency fREF by varying parameters N, P, and L.
In second PLL circuit 420, frequency divider 444 receives intermediate signal 442 having a frequency fINT outputted by first PLL circuit 410. In one embodiment, frequency divider 444 divides frequency of intermediate signal 442 by an integer M to produce signal 446 having a frequency fINT/M. Phase-frequency detector 448 detects a difference in phase and frequency between signal 446 and feedback signal 450 and produces phase difference signal 452 (which may be, for example, an “up signal” or a “down signal” as described above). Control element 454 operates similarly to control element 210 described above except that secondary current sources 456, 458 are included which are controlled by feedforward signal 414 from feedforward control circuit 430. Note that although secondary current sources 456, 458 are illustrated as current-controlled current sources, these could alternatively be implemented as voltage-controlled current sources by omitting block 434. Thus, some additional current is driven into or drawn from the loop filter 472 based on feedforward control signal 414, operation of which will be described in further detail below. Note that in practice, second current sources 456, 458 could be, but are not necessarily separate physical devices from fixed current sources 457, 459.
Control element 454 produces frequency control signal 460 that controls output of ring voltage-controlled oscillator (VCO) 462. The VCO produces output signal 464 having a frequency fOUT which is based on frequency control signal 462. In a feedback loop, frequency divider 466 receives output signal 464 and divides its frequency by an integer A to generate feedback signal 450. Thus, second PLL circuit 420 operates as an integer-N PLL with an output frequency
The overall transfer function of cascaded PLL circuit 400 is therefore given by
Therefore, the overall cascaded PLL circuit 400 operates as a fractional-N PLL because the output frequency fOUT can have a fractional relationship with the reference frequency fREF.
Feedforward control circuit 430 receives control signal 412 from first PLL circuit 410 and generates feedforward signal 414. In one embodiment, control signal 412 comprises a frequency control signal used to control an LC VCO of first PLL circuit 410. As can be seen in the waveforms of
In the linear representation of the second PLL, phase gain block 544 applies a phase gain of 1/M, modeling block 444 of
To cancel propagation of the phase noise ΦN to the output phase (Dour, a transfer function HQC is applied to control voltage 512 to generate the feedforward current 514. Absent the cancellation path including block 530, quantization noise ΦN would be transferred to the output phase ΦOUT according to the transfer function:
where HPLL1(s) is the transfer function of the first PLL from input signal 504 having phase ΦIN to intermediate output signal 542 having phase ΦINT; and HPLL2(s) is the transfer function of the second PLL (excluding frequency divider block 544) from signal 572 to output signal 564 having a phase ΦOUT. Furthermore, the phase noise ΦN will propagate through the cancellation path (represented by block 530) according to the transfer function:
Thus, for noise cancellation, the following condition should be met:
Solving for HQC provides an appropriate transfer function for spur cancellation:
Observing that a capacitor with a capacitance C has a Laplace transform of 1/SC, a capacitor can be used to implement block 530 (or block 430 in
PLL with Split-Tuned Ring VCO
The two output signals 664, 668 comprise signals having the same frequency fOUT but different phases. In one embodiment, for example, the first output signal 664 is an in-phase signal I and the second output signal 668 comprises a quadrature signal Q having a 90° phase shift relative to the first output signal 664. Alternatively, the second output signal 668 could have a different fixed phase relationship to the first output signal 664 that is not necessarily 90°.
PLL circuit 600 comprises a phase-frequency detector 648 that generates phase difference signal 652 based on a difference in phase between input signal 646 and feedback signal 650. Control element 654 generates frequency control signal 660 based on phase difference signal 652. In one embodiment, for example, control element 654 comprises a charge pump and a loop filter as described above. Variable frequency oscillator 662 generates first output signal 664 and second output signal 668 based on frequency control signal 660 and oscillator feedback signal 670. Furthermore, variable frequency oscillator 662 controls the relative phases of first output signal 664 and second output signal 668 based on oscillator feedback signal 670 as will be described in further detail below. Error detection module 676 detects a difference in phase between first output signal 664 and second output signal 668 and compares the detected phase difference to a desired phase difference to determine a phase error. Error detection module 676 then generates oscillator feedback signal 670 indicative of such phase error to reduce the detected phase error. Frequency divider circuit 666 divides the frequency of second output signal 668 (or alternatively, first output signal 664) to generate feedback signal 650.
Ring VCO 662 comprises a chain of circuit elements each with some finite propagation delay such as, for example, a chain of inverters and/or non-inverting buffers. For example, in one embodiment, ring VCO 662 comprises an odd number of inverters. A finite amount of time after a particular logic level is applied to the first input, the last inverter in the chain outputs the inverse logic level. This output is fed back to the input, thus causing an oscillation with a frequency based on the overall delay through ring oscillator 662. The circuit elements of ring oscillator 662 have a controllable delay, thus enabling various oscillation frequencies to be achieved.
In the illustrated embodiment, a first set of circuit elements (e.g., inverters and/or non-inverting buffers) of ring oscillator 662 are grouped together as first delay element 672 with their delays controlled by control signal 660. A second group of circuit elements (e.g., inverters and/or non-inverting buffers) are grouped together as second delay element 674 with their delays controlled by oscillator feedback signal 670. In one embodiment, first delay element 672 and second delay element 674 have different numbers of inverters to ensure an odd number of overall inverters (e.g., first delay element 672 has an odd number of inverters and second delay element 674 has an even number of inverters) in ring oscillator 662. Thus, the overall frequency of VCO 662 is determined by the combined delay through first and second delay elements 672, 674. The phase difference between first output signal 664 and second output signal 668 is determined based on the difference in delays between first delay element 672 and second delay element 674. Thus, a benefit of using a ring oscillator 662 is that multiple output signals 664, 668 having different phases can be drawn from oscillator 662 without requiring an additional phase shifting element separate from the oscillator.
Error detection module 676 detects the phase delay of second output signal 668 relative to first output signal 664. Error detection module 676 then compares the phase delay to a desired phase delay. If the detected phase delay is greater than desired (i.e., second output signal 668 lags too far behind first output signal 664), error detection module 676 adjusts oscillator feedback signal 670 to decrease the delay through second delay element 674. This will momentarily cause an overall increase in frequency of first and second output signals 664, 668. However, the PLL circuit 600 will compensate for the frequency increase by adjusting control signal 660 to cause a corresponding increase in delay of first delay element 672, thereby maintaining the desired output frequency. Similarly, when the detected phase delay is less than desired (i.e., second output signal 668 does not lag far enough behind first output signal 664), error detection module 676 will cause an increase in delay through second delay element 674, and the PLL circuit 600 will cause a corresponding decrease in delay through first delay element 672 to achieve both the desired output frequency and the desired phase difference between first and second output signal 664, 668.
An example circuit for use as the first LC-based VCO 682 is illustrated comprising inductors L1, L2, transistors M1, M2, M3, M4, current source 696, and variable capacitors C1, C2 arranged as an LC-based VCO. Frequency control input 660 controls capacitance of variable capacitors C1, C2 in order to achieve variations in frequency of the output signal 668 (which is shown as a differential signal) in relation to the reference signal 694 (which is shown as a differential signal). Second LC-based VCO 686 may have a similar or identical architecture. In alternative embodiments, different variations of LC-based VCOs can be used that operate according to similar principles.
An example circuit for coupling element 684 is also illustrated comprising resistors R1, R2 and transistors M5-M10. The circuit elements are arranged to operate as a phase shifter to shift a phase of an input (e.g., first output signal 668 which is shown as a differential signal) based on an amount Δ proportional to the difference between V+ and V−, to produce an output (e.g., signal 692 which is shown as a differential signal). Coupling element 688 can be implemented according to similar or the same architecture as coupling element 684 except that differential inputs V+ and V− are switched in order to achieve a shift of +A instead of −A. In alternative embodiments, different variations of coupling elements 684, 688 can be used that operate according to similar principles.
The LC-based VCO 680 achieves a similar function to the ring-based VCO 662 described above. Frequency control signal 660 controls overall oscillation frequency of the LC-based VCO 680. Feedback oscillation signal 670 controls an amount of phase shift between the two output signals 668, 664 in order to achieve the desired phase relationship (e.g., quadrature signals that are 90° out of phase).
In other alternative embodiments, different combinations of the above-described PLL circuits may be used in standalone configurations or in cascaded configurations. Furthermore, one or more of the above described PLL circuits can be used in a cascaded configuration with one or more conventional PLL architectures. Beneficially, the described embodiments enable a wide range of frequencies to be synthesized from a single oscillator with high noise performance, thereby enabling compliance with a wide variety of wireless communication standards.
Processes Performed by the PLL Circuits
In other alternative embodiments, different variations of the example processes described above can be performed by the described frequency synthesizers in order to synthesize signals. For example, in various embodiments, the process steps of
Upon reading this disclosure, those of ordinary skill in the art will appreciate still alternative structural and functional designs for a frequency synthesizer and processes for frequency synthesis, through the disclosed principles of the present disclosure. Thus, while particular embodiments and applications of the present disclosure have been illustrated and described, it is to be understood that the disclosure is not limited to the precise construction and components disclosed herein. Various modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present disclosure herein without departing from the scope of the disclosure as defined in the appended claims.
This application is a continuation of U.S. application Ser. No. 15/605,932 filed on May 25, 2017, now U.S. Pat. No. 10,298,244, which is a continuation of U.S. application Ser. No. 14/746,618 filed on Jun. 22, 2015, now U.S. Pat. No. 9,692,431, which is a continuation of U.S. application Ser. No. 13/830,007 filed on Mar. 14, 2013, now U.S. Pat. No. 9,094,028, which claims the benefit of U.S. Provisional Application No. 61/622,977 entitled “Wide Range Frequency Synthesizer with Quadrature Generation and Spur Cancellation” to Masum Hossain, et al., filed on Apr. 11, 2012, the contents of which are each incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5943382 | Li | Aug 1999 | A |
5977806 | Kikuchi | Nov 1999 | A |
6333678 | Brown | Dec 2001 | B1 |
6703902 | Jeon et al. | Mar 2004 | B2 |
6833764 | Dean | Dec 2004 | B1 |
6842056 | Wong et al. | Jan 2005 | B1 |
7043202 | Ozawa et al. | May 2006 | B2 |
7181180 | Teo et al. | Feb 2007 | B1 |
7301404 | Mattisson | Nov 2007 | B2 |
7486145 | Floyd et al. | Feb 2009 | B2 |
7574185 | Ko | Aug 2009 | B2 |
7821343 | Wong et al. | Oct 2010 | B1 |
8334725 | Wang | Dec 2012 | B2 |
8416025 | Lin et al. | Apr 2013 | B2 |
8433018 | Sidiropoulos et al. | Apr 2013 | B2 |
8718217 | Walker et al. | May 2014 | B2 |
9735788 | Lee et al. | Aug 2017 | B2 |
20030119466 | Goldman | Jun 2003 | A1 |
20040164776 | Zampetti | Aug 2004 | A1 |
20080111633 | Cranford | May 2008 | A1 |
20080258799 | Teraguchi | Oct 2008 | A1 |
20080260071 | Sidiropoulos et al. | Oct 2008 | A1 |
20080290953 | Sandner et al. | Nov 2008 | A1 |
20090066423 | Sareen et al. | Mar 2009 | A1 |
20090184773 | Woo et al. | Jul 2009 | A1 |
20100020730 | Man et al. | Jan 2010 | A1 |
20100090723 | Nedovic et al. | Apr 2010 | A1 |
20100090733 | Kristensson et al. | Apr 2010 | A1 |
20100119024 | Shumarayev et al. | May 2010 | A1 |
20100259305 | Lee et al. | Oct 2010 | A1 |
20110148484 | Kim et al. | Jun 2011 | A1 |
20110148498 | Mosalikanti et al. | Jun 2011 | A1 |
20160182065 | Wicpalek | Jun 2016 | A1 |
Entry |
---|
Hanumolu et al., “A Sub-Picosecond Resolution 0.5-1.5 GHz Digital-to-Phase Converter,” IEEE Journal of Solid-State Circuits, vol. 43, No. 2, pp. 414-424, Feb. 2008. 11 pages. |
Jian et al. “A Fractional-N PLL for Multiband (0.8-6 GHz) Communications Using Binary-Weighted D/A Differentiator and Offset-Frequency Δ-ΣModulator,” IEEE Journal of Solid-State Circuits, vol. 45, No. 4, pp. 768,780, Apr. 2010. 13 pages. |
Lai, Xiongliang, “Design and Analysis of a Dual-Mode Cascaded-Loop Frequency Synthesizer,” Thesis submitted to Brigham Young University, Aug. 2009. 147 pages. |
Lin et al., “A Delta-Sigma Modulator With a Phase-to-Digital and Digital-to-Phase Quantizer,” 2011 IEEE 9th International New Circuits and Systems Conference (NEWCAS), pp. 209-212, Jun. 26-29, 2011. 4 pages. |
Park et al., “A Low-Noise and Low-Power Frequency Synthesizer Using Offset Phase-Locked Loop in 0.13-um CMOS,” IEEE Microwave and Wireless Components Letters, vol. 20, No. 1, pp. 52-54, Jan. 2010. 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190253059 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
61622977 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15605932 | May 2017 | US |
Child | 16382580 | US | |
Parent | 14746618 | Jun 2015 | US |
Child | 15605932 | US | |
Parent | 13830007 | Mar 2013 | US |
Child | 14746618 | US |